⁰² ИК активные фононы ионного кристалла LiNiPO₄

© С.А. Климин¹, М.С. Радионов^{1,2}, В.А. Яковлев¹, Н.Н. Новикова¹, А.В. Песчанский³

¹ Институт спектроскопии РАН,

108840 Троицк, Москва, Россия

² Московский физико-технический институт (Национальный исследовательский университет),

141701 Долгопрудный, Россия

³ Физико-технический институт низких температур им. Б.И. Веркина НАН Украины,

Харьков, Украина

e-mail: klimin@isan.troitsk.ru

Поступила в редакцию 21.09.2020 г. В окончательной редакции 21.09.2020 г. Принята к публикации 05.10.2020 г.

Приведены результаты экспериментального исследования фононного спектра монокристалла LiNiPO₄ методом спектроскопии инфракрасного (ИК) отражения. Получены спектроскопические параметры фононов, активных в ИК спектрах. Наблюдаемое количество фононов находится в основном в согласии с проведенным теоретико-групповым анализом. Обсуждены причины небольших расхождений. При понижении температуры наблюдается ужесточение частот фононов, связанное с температурными изменениями параметров кристаллической решетки.

Ключевые слова: фононы, монокристалл LiNiPO4, ИК отражение.

DOI: 10.21883/OS.2021.01.50438.249-20

Введение

В последнее время научное сообщество проявляет интерес к группе кристаллов со структурой типа оливина LiMPO₄ (M = Mn, Fe, Co и Ni) по двум причинам: это перспективные материалы для применения в литийионных аккумуляторах [1,2] и низкотемпературные магнетики [3,4] с интересными фазовыми диаграммами и мультиферроидными свойствами. Используемые в качестве катодов литий-ионных батарей данные материалы могут значительно повысить емкость батарей и одновременно понизить их стоимость [5]. Из-за высокого окислительно-восстановительного потенциала LiNiPO4 до последнего времени не находил практического применения в отличие от родственных соединений LiFePO₄ и LiMnPO₄. Недавние разработки новых электролитов на основе сульфонов расширили электрохимическое "окно" электролитов до 5.5 V [6], что в свою очередь расширило и ряд перспективных 5-вольтовых материалов катодов, таких как LiNiPO₄.

LiNiPO₄, как и другие соединения этого семейства, кристаллизуется в центросимметричной ромбической пространственной группе *Pnma* (№ 62) [7,8]. Наиболее важными особенностями кристаллической структуры LiNiPO₄ являются (1) молекулярные группы PO₄, (2) двумерная решетка никеля и (3) туннели, в которых подвижные ионы Li⁺ могут свободно перемещаться (рис. 1). Последнее свойство имеет большое значение для практических приложений, связанных с ионной проводимостью.

При температуре около 20 К LiNiPO₄ испытывает магнитный фазовый переход, отнесенный к антиферромагнитному упорядочению [9,10]. Более подробные исследования установили, что переход имеет сложную природу [3,11–13]. Недавние исследования обнаружили в кристалле интересную фазовую диаграмму в координатах H-T (магнитное поле—температура) [4,14–16]. Магнитоэлектрический эффект, обнаруженный в LiNiPO₄ [14,17–20], свидетельствует о сильном взаимодействии магнитной и зарядовой степеней свободы в кристалле. В то же время было бы интересно найти доказательства возможных взаимодействий между другими степенями свободы в кристалле, например колебательными и магнитными, которые присутствуют в мультиферроиках [21–24]. Колебательные свойства LiNiPO₄ были детально исследованы методом спектроскопии комбинационного рассеяния

Рис. 1. Фрагмент кристаллической структуры LiNiPO₄.

света [25–27]. Авторы работы [25] акцентируют внимание на том, что для интерпретации слабых полос недостает полной информации о колебаниях, активных в ИК спектрах, и их симметрийных свойствах. В работе [28], к примеру, содержится лишь частичная информация об ИК фононах LiNiPO₄ на поликристаллических образцах.

Целью данной работы является экспериментальное исследование спектров ИК отражения ориентированного монокристалла LiNiPO₄ в поляризованном свете в широком спектральном диапазоне и получение параметров ИК активных фононов.

Методы эксперимента и анализа

При комнатной температуре спектры ИК отражения были измерены при помощи фурье-спектрометра BRUKER IFS66 v/s в широком спектральном диапазоне от 50 до 5000 cm⁻¹ при падении поляризованного излучения, близком к нормальному. Измерения проводились в двух спектральных областях: в дальнем ИК диапазоне от 50 до 550 cm⁻¹ и среднем ИК диапазоне от 400 до 5000 cm⁻¹ с использованием разных светоделителей: в первом случае использовался лавсановый светоделитель, во втором — светоделитель из КВг. Источником излучения в обоих случаях являлся глобар (стержень из карбида кремния SiC, разогретый до высоких температур). Для детектирования интерферограммы были использованы пироэлектрические приемники: для дальнего ИК — ДЛАТГС (дейтерированный триглицинсульфат с примесью L-α-аланина), для ближнего ИК — ДТГС (дейтерированный триглицинсульфат $(NH_2CH_2OOH)_3 \cdot H_2SO_4).$

При низких температурах измерения спектров ИК отражения были проведены на фурье-спектрометре BRUKER IFS125 с использованием гелиевого болометра и охлаждаемого жидким азотом приемника КРТ (кадмий-ртуть-теллур) в разных областях спектра (50–700 и 700–5000 сm⁻¹ соответственно). Охлаждение образца осуществлялось в гелиевом криостате замкнутого цикла CRYOMECH PT403 с полиэтиленовыми окнами.

Излучение, падающее на монокристалл LiNiPO₄, было поляризованным. Использовались два вида поляризаторов: в дальнем ИК диапазоне — полимерный поляризатор, в среднем — KRS-5. Спектры ИК отражения были измерены в трех поляризационных конфигурациях: **E** || **a**, **E** || **b** и **E** || **c** (**E** — вектор напряженности электрического поля световой волны, **a**, **b**, **c** — кристаллографические оси кристалла).

Образец представлял собой прозрачный, желтооранжевого цвета монокристалл LiNiPO₄, имеющий размер $4 \times 3.5 \times 2$ mm. Грани образца были ориентированы перпендикулярно кристаллографическим осям, что позволило провести измерения в поляризованном свете, электрический вектор которого был параллелен одной из кристаллографических осей. Перпендикулярность граней реализуется с высокой точностью, что проявляется в хорошем разделении мод по различным направлениям.

Обработка спектров с помощью дисперсионного анализа позволила получить параметры оптических фононов. Для этого экспериментальные спектры сравнивались с расчетными с использованием формулы Френеля для коэффициента отражения *R*, при этом диэлектрическая проницаемость определяется дисперсионным соотношением через сумму вкладов *N* независимых затухающих осцилляторов:

$$\varepsilon(\omega) = \varepsilon_{\infty} + \sum_{j=0}^{N} \frac{\omega_{p,j}^{2}}{\omega_{j}^{2} - \omega^{2} + i\gamma_{j}\omega},$$
(1)

где ε_{∞} — диэлектрическая проницаемость на высоких частотах; ω_j , $\omega_{p,j}$ и γ_j — частота, плазменная частота и полуширина для *j*-го фонона. Минимизация разницы этих спектров программами SCOUT [29] и RefFit [30] позволила получить частоты, плазменные частоты и полуширины оптических фононов.

Результаты исследований

Согласно структурным данным [3], элементарная LiNiPO₄ четыре ячейка содержит формульные единицы. В примитивной кристаллографической ячейке содержится N = 28 атомов, что соответствует 3N = 84 степеням свободы, три из которых связаны колебаниями кристаллографической ячейки как с единого целого и относятся к акустическим колебаниям. Воспользовавшись структурными данными [3], мы провели теоретико-групповой анализ. В позиции C_s^{xz} располагаются атомы никеля Ni, фосфора P и два атома кислорода: О₁ и О₂. Каждый из этих атомов генерирует следующие колебания [31,32]: $2A_g + A_u + B_{1g} + 2B_{1u} +$ $+2B_{+}2g_{}+B_{2u}+B_{3g}+2B_{3u}$. Атомы лития Li в позиции C_i дают колебания $3A_u + 3B_{1u} + 3B_{2u} +$ $+3B_{3u}$, а атомы кислорода О₃ (C_1) — $3A_g + 3A_u +$ $+3B_{1g}+3B_{1u}+3B_{2g}+3B_{2u}+3B_{3g}+3B_{3u}$. Результиформулы для состава оптических рующие колебаний (Г^{орt}) и колебаний, активных в спектрах комбинационного рассеяния света (Raman) и ИК отражения, (IR) выглядят следующим образом:

$$\Gamma^{\text{opt}} = 11A_g + 10A_u + 7B_{1g} + 13B_{1u} + 11B_{2g} + 9B_{2u} + 7B_{3g} + 13B_{3u}, \quad (2)$$

 $Raman = 11A_g(xx + yy + zz) + 7B_{1g}(xy + yx)$

$$+ 11B_{2g}(xz + zx) + 7B_{3g}(yz + zy), \qquad (3)$$

$$IR = 13B_{1u}(\mathbf{E} \parallel \mathbf{c}) + B_{2u}(\mathbf{E} \parallel \mathbf{b}) + 13B_{3u}(\mathbf{E} \parallel \mathbf{a}).$$
(4)

Вследствие альтернативного запрета никакая фононная мода не может быть активной одновременно и в

Рис. 2. Коэффициент отражения R в зависимости от частоты для кристалла LiNiPO₄ в поляризации **E** || **a** при температурах 295 K (серая штриховая линия) и 80 K (сплошная черная).

спектрах комбинационного рассеяния света, и в ИК. Таким образом, в кристалле LiNiPO₄ должно быть 35 ИКактивных колебаний, которые делятся по поляризациям в соответствии с уравнением (4).

Спектры отражения для кристалла LiNiPO₄ в поляризации **E** || **a** представлены на рис. 2 для двух температур. В спектрах наблюдается 10 сильных фононов B_{3u} из 13 ожидаемых по проведенному анализу. Понижение температуры, приводящее к сужению низкочастотных фононов, помогает однозначно идентифицировать пик в области 165 cm⁻¹ как фононный, а также обнаружить еще один очень слабый фонон с частотой вблизи 204 cm⁻¹. Недостающие два фонона, вероятно, не разрешаются из-за того, что в данном кристалле есть фононы с близкими частотами. В частности, возможным указанием на такой сценарий является появление плоской вершины у фонона вблизи 280 cm⁻¹, возникающей при охлаждении.

Характерной особенностью колебательных спектров кристалла LiNiPO₄ является наличие энергетического зазора в спектральной области 650-900 cm⁻¹, который обусловлен присутствием в кристалле молекулярных групп PO₄. Колебания ν 3 и ν 1 тетраэдрической молекулы PO₄ сохраняют свои частоты, расщепляясь (трижды вырожденное колебание ν 3) за счет понижения симметрии Td-Cs, и попадают в спектральные области 1000–1200 cm⁻¹ и 920–980 cm⁻¹ соответственно.

На рис. З приведены спектры отражения для кристалла LiNiPO₄ в поляризации **E** || **b** также для двух температур. На первый взгляд, в спектре обнаружены 9 фононов, как и должно быть согласно проведенному анализу. Однако корреляционный анализ показывает, что в спектральной области колебания v3 свободной молекулы есть только одно колебание симметрии B_{2u} . Таким образом, в области 1000 сm⁻¹ в спектре отражения **E** || **b** (рис. 3) находится лишь один фонон, а провал на вершинке фонона обусловлен, возможным усилением обертонов за счет резонанса Ферми.

Недостающий фонон, возможно, находится в области частоты 246 сm⁻¹, так как при понижении температуры у фононного пика появляется уширенная плоская вершина.

Еще одна особенность спектра отражения в поляризации $\mathbf{E} \parallel \mathbf{b}$ состоит в том, что при понижении температуры растет отражение на низких частотах. Оно, по-видимому, обусловлено тем, что при понижении температуры возникает окно прозрачности кристалла, и к наблюдаемому отражению от первой грани кристалла добавляется отражение от второй. Аналогичный подъем, но менее явный, наблюдается в спектрах $\mathbf{E} \parallel \mathbf{a}$ (рис. 2).

Поляризация **E** || **c** представлена на рис. 4. Наблюдается 12 фононов B_{1u} из 13, причем узкий фонон с частотой 313 сm⁻¹ проявился только при понижении температуры.

Для извлечения оптических параметров фононов было проведено моделирование измеренных спектров отражения. Пример спектра, полученного в результате моделирования, показан на рис. 3. Полученные в результате варьирования частоты плазменные частоты и полуширины фононных мод приведены в таблице.

Рис. 3. Коэффициент отражения R в зависимости от частоты для кристалла LiNiPO₄ в поляризации **E** || **b**: экспериментальные кривые при температурах 295 К (серая штриховая линия) и 72 К (сплошная черная) и расчет спектра при 72 К (штрихпунктир).

Рис. 4. Коэффициент отражения R в зависимости от частоты для кристалла LiNiPO₄ в поляризации **E** || **с** при температурах 295 К (серая штриховая линия) и 72 К (сплошная черная).

Оптические параметры фононов симметрии B_{1u} , B_{2u} (70 K) и B_{3u} (80 K): частоты поперечных колебаний ν_{TO} , плазменные частоты ω_{P} и полуширины γ (все в сm⁻¹)

B_{2u}			B_{3u}			B_{1u}		
v_{TO}	$\omega_{ m P}$	γ	ν_{TO}	$\omega_{ m P}$	γ	$v_{\rm TO}$	$\omega_{ m P}$	γ
207	89	4	165	36	1.8	196	36	1
237	305	11.3	203.3	13.8	1.8	226.6	99	2
265	67	4.7	282.3	323	11.6	259	68	4.9
361	153	8.3	311.6	208	5.9	297	245	8.4
448	198	14	330	132	9.2	311	44	2.8
474.3	328	20.5	362.8	86.6	5.1	346.8	100	21.20
548.1	248	11	510.8	281	33	374	398	18.3
955.1	716	27	578.8	234	9,1	528	356	31
			660.3	174.1	6.1	580	63	4.6
			941.6	131	5.9	646	227	5.3
			1032.6	708	14.9	1075	638	17.5
			1101.7	182	8.9	1145	196	9.1

Выводы

Измерены спектры ИК отражения монокристалла LiNiPO₄ в поляризованном свете при комнатной температуре и температурах вблизи 70–80 К. Охлаждение образца позволило обнаружить несколько новых фононов по сравнению с данными, полученными при комнатной температуре, за счет сужения фононных пиков. Зарегистрирована бо́льшая часть фононов, ожидаемых согласно теоретико-групповому анализу для ромбической структуры *Pnma* кристалла LiNiPO₄ (12 фононов симметрии B_{1u} из 13, $8B_{2u}$ из 9, $12B_{3u}$ из 13). Обнаружена особенность, предположительно отнесенная к резонансу Ферми. Проведено моделирование в рамках дисперсионного анализа и получены параметры ИК активных фононов LiNiPO₄: частоты поперечных колебаний, плазменные частоты и полуширины.

Финансирование работы

Работа поддержана Министерством науки и высшего образования РФ (госзадание № 0039-2019-0004).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Karthickprabhu S., Vikraman D., Kathalingam A., Prasanna K., Kim H.S., Karuppasamy K. // Mater. Lett. 2019. V. 237. P. 224–227.
- [2] Örnek A. // Chem. Eng. J. 2018. V. 331. P. 501–509.
- [3] Lewińska S., Szewczyk A., Gutowska M.U., Wieckowski J., Puzniak R., Diduszko R., Reszka A., Kowalski B.J., Kharchenko Y., Molenda J. // Phys. Rev. 2019. V. 99. P. 214440.

- [4] Peedu L., Kocsis V., Szaller D., Viirok J., Nagel U., Rõõm T., Farkas D.G., Bordács S., Kamenskyi D.L., Zeitler U., Tokunaga Y., Taguchi Y., Tokura Y., Kézsmárki I. // Phys. Rev. B. 2019. V. 100. P. 024406.
- [5] Shang S.L., Wang Y., Mei Z.G., Huib X.D., Liu Z.K. // J. Materials Chemistry. 2012. V. 22. P. 1142.
- [6] Wang D., Xiao J., Xu W., Zhang J. // The 15th Intern. Meeting on Lithium Batteries. 2010. Montreal, Quebec, Canada, 27 June–2 July 2010. ISBN: 9781617823398. P. 372–372.
- [7] Abrahams I., Easson K.S. // Acta Crystallogr. Sect. C. 1993.
 V. 49. P. 925–926.
- [8] Li J., Jensen T.B.S., Andersen N.H., Zarestky J.L., McCallum R.W., Chung J.H., Lynn J.W., Vaknin D. // Phys. Rev. B. 2009. V. 79. P. 1–7.
- [9] Santoro R.P., Segal D.J., Newnham R.E. // J. Phys. Chem. Solids. 1966. V. 27. P. 1192–1193.
- [10] Vaknin D., Zarestky J., Ostenson J. // Phys. Rev. B. 1999.
 V. 60. P. 1100–1110.
- [11] Kharchenko Y.N., Kharcheno N.F., Baran M., Szymczak R. // Low Temp. Phys. 2003. V. 29. P. 579–583.
- [12] Vaknin D., Zarestky J.L., Rivera J.P., Schmid H. // Phys. Rev. Lett. 2004. V. 92. P. 1–4.
- [13] Jensen T.B.S., Christensen N.B., Kenzelmann M., Rønnow H.M., Niedermayer C., Andersen N.H., Lefmann K., Jiménez-Ruiz M., Demmel F., Li J., Zarestky J.L., Vaknin D. // Phys. Rev. B. 2009. V. 79. P. 6–9.
- [14] Jensen T.B.S., Christensen N.B., Kenzelmann M., Rønnow H.M., Niedermayer C., Andersen N.H., Lefmann K., Schefer J., Zimmermann M.V., Li J., Zarestky J.L., Vaknin D. // Phys. Rev. B. 2009. V. 79. P. 2–5.
- [15] Toft-Petersen R., Jensen J., Jensen T.B.S., Andersen N.H., Christensen N.B., Niedermayer C., Kenzelmann M., Skoulatos M., Le M.D., Lefmann K., Hansen S.R., Li J., Zarestky J.L., Vaknin D. // Phys. Rev. B. 2011. V. 84. P. 1–10.
- [16] Fogh E., Kihara T., Toft-Petersen R., Bartkowiak M., Narumi Y., Prokhnenko O., Miyake A., Tokunaga M., Oikawa K., Sørensen M.K., Dyrnum J.C., Grimmer H., Nojiri H., Christensen N.B. // Phys. Rev. B. 2020. V. 101. P. 1–12.
- [17] Kornev I., Bichurin M., Rivera J.P., Gentil S., Schmid H., Jansen A.G.M., Wyder P. // Phys. Rev. B. 2000. V. 62. P. 12247–12253.
- [18] Yamauchi K., Picozzi S. // Phys. Rev. B. 2010. V. 81. P. 2-6.
- [19] Khrustalyov V.M., Savytsky V.M., Kharchenko M.F. // Low Temp. Phys. 2016. V. 42. P. 1126–1129.
- [20] Toft-Petersen R., Fogh E., Kihara T., Jensen J., Fritsch K., Lee J., Granroth G.E., Stone M.B., Vaknin D., Nojiri H., Christensen N.B. // Phys. Rev. B. 2017. V. 95. P. 1–8.
- [21] Klimin S.A., Kashchenko M.A., Bezmaternykh L.N. // J. Low Temp. Phys. 2016. V. 185. N 5–6. P. 538–543
- [22] Klimin S.A., Kuzmenko A.B., Kashchenko M.A., Popova M.N. // Phys. Rev. B. 2016. V. 93. P. 054304.
- [23] Klimin S.A., Popova E.A., Popova M.N. // J. Phys. Conf. Ser. 2019. V. 1389. P. 012039.
- [24] Popova M.N., Boldyrev K.N., Klimin S.A., Stanislavchuk T.N., Sirenko A.A., Bezmaternykh L.N. // J. Magn. Magn. Mater. 2015. V. 383. P. 250–254.
- [25] Fomin V.I., Gnezdilov V.P., Kurnosov V.S., Peschanskii A.V., Yeremenko A.V., Schmid H., Rivera J.P., Gentil S. // Low Temp. Phys. 2002. V. 28. P. 203-209.
- [26] Peschanskii A.V. // Low Temp. Phys. 2020. V. 46. P. 622-629.

- [27] Rigitano D., Vaknin D., Barberis G.E., Granado E. // Phys. Rev. B. 2020. V. 101. P. 024417.
- [28] Ben Bechir M., Ben Rhaiem A., Guidara K. // Bull. Mater. Sci. 2013. V. 3. P. 473-480.
- [29] Theiß W. // Surface Science Reports. 1997. V. 29. P. 91.
- [30] Kuzmenko A. // Rev. Sci. Instrum. 2005. V. 76. P. 083108.
- [31] Жижин Г.Н., Маврин Б.Н., Шабанов В.Ф. Оптические колебательные спектры кристаллов. М.: Наука, 1984. 231 с.
- [32] *Rousseau D.L., Bauman R.P., Porto S.P.S.* // J. Raman Spectrosc. 1981. V. 1. P. 253–290.