01 Колебательно-вращательный анализ первой гексады сероводорода: полоса 4v₂ H₂³²S

© Ф. Чжан, Н.И. Распопова

Национальный исследовательский Томский политехнический университет, 634050 Томск, Россия e-mail: raspopovani@tpu.ru

Поступила в редакцию 08.07.2020 г. В окончательной редакции 29.09.2020 г. Принята к публикации 29.09.2020 г.

Инфракрасный спектр молекулы H₂S был зарегистрирован на фурье-спектрометре Bruker IFS 125HR и исследован в диапазоне 4500–5000 cm⁻¹, где находится первая гексада полос взаимодействующих состояний молекулы сероводорода (в данном случае исследуется слабая полоса $4v_2$). 400 переходов с максимальными значениями квантовых чисел $J^{\text{max}} = 17$ и $K_a^{\text{max}} = 8$ были проинтерпретированы в экспериментальном спектре. Эти переходы соответствуют 132 верхним колебательно-вращательным энергиям. Полученные данные были проанализированы с использованием модели эффективного гамильтониана Уотсона. В результате решения обратной спектроскопической задачи был получен набор из 28 спектроскопических параметров, который воспроизводит исходные экспериментальные данные со среднеквадратичным отклонением $d_{\text{rms}} = 3.5 \cdot 10^{-4} \text{ cm}^{-1}$.

Ключевые слова: молекулярная спектроскопия, первая гексада сероводорода, колебательно-вращательный гамильтониан.

DOI: 10.21883/OS.2021.01.50432.190-20

Введение

Сероводород является одним из важнейших химических соединений роль которого трудно переоценить при решении многих проблем химии, астрофизики, астрофизической оптики, планетологии и т.д. По этой причине в течение длительного времени в микроволновой, субмиллиметровой и инфракрасной областях выполнялись обширные лабораторные спектроскопические исследования молекулы сероводорода и ее различных изотопологов, в том числе и в нашей лаборатории [1–9].

Предметом настоящего исследования является слабая полоса $4v_2$, которая относится к так называемой первой гексаде взаимодействующих колебательных состояний молекулы сероводорода. Полоса $4v_2$ расположена относительно других пяти полос первой гексады достаточно далеко, чтобы было возможно рассматривать ее как изолированную полосу. Спектр высокого разрешения этой полосы ранее исследовался только в работе [10].

Экспериментальные детали

Инфракрасный спектр молекулы H_2S был зарегистрирован в Техническом университете Брауншвейга (Германия) в диапазоне 3400–10400 сm⁻¹ с помощью фурье-спектрометра Bruker IFS125HR, оснащенного оптической ячейкой из нержавеющей стали, и исследован в диапазоне 4500–5000 сm⁻¹ (детали эксперимента приведены в табл. 1). Калибровка спектра проводилась в более коротковолновой по сравнению с исследуемой

областью по 50 линиям молекулы OCS, локализованным вблизи 4100 cm⁻¹. Точность калибровки $2 \cdot 10^{-4}$ cm⁻¹. На рис. 1 приведен обзорный спектр в диапазоне 4500–5000 cm⁻¹, в пределах которого расположена полоса $4\nu_2$, а также указаны центры полос $4\nu_2$, $\nu_1 + 2\nu_2$ и $2\nu_2 + \nu_3$.

Гамильтониан молекулы

Молекула H₂S является молекулой типа асимметричного волчка с параметром асимметрии k = 0.532. Группа симметрии этой молекулы изоморфна точечной группе симметрии C_{2v}. Как и любая другая молекула типа XY₂ (C_{2v} симметрия), H₂S имеет три фундаментальных колебания: q₁, q₂ \in A₁ и q₃ \in B₁. Как следствие,

Таблица 1. Экспериментальные условия регистрации спектра H_2S

Спектр	H_2S
Разрешение, ст ⁻¹ Число сканирований Диапазон, ст ⁻¹ Детектор Светоделитель Оптическая длина пути, т Температура, °С	$\begin{array}{c} 0.010 \\ 4000 \\ 4500-5000 \\ InSb \\ CaF_2 \\ 163 \\ 20.1 \pm 0.5 \\ 2000 \end{array}$
давление, га	2000

Рис. 1. Экспериментально зарегистрированный спектр молекулы H₂S в диапазоне 4500-5000 сm⁻¹.

два типа полос разрешены в спектрах поглощения: полосы параллельного типа (A₁), которые соответствуют колебательным переходам (ν_{A_1}) — (ν_{gr}), и полосы перпендикулярного типа (B₁), которые соответствуют колебательным переходам (ν_{B_1}) — (ν_{gr}). Правила отбора для переходов в параллельных полосах при этом имеют следующий вид:

$$\Delta J = 0, \pm 1, \ \Delta K_a = \pm (2n+1), \ \Delta K_c = \pm (2m+1), \ (1)$$

правила отбора для переходов в перпендикулярных полосах:

$$\Delta J = 0, \pm 1, \ \Delta K_a = \pm 2n, \Delta K_c = \pm (2m+1),$$
 (2)

где n, m = 0, 1, 2... Из этого следует, что исследуемая полоса $4v_2$ является полосой A₁-типа, и, следовательно, правила отбора для них описываются уравнением (1).

Модель эффективного гамильтониана молекул XY_2 -типа (C_{2v} -симметрия) неоднократно обсуждалась в спектроскопической литературе [11–13]. По этой причине мы приводим здесь лишь основные формулы, необходимые для анализа спектра.

Как показал предварительный анализ, несмотря на то, что полоса $4v_2$ расположена отдельно от других полос первой гексады, существуют слабые резонансные взаимодействия между отдельными колебательно-вращательными уровнями колебательного состояния (040) с отдельными колебательновращательными уровнями состояний (210) и (012), что приводит к определенному возмущению колебательновращательной структуры состояния (040). По этой причине в данной работе была использована модель эффективного гамильтониана взаимодействующих колебательных состояний [14]

$$H^{vib-rot} = \sum_{v,\widetilde{v}} |v\rangle \langle \widetilde{v}| H^{v,\widetilde{v}}.$$
(3)

В уравнении (3) суммирование ведется от 1 до 3 по v и \tilde{v} , которые представляют три колебательные состояния: $|1\rangle = (021, B_1), |2\rangle = (120, A_1)$ и $|3\rangle = (040, A_1)$. Любой диагональный блок $H^{v,v}$ в уравнении (3) описывает вращательную структуру изолированного колебательного состояния и имеет вид оператора Уотсона в А-редукции I^r представлении

$$\begin{aligned} H^{v,v} &= E^{v} + \left[A^{v} - \frac{1}{2} \left(B^{v} + C^{v} \right) \right] J_{z}^{2} \\ &+ \frac{1}{2} \left(B^{v} + C^{v} \right) J^{2} + \frac{1}{2} \left(B^{v} - C^{v} \right) J_{xy}^{2} \\ &- \Delta_{K}^{v} J_{z}^{4} - \Delta_{JK}^{v} J_{z}^{2} J^{2} - \Delta_{J}^{v} J^{4} \\ &- \delta_{K}^{v} \left[J_{z}^{2}, J_{xy}^{2} \right] - 2\delta_{J}^{v} J^{2} J_{xy}^{2} \\ &+ H_{K}^{v} J_{z}^{6} + H_{KJ}^{v} J_{z}^{4} J^{2} + H_{JK}^{v} J_{z}^{2} J^{4} + H_{J}^{v} J^{6} \\ &+ \left[J_{xy}^{2}, h_{K}^{v} J_{z}^{4} + h_{JK}^{v} J^{2} J_{z}^{2} + h_{J}^{v} J^{4} \right] \\ &+ L_{K}^{v} J_{z}^{8} + L_{KKJ}^{v} J_{z}^{6} J^{2} + L_{JK}^{v} J_{z}^{4} J^{4} + L_{KJJ}^{v} J_{z}^{2} J^{6} + L_{J}^{v} J^{8} \\ &+ \left[J_{xy}^{2}, l_{K}^{v} J_{z}^{6} + l_{KI}^{v} J^{2} J_{z}^{4} + l_{JK}^{v} J^{4} J_{z}^{2} + l_{J}^{v} J^{6} \right] + P_{K}^{v} J_{z}^{10}, \quad (4) \end{aligned}$$

где J_{α} ($\alpha = x, y, z$) являются компонентами оператора углового момента, определенного в молекулярнофиксированной системе координат; $J_{xy}^2 = J_x^2 - J_y^2$; $[\hat{A}, \hat{B}]_+$ обозначает антикоммутатор ($\hat{A}\hat{B} + \hat{B}\hat{A}$); E центр полосы (колебательная энергия); A^v , B^v и C^v вращательные постоянные, связанные с колебательным

	-					•		
$4\nu_2 \ H_2^{32}S$	Центр, ст $^{-1}$	J^{\max}	K_a^{\max}	N_t	N_e	m_1	<i>m</i> ₂	<i>m</i> ₃
Данная работа	4661.6729	17	8	400	132	75.0	12.1	12.9
[10]	4661.6770	9	7		54			

Таблица 2. Статистическая информация для полосы 4v₂ молекулы H₂S

Примечание. N_t — число переходов. N_e — число верхних уровней энергий. $m_i = n_i/N \times 100\%$ (i = 1, 2, 3), где n_1 , n_2 и n_3 — число уровней энергии, для которых различия $\delta = (E^{\exp} - E^{\operatorname{cal}}) \times 10^4$ удовлетворяют условиям: $|\delta| \le 2 \operatorname{cm}^{-1}$, $2 \operatorname{cm}^{-1} < |\delta| \le 4 \operatorname{cm}^{-1}$ и $|\delta| > 4 \operatorname{cm}^{-1}$ соответственно.

состоянием (v); Δ_K , Δ_{JK} , Δ_J и остальные множители при операторах углового момента — параметры центробежного искажения различных порядков. Недиагональные блоки $H^{v,\widetilde{v}}$ ($v \neq \widetilde{v}$) описывают резонансные взаимодействия типа Ферми или Кориолиса между обсуждаемыми колебательными состояниями.

Оператор взаимодействия типа Ферми связывает колебательные состояния одной симметрии и имеет следующий вид:

$$H_F^{v,\widetilde{v}} = {}^{v,\widetilde{v}}F_0 + {}^{v,\widetilde{v}}F_KJ_z^2 + {}^{v,\widetilde{v}}F_JJ^2 + \dots + {}^{v,\widetilde{v}}F_{xy}\left(J_x^2 - J_y^2\right) + \left[\left({}^{v,\widetilde{v}}F_{Kxy}J_z^2 + \frac{1}{2}{}^{v,\widetilde{v}}F_{Jxy}J^2\right), \left(J_x^2 - J_y^2\right)\right] + \left[\left({}^{v,\widetilde{v}}F_{KKxy}J_z^4 + {}^{v,\widetilde{v}}F_{JKxy}J_z^2J^2 + \frac{1}{2}{}^{v,\widetilde{v}}F_{JJxy}J^4\right), \left(J_x^2 - J_y^2\right)\right]_+ \dots$$

$$(5)$$

Здесь первый параметр в (5) v, v, F_0 является параметром чисто колебательного взаимодействия, все остальные параметры описывают колебательно-вращательные поправки к основному параметру фермивзаимодействия.

Оператор взаимодействия типа Кориолиса С-типа $H^{v,\widetilde{v}}(v \neq \widetilde{v})$ связывает такие пары колебательных состояний (состояние $|\widetilde{v}\rangle$ симметрии γ^v и состояние $|v\rangle$ симметрии $\gamma^{\widetilde{v}}$), для которых выполняется условие $\gamma^v \otimes \gamma^{\widetilde{v}} = B_1$:

$$H_{C}^{v,\widetilde{v}} = iJ_{y}H_{v,\widetilde{v}}^{(1)} + H_{v,\widetilde{v}}^{(1)}iJ_{y} + [J_{x}, J_{z}]_{+}H_{v,\widetilde{v}}^{(2)} + H_{v,\widetilde{v}}^{(2)}[J_{x}, J_{z}]_{+} + [iJ_{y}, (J_{x}^{2} - J_{y}^{2})]_{+}H_{v,\widetilde{v}}^{(3)} + H_{v,\widetilde{v}}^{(3)}[iJ_{y}, (J_{x}^{2} - J_{y}^{2})]_{+} + \dots,$$
(6)

где $H_{v,\widetilde{v}}^{(i)}$, (i = 1, 2, 3) также являются операторами и могут быть записаны в общем виде:

$$H_{v,\widetilde{v}}^{(i)} = \frac{1}{2} {}^{v\widetilde{v}} C^{i} + {}^{v\widetilde{v}} C^{i}_{K} J^{2}_{z} + \frac{1}{2} {}^{v\widetilde{v}} C^{i}_{J} J^{2} + {}^{v\widetilde{v}} C^{i}_{KK} J^{4}_{z} + {}^{v\widetilde{v}} C^{i}_{KJ} J^{2}_{z} J^{2} + \frac{1}{2} {}^{v\widetilde{v}} C^{i}_{JJ} J^{4} + \cdots .$$
(7)

Интерпретация спектра и получение параметров эффективного гамильтониана H₂³²S

На рис. 1 приведен обзорный зарегистрированный спектр в диапазоне $4500-5000 \text{ cm}^{-1}$. Отчетливо виден центр полосы около 4660 cm^{-1} , а также переходы, принадлежащие к более сильным полосам $v_1 + 2v_2$ и $2v_2 + v_3$. Для высокого разрешения зарегистрированного спектра в верхней части рис. 2 представлен фрагмент спектра высокого разрешения полосы $4v_2$.

Интерпретация переходов выполнялась на основе метода комбинационных разностей. Вращательные энергии основного колебательного состояния, необходимые для анализа, были взяты из работы [15]. По результатам анализа экспериментального спектра полосы $4v_2$ было проинтерпретировано 400 колебательно-вращательных переходов с максимальными значениями квантовых чисел $J^{\text{max}} = 17$ и $K_a^{\text{max}} = 8$. Для сравнения, в единственном предыдущем исследовании [10] — $J^{\text{max}} = 9$ и $K_a^{\text{max}} = 7$ (см. также статистическую информацию в табл. 2).

На основе выполненного анализа переходов были получены энергии 132 колебательно-вращательных уровней колебательного состояния (040), что примерно в 2.5 раза больше, чем было известно в литературе ранее [10]. Для иллюстрации часть полученных энергий приведена в табл. 3. В третьем столбце табл. 3 приведены значения соответствующих неопределенностей Δ (стандарт) полученных переходов с вращательных уровней основного состояния на один и тот же вращательный уровень возбужденного состояния.

Полученные из эксперимента энергии далее использовались в качестве исходных данных для решения обратной спектроскопической задачи с целью определения параметров гамильтониана(3)–(7), учитывающего резонансные взаимодействия между тремя колебательными состояниями (040), (120) и (021).

Для колебательных состояний (120) и (021) обратная спектроскопическая задача ранее не решалась. Поэтому, чтобы получить физически более корректный результат, значения всех параметров центробежного искажения колебательных состояний (120) и (021) были приравнены значениям соответствующих параметров колебательного состояния (020) из [16]. Кроме того, для более точной

J	Ka	K_c	E, cm^{-1}	Δ	δ	J	Ka	K_c	E, cm^{-1}	Δ	δ
0	0	0	4661.6727		-2	3	3	0	4795.2557	1	0
1	0	1	4676.0991	1	1	4	0	4	4776.8847	1	0
1	1	1	4678.1622	1	-1	4	1	4	4776.8983	2	-1
1	1	0	4683.6181	1	0	4	1	3	4820.9203	1	0
2	0	2	4701.0562	1	-1	4	2	3	4821.5018	0	1
2	1	2	4701.5622	1	0	4	2	2	4848.9629	2	1
2	1	1	4717.9020	1	0	4	3	2	4855.1732	4	0
2	2	1	4724.0600	2	0	4	3	1	4865.2978	0	1
2	2	0	4727.9256	1	-1	4	4	1	4884.8851	3	1
3	0	3	4734.5790	1	0	4	4	0	4886.0399	3	0
3	1	3	4734.6659	1	-1	5	0	5	4828.1158	4	-1
3	1	2	4764.9828	1	1	5	1	5	4828.1177	4	-4
3	2	2	4767.3352	1	2	5	1	4	4885.1463	1	0
3	2	1	4780.8403	1	2	5	2	4	4885.2646	1	1
3	3	1	4792.9753	2	-3	5	2	3	4927.4854	1	-1

Таблица 3. Фрагмент списка экспериментальных колебательно-вращательных энергий возбужденного колебательного состояния (040) молекулы H₂³²S

Примечание. Δ — экспериментальная неопределенность значения энергии в 10^{-4} cm⁻¹. Когда значение Δ отсутствует, соответствующий уровень энергии определяется из одного перехода и не используется в решении обратной спектроскопической задачи; δ — разница рассчитанных и экспериментальных значений энергий в 10^{-4} cm⁻¹.

					/··	22 1
Таблица 4.	Спектроскопические	параметры колебательн	ых состояний	(040), (120) и	(021) молекуль	$_{\rm J} \rm H_2^{52} S (B \rm cm^{-1})$

Параметр	(040)	(120)	(021)	
Ε	4661.672907(89)	4932.70000(39)	4939.10462(34)	
Α	12.005769(37)	10.951777(76)	10.877696(63)	
В	9.946827(30)	9.312420(75)	9.361023(93)	
С	4.4841048(91)	4.539409(29)	4.551624(52)	
$\Delta_K \cdot 10^2$	0.85905(32)	0.559374	0.559374	
$\Delta_{JK} \cdot 10^2$	-0.47561(33)	-0.32502	-0.32502	
$\Delta_J \cdot 10^2$	0.12187(13)	0.874519	0.874519	
$\delta_K \cdot 10^2$	0.05782(24)	0.132038	0.132038	
$\delta_J \cdot 10^2$	0.057979(23)	0.407018	0.407018	
$H_K \cdot 10^5$	1.215(33)	0.43426	0.43426	
$H_{KJ} \cdot 10^5$	-0.2482(86)	-0.01923	-0.01923	
$H_{JK} \cdot 10^5$	-0.3137(62)	-0.18453	-0.18453	
$H_J \cdot 10^5$	0.09267(77)	0.042137	0.042137	
$h_K \cdot 10^5$	0.8283(34)	0.31743	0.31743	
$h_{JK} \cdot 10^5$	-0.1324(11)	-0.070473	-0.070473	
$h_J \cdot 10^5$	0.04411(23)	0.021213	0.021213	
$L_K \cdot 10^8$	-4.33(13)	-1.4018	-1.4018	
$L_{KKJ} \cdot 10^8$	4.32(19)	1.7174	1.7174	
$L_{JK} \cdot 10^8$	-0.682(82)	-0.6173	-0.6173	
$L_{JJK} \cdot 10^8$	-0.432(33)			
$L_J \cdot 10^8$	0.00662(93)			
$l_K\cdot 10^8$	-2.652(34)	-0.5997	-0.5997	

Таблица 5. Параметры резонансных взаимодействий между колебательными состояниями (040), (120) и (021) молекулы H₂³²S (в cm⁻¹)

Параметр	Значение	Параметр	Значение	Параметр	Значение
$^{1,2}F_{xy}\cdot 10^{1,2}F_{JKxy}\cdot 10^{5}$	0.301(37) -0.327(22)	${}^{1,2}F_{Kxy}\cdot 10^3 \ {}^{1,2}F_{Jxy}\cdot 10^3$	-0.102(15) 0.184(15)	$^{1,3}C^2 \cdot 10$ $^{2,3}C^2 \cdot 10$	0.2387(25) -0.8153(18)

Рис. 2. Фрагмент спектра высокого разрешения полосы 4v₂ молекулы H₂S.

оценки значений центров и вращательных постоянных полос $v_1 + 2v_2$ и $2v_2 + v_3$ использовались их верхние колебательно-вращательные энергии (полученные также из анализа экспериментальных данных) со значениями квантовых чисел $J, K_a \leq 2$.

В результате решения обратной спектроскопической задачи были определены 22 параметра полосы $4v_2$ и 6 параметров резонансных взаимодействий, которые представлены в табл. 4 и 5 вместе с 1σ статистическими доверительными интервалами (значения в скобках). Полученный набор параметров позволяет воспроизводить исходные экспериментальные данные со среднеквадратичным отклонением $d_{\rm rms} = 3.5 \cdot 10^{-4}$ сm⁻¹. Чтобы проиллюстрировать качество результатов, в столбце 4 табл. 3 представлены разности между экспериментальными значениями энергий $\delta = (E^{\rm exp} - E^{\rm cal})$ в единицах 10^{-4} сm⁻¹ (см. также статистическую информацию в табл. 2).

Финансирование работы

Исследование выполнено при финансовой поддержке гранта Российского фонда фундаментальных исследований (проект № 19-32-90069).

Благодарности

Авторы благодарят профессора С. Бауэреккера за предоставленную экспериментальную информацию.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Ulenikov O.N., Tolchenov R.N., Koivusaari M., Alanko S., Antilla R. // J. Mol. Spectrosc. 1995. V. 170. N 1. P. 1–9. doi 10.1006/jmsp.1995.1052
- Ulenikov O.N., Tolchenov R.N., Melekhina E.N., Koivusaari M., Alanko S., Antilla R. // J. Mol. Spectrosc. 1995. V. 70. N 2. P. 397–416. doi 10.1006/jmsp.1995.1080
- [3] Ulenikov O.N., Malikova A.B., Koivusaari M., Alanko S., Antilla R. // J. Mol. Spectrosc. 1996. V. 176. N 2. P. 229– 235. doi 10.1006/jmsp.1996.0082
- [4] Ulenikov O.N., Onopenko G.A., Koivusaari M., Alanko S., Antilla R. // J. Mol. Spectrosc. 1996. V. 176. N 2. P. 236–250. doi 10.1006/jmsp.1996.0083
- [5] Ulenikov O.N., Liu A.-W., Bekhtereva E.S., Gromova O.V., Hao L.-Y., Hu S.-M. // J. Mol. Spectrosc. 2004. V. 226. N 1. P. 57–70. doi 10.1016/j.jms.2004.03.014
- [6] Ulenikov O.N., Liu A.-W., Bekhtereva E.S., Grebneva S.V., Deng W.-P., Gromova O.V., Hu S.-M. // J. Mol. Spectrosc. 2004. V. 228. N 1. P. 110–119. doi 10.1016/j.jms.2004.07.011

- [7] Ulenikov O.N., Liu A.-W., Bekhtereva E.S., Gromova O.V., Hao L.-Y., Hu S.-M. // J. Mol. Spectrosc. 2005. V. 234. N 2.
 P. 270-278. doi 10.1016/j.jms.2005.09.010
- [8] Liu A.-W., Ulenikov O.N., Onopenko G.A., Gromova O.V., Bekhtereva E.S., Wan L., Hao L.-Y., Hu S.-M., Flaud J.-M. // J. Mol. Spectrosc. 2006. V. 238. N 1. P. 11–28. doi 10.1016/j.jms.2006.04.002
- Ulenikov O.N., Bekhtereva E.S., Gromova O.V., Raspopova N.I., Belova A.S., Maul C., Sydow C., Bauerecker S. // J. Quant. Spectrosc. Radiat. 2020. V. 243. P. 106812. doi 10.1016/j.jqsrt.2019.106812
- Bykov A.D., Naumenko O.V., Smirnov M.A., Sinitsa L.N., Brown L.R., Crisp J. Crisp D. // Can. J. Phys. 1994. V. 72. N 11-12. P. 989–1000. doi 10.1139/p94-130
- [11] Ulenikov O.N., Gromova O.V., Bekhtereva E.S., Krivchikova Yu.V., Sklyarova E.A., Buttersack T., Sydow C., Bauerecker S. // J. Mol. Spectrosc. 2015. V. 318. P. 26–33. doi 10.1016/j.jms.2015.09.009
- [12] Campargue A., Flaud J.-M. // J. Mol. Spectrosc. 1999. V. 194.
 N 1. P. 43–51. doi 10.1006/jmsp.1998.7754
- Ulenikov O.N., Bekhtereva E.S., Gromova O.V., Buttersack T., Sydow C., Bauerecker S. // J. Mol. Spectrosc. 2016. V. 319.
 P. 17–25. doi 10.1016/j.jms.2015.11.003
- [14] He S.-G., Ulenikov O.N., Onopenko G.A., Bekhtereva E.S., Wang X.-H., Hu S.-M., Lin H., Zhu Q.-S. // J. Mol. Spectrosc. 2000. V. 200. N 1. P. 34–39. doi 10.1006/jmsp.1999.8017
- [15] Camy-Peyret C., Flaud J.-M., Lechuga-Fossat L., Johns J.W.C. // J. Mol. Spectrosc. 1985. V. 09. N 2. P. 300–333. doi 10.1016/0022-2852(85)90315-7
- [16] Lechuga-Fossat L., Flaud J.-M., Camy-Peyret C., Johns J.W.C. // Can. J. Phys. 1984. V. 62. N 12. P. 1889–1923. doi 10.1139/p84-233