07.1;07.2;07.3

Электрические контакты к структурам на основе InP с подконтактным слоем к *p*-InP, легированным Zn

© В.С. Эполетов, А.Е. Маричев, Б.В. Пушный, Р.А. Салий

Физико-технический институт им. А.Ф.Иоффе РАН, Санкт-Петербург, Россия E-mail: vadep@yandex.ru

Поступило в Редакцию 15 июля 2020 г. В окончательной редакции 6 августа 2020 г. Принято к публикации 7 августа 2020 г.

Представлены результаты использования подконтактных слоев с шириной запрещенной зоны E_g от 0.35 до 0.8 eV для получения низкоомных электрических контактов к *p*-InP. Получена экспериментальная зависимость контактного сопротивления от E_g подконтактного материала In_xGa_{1-x}As.

Ключевые слова: электрические контакты, подконтактные слои, уменьшение сопротивления.

DOI: 10.21883/PJTF.2020.23.50340.18467

Одной из причин потерь энергии в полупроводниковых приборах, в частности в фотоэлектрических преобразователях мощного излучения, являются потери на сопротивлении контактов. Например, если контактное сопротивление прибора составляет около $1 \cdot 10^{-3} \Omega$, то при протекании через него тока 100 А потери на контактах составят 10 W. Поэтому необходимость уменьшения сопротивления является очень важной проблемой для любых силовых приборов, например для фотоприемников мощного лазерного излучения.

В работе [1] сопротивление контактов к полупроводникам в основном определяется величиной барьера на границе металл—полупроводник. Было предложено [2] для уменьшения этого барьера использовать подконтактный слой материала (на границе контактного материала и *p*-слоя гетероструктуры) с меньшей шириной запрещенной зоны, чем у основного материала. Согласно формулам из работ [1,3,4] построена нормированная теоретическая зависимость сопротивления электрических контактов, нанесенных на твердые растворы $In_x Ga_{1-x} As$ *p*-типа с различным составом, от ширины запрещенной зоны $In_x Ga_{1-x} As$, которая представлена на рис. 1.

Из приведенной зависимости видно, что наименьшее сопротивление приходится на состав с $E_g = 0.52 \text{ eV}$ (In_{0.79}Ga_{0.21}As).

Для подтверждения теоретического исследования был проведен эксперимент: на подложках InP методом газофазной эпитаксии из металлоорганических соединений были выращены слой *p*-InP толщиной 0.5 μ m, легированный Zn с концентрацией носителей 1 · 10¹⁸ cm⁻³, и один из следующих подконтактных слоев *p*-типа: In_xGa_{1-x}As, InAs и InP. Подконтактные слои были легированы Zn с концентрацией $p = 1 \cdot 10^{18}$ cm⁻³ и имели толщину около 1 μ m. Подложки InP (100) были легированы Sn с концентрацией $n = 3 \cdot 10^{18}$ cm⁻³. В работе исследовалось сопротивление только к *p*-InP (верхний слой), и на результаты этих исследований влияния ориентации и концентрации носителей подложки замечено не было. На полученные образцы через маску был нанесен контакт AgMn/Ni/Au с толщинами слоев 800/600/1000 Å соответственно. Затем контакты вплавлялись при температуре 380° С в атмосфере азота в течение 30 s.

Удельные контактные сопротивления были измерены методом TLM (transmission line method) [5]. По полученным результатам была построена зависимость, представленная на рис. 2. Контакты для *p*-InP имели барьер.

Видно, что минимальное сопротивление было получено для образца *p*-In_{0.79}Ga_{0.21}As с $E_g = 0.51$ eV. Значения сопротивлений, полученных в ходе эксперимента, образуют кривую, вид которой совпадает с теоретическим графиком, показанным на рис. 1.

Дополнительно в ходе работ было проведено исследование для определения оптимального режима вплавления электрических контактов. Для исследования был выбран образец без подконтактного слоя — с верхним слоем *p*-InP (Zn: $1 \cdot 10^{18} \, {\rm cm}^{-3}$) толщиной

Рис. 1. Нормированная зависимость сопротивления перехода металл-полупроводник от ширины запрещенной зоны $In_x Ga_{1-x} As$.

Рис. 2. Зависимость удельного сопротивления контактов AgMn/Ni/Au от E_g материала подконтактного слоя. Линия показывает зависимость сопротивления от состава подконтактного слоя In_xGa_{1-x}As.

Рис. 3. Экспериментальная зависимость сопротивления контактов от температуры для образцов с подконтактным слоем $p-In_{0.79}Ga_{0.21}As$.

 $1\,\mu\text{m}$ — и с подконтактным слоем *p*-In_{0.79}Ga_{0.21}As (Zn: $1\cdot 10^{18}$ cm⁻³) на слое *p*-InP (Zn: $1\cdot 10^{18}$ cm⁻³) толщиной 0.5 μ m. На полученные структуры фотолитографически была нанесена маска, а затем следующие контактные металлизации: AuZn (28% Zn) толщиной 1000 Å и многослойный контакт AgMn/Ni/Au с толщинами 800/600/1000 Å соответственно. После нанесения контакты вплавлялись при температурах от 360 до 420°C в течение 30 s в атмосфере азота. Расчет контактного сопротивления осуществлялся методом TLM.

Результаты расчетов контактных сопротивлений экспериментальных образцов представлены на рис. 3. Из зависимости видно, что контакт AuZn на *p*-InP показал минимальное сопротивление при вплавлении с температурой 400°С, которое составило $9 \cdot 10^{-4} \Omega \cdot cm^2$. При сравнении контактов AuZn и AgMn/Ni/Au, нанесенных на *p*-In_xGa_{1-x}As, видно, что для контакта AuZn минимальное сопротивление достигнуто при вплавлении при 360°C, а сопротивление слабо зависит от температуры. В то же время контакт AgMn/Ni/Au показывает сильную зависимость от температуры вплавления с минимальным значением при температуре 380°C, которое составило $1.5 \cdot 10^{-4} \Omega \cdot \text{сm}^2$. Схожее поведение наблюдается и в контакте AuMn, использованном в работе [6].

Таким образом, в результате исследований впервые была получена зависимость изменения сопротивления электрических контактов от состава слоя $In_x Ga_{1-x} As$ с E_g в диапазоне от 0.35 до 0.8 eV. Данная зависимость согласуется с теоретической. Минимальное сопротивление электрических контактов, нанесенных на слой p-In_{0.79}Ga_{0.21}As (Zn: $1 \cdot 10^{18}$ cm⁻³), составило $1.5 \cdot 10^{-4} \Omega \cdot cm^2$, однако в работе не были получены рекордные контактые сопротивления так как это не являлось целью исследования. Изготовление контактов с минимальным сопротивлением требует выполнения сложных работ, связанных с подготовкой поверхности. Предполагается, что эти работы будут выполнены при изготовлении опытных лабораторных образцов приборов.

Благодарности

Авторы приносят благодарность сотруднице лаборатории полупроводниковой люминесценции и инжекционных излучателей ФТИ им. А.Ф. Иоффе В.В. Васильевой за изготовление контактов.

Финансирование работы

Исследование выполнено за счет гранта Российского научного фонда (проект № 17-79-30035).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Yu A.Y.C. // Solid-State Electron. 1970. V. 13. N 2. P. 239–247. DOI: 10.1016/0038-1101(70)90056-0
- [2] Katz A., Dautremont-Smith W.C., Chu S.N.G., Thomas P.M., Koszi L.A., Lee J.W., Riggs V.G., Brown R.L., Napholtz S.G., Zilko J.L., Lahav A. // Appl. Phys. Lett. 1989. V. 54. N 23. P. 2306–2308.
- [3] Electronic archive of Ioffe Physico-Technical Institute. New semiconductor materials. Characteristics and properties. http://www.ioffe.ru/SVA/NSM/Semicond/GaInAs/basic.html
- [4] Goldberg Yu.A., Schmidt N.M. // Handbook series on semiconductor parameters. V. 2 / Eds M. Levinshtein, S. Rumyantsev, M. Shur. London: World Scientific, 1999. P. 62– 88.
- [5] Бурлаков Р.Б. // Вестн. Омск. ун-та. 2018. Т. 23. № 4. С. 78– 86. DOI: 10.25513/1812-3996.2018.23(4).78-86
- [6] Dubbon-Shevallier C., Gauneau M., Bresse J.F., Izrael A., Ankri D. // J. Appl. Phys. 1986. V. 59. N 11. P. 3783–3786.