03,10

Каналирование медленных ионов в монокристаллическом кремнии

© А.Б. Свечников

Научно-исследовательский центр "Курчатовский институт", Москва, Россия E-mail: asvech@mail.ru

Поступила в Редакцию 22 июня 2020 г. В окончательной редакции 22 июня 2020 г. Ппринята к публикации 6 августа 2020 г.

> Профили распределения ионов Si⁺ по глубине монокристаллического кремния рассчитаны методом молекулярной динамики. Неупругие потери энергии при торможении определены в рамках теории функционала электронной плотности. Выполнен анализ факторов, оказывающих влияние на процесс каналирования ионов. В частности, подтверждено существование "эффекта массы" для критического угла каналирования.

Ключевые слова: каналирование ионов, молекулярная динамика, торможение.

DOI: 10.21883/FTT.2020.12.50208.135

1. Введение

Процессы торможения быстрых ионов в твердых телах представляют большой практический интерес в области ионной имплантации полупроводниковых материалов. Серьезные проблемы создают быстрые атомы отдачи, возникающие в стенках ядерных реакторов под воздействием нейтронов, приводя к радиационным повреждениям. Ионы после потери кинетической энергии и остановки формируют профили распределения по глубине, которые наблюдают экспериментально или получают в модельных расчетах. Тормозные потери ионов принято разделять на ядерные и электронные, вследствие упругих соударений иона с ядрами и неупругих потерь на электронах атомов твердого тела соответственно. Физическая природа данных типов торможения настолько различна, что теоретикам приходится решать две отдельные задачи. Экспериментальные данные относятся к полным потерям энергии иона, и публикуемые вклады отдельных типов торможения носят оценочный характер [1].

Профили распределения ионов по глубине в аморфных телах и кристаллических структурах произвольной ориентации имеют одинаковый вид, что является следствием одинаковой природы процессов торможения в среде, характеризуемой атомным составом и плотностью. В начале 1960-х годов экспериментально и теоретически было показано [2,3], что симметрия кристаллической решетки может быть причиной заметного увеличения длин пробега ионов, т.е. анизотропией торможения ионов, получившей название каналирование. Физически каналирование связывают с перемещением иона в области пониженной электронной плотности атомов решетки и низкими упругими потерями. В каналах снижается вероятность рассеяния иона на атомах решетки под большими углами. Череда "мягких" столкновений удерживает ион в канале, приводя к удлинению трека в разы по сравнению с торможением в том же кристалле, но в случайном направлении. Различают

осевое и планарное каналирование, в зависимости от типа симметрии кристаллической решетки и направления движения иона.

В качестве иллюстрации на рис. 1 показано распределение электронной плотности в виде изоповерхности для грани (100) Si, рассчитанной нами в приближении функционала электронной плотности (модифицированный код *abinit* [4]). Можно наблюдать отверстия в изоповерхности, совпадающие с "пустотами" в решетке, через которые может осуществляться осевое каналирование ионов.

Настоящая работа посвящена моделированию процесса каналирования методом молекулярной динамики. Рассматриваются профили распределения ионов кремния в монокристаллическом кремнии с ориентацией (100) при низких дозах облучения. Основное внимание

Рис. 1. Изоповерхность плотности электронов (величина 0.07) для (100) Si.

уделяется физическим факторам, являющимся помехой для каналирования ионов.

Отметим, что большинство авторов, ссылки на работы которых можно найти в цитируемой литературе, рассматривает каналирование в кремнии с целью оптимизации процесса легирования, где первую роль играют ионы бора и фосфора. По нашему мнению, медленные ионы могут быть использованы для инициализации структурных изменений на определенных глубинах от поверхности монокристаллической грани. Представленные ниже профили распределения ионов дают возможность проанализировать эволюцию структурных дефектов в монокристаллическом кремнии, однако эта задача выходит за рамки данной работы. Также было учтено практически полное отсутствие литературных данных по каналированию ионов кремния.

В основу моделирования легла методика неэмпирического расчета электронных тормозных потерь, объединенная с решением классической задачи упругого рассеяния на экранированном кулоновском потенциале. С помощью многочастичного потенциала воспроизводилась динамика столкновений и теплового движения атомов решетки кремния. Траектория движения иона в кристаллической структуре рассчитывалась путем интегрирования классических уравнений движения по стандартной схеме предиктор-корректор. Шаг интегрирования варьировался в зависимости от текущей кинетической энергии иона, например, для 10 keV имел значения порядка $10^{-17} - 10^{-16}$ s. Для построения отдельного профиля распределения ионов по глубине выполнялся расчет 10000 треков, местом остановки иона являлось положение, где кинетическая энергия иона была меньше 1 eV. График профиля представляет сглаженную гистограмму с числом интервалов порядка 200.

Анализ профиля распределения каналирования ионов показал наличие трех групп ионов с характерными особенностями динамики торможения. На основе сравнения профилей распределения проанализирована восприимчивость эффекта осевого каналирования к температуре кристалла, углу падения иона на поверхность и начальной энергии иона. В заключении рассмотрен вопрос о влиянии массы иона на характер каналирования, т. н. изотопный эффект, вызывающий споры среди исследователей.

2. Методика расчета

2.1. Геометрия

Кристаллическая структура решетки кремния без примесей и дефектов с ориентацией (100) моделировалась ячейкой порядка 100 атомов. Влияние температуры на решетку учитывалось с помощью [5]:

$$\langle \Delta r^2 \rangle = \frac{9\hbar T}{MkT_{\rm D}^2},\tag{1}$$

где $\langle \Delta r^2 \rangle$ — среднее смещение атомов из узлов идеальной решетки, *T* — температура решетки, *T*_D = 645 K соответствует температуре Дебая для кремния, M — масса атома кремния, \hbar и k — постоянные Планка и Больцмана. Поправки к координатам атомов рассчитывались с помощью функции $\langle \Delta r^2 \rangle$ и случайных чисел.

Выбор граничных условий обеспечивал перемещение иона в решетке без дефектов, а для сохранения размера ячейки и экономии памяти часть атомов решетки позади иона удалялась.

Начальная высота иона над кристаллом составляла несколько ангстрем, две остальные координаты в плоскости грани, выбирались случайным образом. Величина начальной скорости иона соответствовала выбранной энергии, направление составляло фиксированный угол (α) с нормалью к поверхности. Для оптимального каналирования требуется выбор $\alpha = 0^{\circ}$.

2.2. Взаимодействие

В монокристаллическом кремнии атомы имеют характерное тетраэдрическое окружение. Исследования показали, что с помощью лишь двухатомных (парных) потенциалов взаимодействия воспроизвести данную структуру не удается, необходимо добавление трехатомных вкладов. В настоящей работе использовался зависящий от окружающей среды межатомный потенциал (EDIP) Базанта-Кашираса [6]:

$$V_{\rm Si-Si} = V_2 + V_3,$$
 (2)

где V_2 — парные вклады, зависящие от межатомных расстояний и функции координационного числа, V_3 — трехатомные вклады также зависят от углов между атомными связями. Опыт использования потенциала EDIP показал его высокую точность в описании кристаллических и аморфных структур, однако он требователен к производительности вычислений.

Ион-атомные столкновения моделировались универсальным потенциалом отталкивания [7]:

$$V_{i-\mathrm{Si}} = \frac{Z_i Z_{\mathrm{Si}} e^2}{4\pi\varepsilon_0 r} \,\varphi\!\left(\frac{r}{a}\right),\,$$

где $\varphi(x)$ — функция экранирования, Z_i , Z_{Si} — атомные номера иона и атома среды (Si), e — заряд электрона, r — межъядерное расстояние, a — длина экранирования

$$a = \frac{0.4685}{Z_i^{0.23} + Z_{\rm Si}^{0.23}}$$

Потенциал V_{i-Si} используется в приложении TRIM [7] для вычисления углов рассеяния ионов низких энергий, когда резерфордовское приближение дает плохие результаты.

2.3. Неупругие потери

В рамках современной теории не существует единого универсального метода определения неупругих потерь

энергии ионом (E_i) в твердом теле для всего спектра энергий. В литературе различают следующие ионы: 1) быстрые $V_i > v_0 Z_i^{2/3}$ и $V_i > v_0 Z_{Si}^{2/3}$; 2) промежуточные $V_i \approx v_0 \approx v_F$; 3) медленные $V_i < v_0$, где V_i — скорость иона, v_0 — боровская скорость, v_F — скорость Ферми атома среды. Для иона Si⁺ в кристаллическом Si имеем $Z_i = Z_{Si} = 14$, $v_F = 2.131 \cdot 10^6$ m/s, $v_0 = 2.188 \cdot 10^6$ m/s. Определим типичные значения энергий для быстрых, промежуточных и медленных ионов Si⁺ и рассмотрим методы расчета электронного торможения.

Ионы Si с промежуточными энергиями около 0.66 MeV использовались нами в небольшом количестве расчетов, рассмотрим их неупругое торможение подробнее.

Быстрые ионы Si с энергиями 23 MeV и выше представляют собой голые ядра с зарядом $Z_i e$, неупругие потери описываются теорией Бете с поправкой Блоха. В настоящей работе быстрые ионы не рассматривались.

Ионы Si с промежуточными энергиями около 0.66 MeV торможение подробнее. Предполагается, что ион заряжен частично, и часть электронов ближайшего к иону атома среды находится в возбужденном состоянии. В работе использовалось полуэмпирическое приближение Циглера–Бирсака–Литтмарка (ZBL, [7]). Пусть ион несет на себе N электронов, определим степень ионизации иона $q = Q/Z_i$, где $Q = (Z_i - N) \cdot e$ — ионное зарядовое число. Используя известные данные по потерям протонов с той же энергией в той же среде (S_p) , определяют потери иона (S) с помощью "правила масштабирования для тяжелых ионов"

$$S = \gamma Z_i^2 S_p, \tag{3}$$

и вычисляют γ — эффективный заряд иона, зависящий от степени ионизации и размера иона (Λ):

$$\gamma = q + rac{(1-q)v_0^2}{2v_F^2} \ln \left[1 + \left(rac{4\Lambda v_F}{1.919}
ight)^2
ight],$$

 $\Lambda = rac{2aa_0 \left(rac{N}{Z_i}
ight)^{2/3}}{Z_i^{1/3} \left(1 - \lambda rac{N}{Z_i}
ight) / 4},$

где $a = 0.24, a_0 = 0.529 \cdot 10^{-8}$ см, $\lambda = 4/7$.

В основе приближения лежит теория линейного отклика, где сначала находят заряды, наведенные на атоме среды, а затем вычисляют тормозную кулоновскую силу, действующую обратно на ион. Несколько грубо в теории выглядит учет динамического отклика от газа свободных электронов, однако, привлечение экспериментальных данных значительно улучшает результаты. Приближение ZBL реализовано в приложении TRIM [7].

Медленные ионы Si с энергиями заметно ниже 0.66 MeV (нами использовался верхний порог в 0.4 MeV) представляют собой практически нейтральные атомы Si, причем валентные электроны ближайшего к иону атома Si среды могут быть возбуждены. Квазиклассические теории торможения Фирсова [8] и группы Линдхарда [9] несмотря на упрощенное описание взаимодействия иона с атомом среды успешно воспроизводили линейную зависимость S от V_i . Однако впоследствии выяснилось, что зависимость не является линейной [10].

Рассмотрим схему строгого расчета неупругого торможения в рамках неэмпирических квантовых расчетов электронной структуры медленных ионов и окружающих атомов среды. Начальный этап включает расчет пространственного распределения электронной плотности n(r) в монокристаллическом Si. Мы воспользовались модифицированным кодом *abinit* [4] в приближении локальной плотности теории функционала электронной плотности с обобщенной градиентной аппроксимацией Perdew–Burke–Ernzerhof (PBE GGA) [11] для обменнокорреляционной энергии. Не вдаваясь в сложный анализ, отметим, что точный вид n(r) очень важен при расчете неупругих потерь, не следует экономить с однородным [12] и сферически симметричным [13] распределениями электронной плотности.

Далее будем следовать в русле модели торможения, изложенной авторами [13]. Ключевым моментом будет использование функции одноэлектронного радиуса (r_s) , которая связана с электронной плотностью и скоростью Ферми следующим образом:

$$\frac{4\pi}{3}r_s(r)^3 = \frac{1}{n(r)}, \quad r_s(r) = \frac{v_{\rm F}(r)}{1.919}.$$

Теперь неупругие потери [8] для неоднородного распределения электронов имеют вид

$$S = \frac{3V_i}{v_F r_s(r)^3} \sum_{L} (L+1) \sin^2[\delta_L(v_F) - \delta_{L+1}(v_F), \quad (4)$$

где L — индекс парциальной волны, $\delta_L(v_F) \equiv \delta_L(v_F(r))$ — фазовый сдвиг для рассеянного электрона на поверхности Ферми, который находится из асимптоты волновой функции

$$u_L
ightarrow A_L \sin \left(kr - rac{\pi L}{2} + \delta_L
ight)$$
 при $r
ightarrow \infty.$

Значения u_L для фиксированного значения r_s являются решениями радиального уравнения Шредингера [14]:

$$\frac{d^2 u_L}{dr^2} + \left[k^2 - 2V(r) - \frac{L(L+1)}{r^2}\right]u_L = 0.$$

Потенциал рассеяния

$$V(r) = \frac{Z_i}{r} \exp\left(-\frac{\alpha}{r}\right)$$

— экранированный кулоновский потенциал с параметром *α*. Здесь вместо стандартной процедуры вычисления самосогласованного нелинейного потенциала рассеяния методом функционала электронной плотности [12] используется простой потенциал Юкавы. Расчет, однако, усложняется необходимостью оптимизации параметра

Рис. 2. Профиль распределения ионов Si⁺ по глубине.

экранирования α , состоящего в выполнении правила сумм Фриделя для фазовых сдвигов

$$\frac{2}{\pi}\sum_{L}(2_L+1)\delta_L(v_{\rm F})=Z_i.$$

Данные в виде таблиц $S(V_i, r)$, eV/Å сохраняются на носителе. Затем, после линейной интерполяции и умножения на длину пробега иона за шаг интегрирования уравнений Ньютона, получаем величину энергии неупругого торможения.

Представленная выше схема неэмпирического расчета торможения медленных ионов является особенно актуальной для полупроводников и диэлектриков. Например, известная нелинейная модель [12] опирается на теорию электронного газа и не подходит для нашего случая. В чистом кремнии имеется небольшая запрещенная зона, и отсутствуют свободные электроны. Следовательно,

Доли ионов (в процентах от общего числа) Si⁺ с $E_i = 10$ keV, приходящиеся на области профиля распределения (рис. 2), в зависимости от температуры кристалла Si

Т, К	А, вне канала	В, выход из канала	С, каналирование
0	22	18	60
300	31	25	44
600	34	28	38
1000	38	30	32
1500	42	29	29

неупругие потери иона выступают источником локальных электронных возбуждений, включая образование электрон-дырочных пар.

3. Результаты

3.1. Анализ распределения ионов по глубине кристалла

Профиль распределения ионов по глубине кристалла имеет характерные особенности. На рис. 2 представлен результат расчета для ионов кремния с начальной энергией $E_i = 10 \text{ keV}$ и углом $\alpha = 0^\circ$ при T = 300 K (кристалла). Условно можно выделить три области, обозначенные на графике буквами A, B, C.

Область расстояний, обозначенная на рис. 2 буквой A, от 0 до 800 Å соответствует ионам, которым не удалось занять канал. Эти ионы участвовали в жестких столкновениях с атомами решетки и за короткий промежуток времени потеряли энергию. На рис. 3 показано, как изменялась энергия за 1 шаг (ΔE) со временем (t, fs = 10^{-15} s) для случайно выбранного иона с глубиной пробега 185 Å. Последовательность столкновений такова, что в пяти из них ион теряет более 200 eV, замедляясь до 900 eV после 125 fs движения.

Рис. 3. Потери энергии за шаг ионом Si⁺, находящимся вне канала.

Ионы, успешно встроенные в каналы, через определенное время могут испытать сильное столкновение и остановиться. Такие ионы образуют область профиля распределения, обозначенного на рис. 2 буквой В, с глубиной проникновения от 800 до 2800 Å.

Область С рис. 2, от 2800 до 4000 Å, относится к каналированию ионов. Траектория случайно выбранного иона, остановившегося на глубине 3322 Å, показана на рис. 4. Зигзагообразная кривая ориентирована вдоль оси *z* — направления начальной скорости иона.

Экспериментальные данные полностью подтверждают наличие двух максимумов и переходной области В на графиках профиля распределения каналированных ионов. Например, авторы [14] приводят профили, аналогичные рис. 2, для ионов P⁺ в направлении $\langle 110 \rangle$ Si для E_i от 40 до 400 keV.

Важно отметить, что приведенные в работе результаты характерны для каналирования так называемых "тяжелых" ионов Si⁺. Опыт расчетов легких ионов, например, изотопов водорода, указывает на присутствие лишь одного пика, обозначенного на рис. 2 буквой С. Можно утверждать, что особенности каналирования ионов имеют комплексный характер, который с успехом может быть воспроизведен в рамках моделирования методом молекулярной динамики.

3.2. Влияние температуры кристалла на профили распределения ионов

Температура кристалла описывалась с помощью амплитуд колебаний атомов, взаимодействующих между собой посредством многочастичного потенциала $V_{\text{Si-Si}}$, выражение (2). Начальные отклонения атомов решетки рассчитывались с помощью T_{D} по формуле (1). Выясним, насколько тепловой шум влияет на каналирование ионов.

В расчетах использовались ионы Si⁺ с $E_i = 10 \text{ keV}$ и углом $\alpha = 0^\circ$. На рис. 5 приведены профили распределения ионов по глубине для нескольких температур кристалла кремния, T = 0, 300, 600, 1000 и 1500 К.

Нагрев кристалла препятствует каналированию ионов, переводя все большую часть треков из области С в области А и В, что следует из численных данных в таблице.

Тепловые колебания атомов решетки способствуют увеличению упругого торможения иона, растет вероятность "сильных" столкновений, выводя ионы из канала. Из смещения пика каналирования влево с ростом температуры, рис. 5, можно сделать вывод об увеличении неупругой компоненты торможения иона. Траектории иона, пересекая области с высокой электронной плотностью, становятся короче.

Из расчетов следует, что скорость деканалирования ионов нелинейно зависит от температуры решетки. Следовательно, условием эффективной реализации каналирования ионов является режим низких температур по сравнению с комнатной.

Рис. 4. Траектория иона Si⁺, двигающегося в канале.

Рис. 5. Температурная зависимость профиля распределения ионов Si⁺.

3.3. Влияние угла падения иона на профили распределения

Совпадение направлений движения иона и симметрии кристалла является основным условием для возникновения осевого каналирования. Малые углы отклонения от оси компенсируются мягким рассеянием на атомах решетки, удерживая ион в канале. Согласно классической статистической теории каналирования [15] существует пороговое значение угла наклона траектории иона к оси, критический угол Линдхарда, при котором ион не может удержаться в канале. Определим с точностью до 1° значение критического угла с помощью анализа профилей распределения ионов Si⁺ для фиксированной величины начальной энергии E_i .

Рассмотрим случай, когда ионы кремния с $E_i = 10 \text{ keV}$ проникают в кристалл кремния при T = 0 K под различными углами к вектору нормали $\langle 100 \rangle$

Рис. 6. Определение критического угла Линдхарда по профилям распределения иона Si⁺ с энергией 10 keV.

 $\alpha = 0^{\circ}, 1^{\circ}, \dots, 6^{\circ}$. Полученные профили показаны на рис. 6.

Пик каналирования на профилях с $\alpha = \text{ от } 0$ до 3° последовательно сдвигается влево, что можно связать с усилением торможения. При достижении угла $\alpha = 4^{\circ}$ профиль заметно изменяется. Форма пика каналирования приобретает размытый вид, и высота уменьшается приблизительно в 3 раза. Каналирование отсутствует для $\alpha = 5$ и 6°, областей В и С на профиле распределения нет. Таким образом, критический угол Линдхарда (α_c) для данных начальных условий равен 4 градусам.

3.4. Влияние начальной энергии иона на профили распределения ионов

Из литературы известно [7], что торможение иона нелинейно зависит от энергии. Упругая и неупругая составляющие торможения имеют максимумы приблизительно при энергиях иона 1 и 100 keV/a.u. соответственно. Данное свойство установлено для аморфных структур и кристаллов произвольной ориентации, следовательно, не включает каналирование. Сравним профили распределения медленных ионов и ионов с промежуточной энергией. Для ионов Si⁺ с $E_i > 400 \, \text{keV}$ неупругие потери на начальном участке траектории будут рассчитываться по формуле (3), а после замедления до 400 keV по (4). Также выясним зависимость от энергии для профилей ионов с углом падения выше критического. Рассмотрим серию профилей для ионов кремния с начальными энергиями $E_i = 100 \text{ keV}, 500 \text{ keV}$ и 1 MeV. Температура кристалла T = 300 K, углы $\alpha = 0^{\circ}$ и $\alpha = 7^{\circ}$.

Для $\alpha = 0^{\circ}$ профили распределения отвечают каналированию ионов, рис. 7. Пики распределения имеют крутые склоны, сдвигаясь вглубь кристалла с ростом энергии. Положения пиков распределения имеют близкую к логарифмической зависимость от E_i , таким образом, согласуются с приведенными выше литературными данными об увеличении неупругого торможения с ростом E_i в промежуточном интервале значений.

Иной вид имеют профили распределения для $\alpha = 7^{\circ}$, рис. 8. Узкий пик при $E_i = 100$ keV последовательно сдвигается вглубь кристалла и имеет более пологие склоны с ростом энергии. Сравнивая рис. 7 и 8 замечаем, что при высоких энергиях некоторая часть ионов, попадающая в кристалл с $\alpha = 7^{\circ}$, участвует в каналировании. Действительно, доля ионов из области пика 46000 Å на профиле $E_i = 1$ MeV, рис. 8, составляет не менее 8% от общего числа. Таким образом, был сделан вывод о существовании процесса, обратного процессу деканалирования ионов. Для медленных ионов данный процесс не наблюдался.

Рис. 7. Профили распределения ионов Si⁺ с высокими E_i при $\alpha = 0^\circ$.

Рис. 8. Профили распределения ионов Si⁺ с высокими E_i при $\alpha = 7^{\circ}$.

3.5. Изотопный эффект

Роль масс ионов с одинаковым атомным номером (зарядом) в процессах каналирования традиционно не рассматривается. Действительно, статистическая теория [15] не содержит каких-либо зависимостей от массы иона или атома решетки. В работе [16] проводилась проверка положений данной теории путем молекулярнодинамических расчетов, и относительно масс теория была подтверждена. В то же время существуют данные модельных расчетов [17,18], из которых следует "эффект массы" для критического угла каналирования: $\alpha_c \propto \sqrt{M/M_i}$, где M — масса атома решетки, M_i — масса иона.

Выясним степень влияния масс на каналирование путем сравнения профилей распределения по глубине для ионов кремния ²⁸Si (стабильный) и ³²Si (170 лет) с массами 27.977 и 31.974 а.u. соответственно, $E_i = 10 \text{ keV}$ и $\alpha = 0^{\circ}$. Пики каналирования ионов расположены близко, и пик ³²Si сдвинут вправо на 100 Å, рис. 9. Наблюдаемый изотопный эффект связан со свойством инерции ионов. Поскольку при равных начальных E_i , более тяжелые частицы имеют большие начальные импульсы (p_i), для их изменения требуется приложение большей силы. Изза малой разницы масс рассмотренных изотопов Si сдвиг пика каналирования невелик. Проведя аналогичные расчеты ($E_i = 10 \text{ keV}$ и $\alpha = 0^{\circ}$) для ионов изотопов водорода, нами были получены сдвиги пика каналирования: 960 Å для пары ${}^{1}\text{H}^{+}-{}^{2}\text{H}^{+}$ и 710 Å для пары ${}^{2}\text{H}^{+}-{}^{3}\text{H}^{+}$.

В заключении рассмотрим "эффект массы" для критического угла каналирования. Как и прежде $E_i = 10$ keV, T = 0 K. Критический угол для иона изотопа ²⁸Si был определен $\alpha_c = 4^{\circ}$ с помощью профилей распределения на рис. 6. Из серии профилей с $\alpha = 0^{\circ}, 1^{\circ}, \ldots, 5^{\circ}$, представленной на рис. 10, находим для ионов ³²Si значение $\alpha_c = 2^{\circ}$. Результат $\alpha_c ({}^{32}\text{Si}) < \alpha_c ({}^{28}\text{Si})$ служит подтверждением "эффекта массы" для критического уг-

Рис. 9. Профили распределения ионов изотопов Si^+ при $\alpha = 0^\circ.$

Рис. 10. Определение критического угла по профилям распределения иона ³²Si⁺ с энергией 10 keV.

ла каналирования, и это второе проявление изотопного эффекта.

Демонстрация изотопного эффекта показывает ограниченность статистической теории каналирования, в первую очередь из-за слабого описания динамики процесса. Есть также вопросы к представлению объемной кристаллической структуры в виде цепочек атомов, рассмотрению только одной компоненты энергии иона, перпендикулярной оси канала, и к другим ограничениям.

Вернемся к работе [16] и сделаем необходимые пояснения. Авторы рассчитали каналирование ионов изотопов водорода с $E_i = 10 \text{ keV}$ в направлении $\langle 100 \rangle$ Si. Мы провели подобные расчеты и получили хорошее совпадение результатов. Следует подтвердить вывод об отсутствии "эффекта массы" для ионов изотопов водорода. Но не об отсутствии эффекта как такового. Ионы водорода, благодаря большому отношению M/M_i демонстрируют ряд особенностей при каналировании. Анализируя профили распределения ионов водорода видно, что область А (рис. 2) отсутствует, а единственный пик каналирования С при достижении критического угла скачком перемещается в приповерхностную область. Важно, что "эффект массы" в [17,18] получен для нескольких сортов ионов, среди которых самый тяжелый имел массу 222 а.и.

4. Заключение

В работе показано, что процессы каналирования ионов в монокристаллическом кремнии определяются начальными скоростями ионов и температурой решетки. Получено подтверждение изотопной зависимости профиля распределения ионов по глубине и величины критического угла каналирования. Из анализа профилей распределения ионов средних энергий с большими углами вхождения следует возможность слабого каналирования.

Каналирование медленных ионов представляет собой сложный физический процесс. Возможно, в будущем будет создана простая и достаточно точная теория каналирования, не требующая серьезных вычислительных затрат. В любом случае необходимо проводить сбор имеющихся экспериментальных и теоретических данных по каналированию ионов, как это уже сделано для аморфных систем авторами [1,7].

Практическое значение медленных ионов, безусловно, будет возрастать. Например, уменьшение размеров элементов микросхем напрямую связано с уменьшением энергии в процессах ионной имплантации. Одновременно необходимо повышать качество профилей распределения примеси по глубине подложки.

За рамками работы остались важные вопросы, связанные с присутствием точечных дефектов кристаллической решетки, тонких эпитаксиальных структур. Не проводился анализ перераспределения поглощенной кристаллом энергии ионов.

Благодарности

Автор выражает благодарность П.А. Александрову за большую помощь в обсуждении результатов

Финансирование работы

Работа выполнена при поддержке НИЦ "Курчатовский институт" (приказ № 1575 от 16.07.2019 г.).

Конфликт интересов

Авторы заявляют, что у них отсутствует конфликт интересов.

Список литературы

- [1] H. Paul. AIP Conf. Proc. 1525, 309 (2013).
- [2] M.T. Robinson, D. K. Holmes, O.S. Oen. In Le Bombardement Ionique (Centre National de la Recherche Scientifique) Paris (1962). 105 p.
- [3] G.R. Piercy, F. Brown, J.A. Davies, M. McCargo. Phys. Rev. Lett. **10**, 399 (1963).
- [4] X. Gonze, F. Jollet, F. Abreu Araujo etc. Comp. Phys. Commun. **205**, 106 (2016).
- [5] C. Kittel. Introduction to Solid State Physics. Wiley (2004). 704 p.
- [6] J.F. Justo, M.Z. Bazant, E. Kaxiras, V.V. Bulatov, S. Yip. Phys. Rev. B 58, 2539 (1998).
- [7] J.F. Ziegler, J.P. Biersack, U. Littmark. The Stopping and Range of Ions in Matter. SRIM Company (2008). 683 p.
- [8] О.Б. Фирсов. ЖЭТФ **36**, 1517 (1959).
- [9] J. Lindhard, M. Scharff. Phys. Rev. 124, 128 (1961).
- [10] P.M. Echenique, R.M. Nieminen, R.H. Ritchie. Solid State Commun. 37, 779 (1981).
- [11] J.P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett. 77, 3865 (1996).

- [12] T.L. Ferrell, R.H. Ritchie. Phys. Rev. B 16, 115 (1977).
- [13] J. Calera-Rubio, A. Gras-Martí, N.R. Arista. Nucl. Instrum. Meth. Phys. Res. B 93, 137 (1994).
- [14] С. Сунакава. Квантовая теория рассеяния. Мир, М. (1979). 272 с.
- [15] И. Линдхард. УФН 99, 249 (1969).
- [16] K. Nordlund, F. Djurabekova, G. Hobler. Phys. Rev. B 94, 214109 (2016).
- [17] L.-P. Zheng, Z.-Y. Zhu, Y. Li, D.-Z. Zhu, H.-H. Xia. Nucl. Instrum. Meth. B 266, 849 (2008).
- [18] W. Takeuchi. Nucl. Instrum. Meth. B 269, 1355 (2011).

Редактор Ю.Э. Китаев