13,14

Структурные свойства тонких пленок, полученных магнетронным распылением полидиацетилена

© О.А. Стрелецкий¹, И.А. Завидовский^{1,¶}, О.Ю. Нищак¹, А.Н. Щеголихин², Н.Ф. Савченко¹

¹ Московский государственный университет им. М.В. Ломоносова, Москва, Россия

² Институт биохимической физики им. Н.М. Эмануэля РАН, Москва, Россия

[¶]E-mail: ia.zavidovskii@physics.msu.ru

Поступила в Редакцию 21 мая 2020 г. В окончательной редакции 12 июня 2020 г. Принята к публикации 14 июня 2020 г.

> Изучались пленки, полученные высокочастотным распылением монокристаллического полидиацетилена (ПДА). Исследование структуры проводилось методами спектроскопии комбинационного рассеяния, просвечивающей электронной микроскопии и рентгеновской фотоэлектронной спектроскопии. Показано, что полученные пленки имеют гетерогенную структуру, содержащую агломераты наноразмерных включений исходного ПДА и нерегулярные *sp/sp*²-гибридизованные фрагменты углеродных цепей.

> Ключевые слова: полидиацетилен, магнетронное распыление, просвечивающая электронная микроскопия, КР-спектроскопия, рентгеновская фотоэлектронная спектроскопия.

DOI: 10.21883/FTT.2020.11.50073.113

1. Введение

Наноструктурированные материалы, изготовленные путем внедрения в матрицу тонкой пленки наноразмерных частиц, в настоящее время являются предметом исследования многих научных групп [1–5].

Включение в материал наночастиц позволяет в значительной степени модифицировать свойства структуры. В подобных материалах могут проявляться такие эффекты, как конфайнмент, квантово-размерный эффект Штарка, усиленное поверхностью комбинационное рассеяние и т.д. [6–8]. Материалы с внедренными нанокластерами могут применяться в качестве функциональных покрытий, элементов наноэлектроники, биосенсоров, активных оптических сред и др. [9–11].

Особенный интерес представляет изучение тонкопленочных структур с полимерными включениями. Однако существующие способы синтеза таких пленок могут быть достаточно сложны [12–14]. Поэтому перспективы их применения связаны с исследованием возможности создания материалов, содержащих полимерные нанокластеры, при помощи распространенных и универсальных технологий нанесения тонкопленочных покрытий, одной из которых является магнетронное распыление.

Изучением пленок, изготовленных при помощи магнетронного распыления полимерных мишеней, занимались в работах [15–17]. При этом выбор полимеров определялся перспективой создания покрытий с заданными свойствами. Так, перенос политетрафторэтилена (тефлона) [15,16] позволил синтезировать гидрофобные покрытия, а пленки, полученные распылением полиимида, показали хорошие трибологические и прочностные характеристики [17,18].

В настоящей работе распыляемым полимером служил монокристаллический полидиацетилен (ПДА). Использовавшийся для распыления тип ПДА известен в литературе под аббревиатурой РТЅ [19]. Монокристаллы данного материала построены из одинаково ориентированных полимерных цепей, имеющих квазиодномерный углеродный скелет, состоящий из *л*-сопряженных чередующихся C=C-, C=C- и C-С-связей. Получаемые в результате твердофазной топохимической полимеризации (ТТП) полидиацетилены проявляют ряд уникальных свойств, таких как термохромизм, пьезохромизм, сольватохромизм, аффинохромизм, и обладают выдающимися нелинейными оптическими свойствами, а также высокой анизотропией оптических, механических, электрофизических и др. свойств. Поэтому диацетилен и ПДА являются объектом интенсивных исследований, направленных как на практическое использование этих материалов (например, в биосенсорах, в устройствах сверхбыстрой оптической обработки сигналов, при создании фотонных кристаллов и проч.), так и на решение фундаментальных проблем, например, в нелинейной оптике, физике квазиодномерных полисопряженных систем, супрамолекулярной химии или в теории твердофазных химических реакций [20]. Пленки, содержащие полидиацетиленовые включения, имеют перспективы применения в различных наносенсорах. Однако структура покрытий нуждается в детальном анализе, так как зависит не только от распыляемого полимера, но и от условий синтеза [15-17]. В нашей работе для исследования образцов использовались методы спектроскопии комбинационного рассеяния (КР-спектроскопии), просвечивающей электронной микроскопии (ПЭМ) и рентгеновской фотоэлектронной спектроскопии (РФЭС).

Рис. 1. Структура мономера PTS.

2. Получение образцов и методы их исследования

2.1. Методика получения образцов

2.1.1. Синтез мономера бис-п-толилсульфоната гекса-2.4-диин-1,6-диола (PTS). В 100 ml тетрагидрофурана растворяли 11 g (0.1 mol) гекса-2,4-диин-1,6-диола и 50 g тозилхлорида (хлорангидрид п-толуолсульфо-кислоты). Полученный раствор охлаждали на бане с ледяной водой и при интенсивном перемешивании осторожно прибавляли к нему по каплям раствор 10 g КОН в 40 ml воды, удерживая температуру реакционной смеси в интервале 10-15°C. Реакционную смесь перемешивали еще 2 h, а затем выливали разом в 1000 ml ледяной воды. Целевой продукт немедленно выпадал в осадок в виде мелких кристаллов. Осадок отделяли фильтрованием и несколько раз промывали на фильтре большим количеством ледяной воды. Выход продукта составлял в разных синтезах 95-98%. Полученный таким образом мономер, представленный на рис. 1, дважды очищали перекристаллизацией из горячего раствора метанол/вода (95/5), предохраняя получаемые кристаллы от воздействия света. Чистый мономер представляет собой бесцветные кристаллы, имеющие температуру плавления 96°С и обладающие высокой чувствительностью к действию света или тепла.

2.1.2. Получение монокристаллов ПДА. ТПП мономерных кристаллов осуществляли термическим методом, нагревая кристаллы в термостатируемом шкафу при 70°C в течение 5–6 h. Как было показано ранее [19], эти условия гарантировали 100%-ную степень конверсии мономера PTS (рис. 2, *a*) в полимер (рис. 2, *b*). В результате получали монокристаллы поли-PTS, имеющие металлический блеск с золотым отливом.

2.1.3. Исследуемые пленки были синтезированы методом высокочастотного магнетронного распыления монокристаллов ПДА, равномерно размещенных на поверхности стандартной магнетронной мишени, изготовленной из графита марки МПГ-7, диаметр которой составлял 76 mm. Кристаллы закрепляли на поверхности мишени при помощи углеродного скотча фирмы Carl Zeiss. Размеры монокристаллов ПДА составляли порядка 1 mm, а доля занимаемой ими площади мишени — порядка 5%.

Предварительная откачка (до 5 · 10⁻⁵ Torr) вакуумной камеры, в которой производилось напыление, осуществлялась при помощи вакуумной системы, состоящей из пластинчатороторного и турбомолекулярного насоса.

Рис. 2. Параметры кристаллической упаковки и молекулярная структура мономера PTS (a) и соответствующего полимера PTS (b), использованного в настоящей работе.

После откачки в камеру напускался рабочий газ — аргон (Ar). Рабочее давление составляло $9 \cdot 10^{-4}$ Torr.

Напыление проводилось при мощности разряда 50 W. При данной мощности скорость распыления полимера значительно превышала скорость распыления графитовой мишени, на которой были закреплены кристаллы ПДА. Благодаря этому структура пленки, исследуемой в настоящей работе, преимущественно определялась распылением ПДА. В качестве подложек были использованы монокристаллический полированный Si и скол NaCl. Время распыления подбиралось таким образом, чтобы толщина изготовленных образцов составляла приблизительно 100 nm. Контроль толщины во время процесса напыления осуществлялся при помощи пьезоэлектрического датчика.

2.2. Методы исследования образцов

Исследования с помощью просвечивающей электронной микроскопии проводились на базе просвечивающего электронного микроскопа LEO 912 ab с ускоряющим напряжением 120 keV.

Спектры комбинационного рассеяния регистрировали с помощью КР-спектрометра RamanStation-400 (Perkin-Elmer, USA), оснащенного 30-кратным микроскопом,

Рис. 3. ПЭМ-изображение пленки на основе полидиацетилена с агломератами наноразмерных включений (*a*). Характерная дифракция исследуемой пленки (*b*).

моторизованным XYZ-координатным столиком и лазерным возбуждением 785 nm. Спектры записывали без подготовки пробы для анализа при оптическом разрешении 1 cm⁻¹, помещая исследуемый образец под объектив прибора. Спектры записывали при мощности лазерного возбуждения 2–10 mW, аккумулируя и усредняя 25–100 сканов с длительностью экспонирования детектора 10–30 s.

РФЭС осуществлялась с помощью электронного спектрометра Kratos AXIS Ultra DLD. Рентгеновское излучение в спектрометре обеспечивалось источником с магниевым анодом с энергией, соответствующей дублету Al $K_{\alpha} = 1486.6$ eV.

3. Экспериментальные результаты

3.1. ПЭМ

По данным ПЭМ, в структуре пленки наблюдается значительное число включений, представляющих собой агломераты наноразмерных частиц (см. рис. 3, *a*). Обработка изображений, полученных с помощью ПЭМ, показала, что относительная площадь включений составляет 4.3%. На рис. 3, *b* приведена дифракционная картина, характерная для исследованного образца.

На данной дифрактограмме присутствуют пики с центрами, соответствующими малым межплоскостным расстояниям: 1.2 и 2.1 Å, которые связаны с наличием аморфной фазы углерода в структуре тонкой пленки [22,23]. Пик, отвечающий межплоскостному расстоянию 3.5 Å, свидетельствует о присутствии в структуре графитовой составляющей [24]. В свою очередь, линии, отвечающие структуре ПДА, не удалось обнаружить по результатам электронной дифракции. Это может быть связано с тем, что для полидиацетилена характерны большие межплоскостные расстояния [25], рефлексы которых могут перекрываться фоном рассеянных электронов. Также возможно повреждение полимера пучком электронов в ходе анализа. Известно, что для ПДА даже небольшие дозы электронного облучения приводят к образованию сшивок между цепочками и изменению структуры [26].

Неустойчивость полидиацетилена к облучению электронным пучком приводит к необходимости использовать для анализа образцов другие методы. В настоящей работе дальнейшее исследование структур было проведено методами КР-спектроскопии и РФЭС.

3.2. КР-спектроскопия

На рис. 4 представлены КР-спектры пленки, полученной при распылении полидиацетилена, а также исход-

Рис. 4. КР-спектры монокристалла ПДА и пленки.

ного материала мишени, т.е. монокристаллов ПДА РТS. Спектр мишени характерен для типичного монокристаллического ПДА [19]. Почти все линии, наблюдаемые в обоих спектрах, принадлежат колебаниям различных молекулярных фрагментов из состава сопряженного углеродного скелета макромолекулы ПДА: так, линия 952 сm⁻¹ отвечает деформационным колебаниям $\delta(C-C=C)$, полоса 1202 сm⁻¹ соответствует деформационным колебаниям $\delta(C-C=C)$, полоса 1462 сm⁻¹ вызвана деформационным колебанием $\delta(CH_2-C=)$, а интенсивная линия 1482 сm⁻¹ — валентным колебанием $\nu(C=C)$, и, наконец, интенсивная полоса 2084 сm⁻¹ принадлежит валентному колебанию тройной связи из состава углеродного скелета $\nu(C=C)$.

Примечательно, что частоты большинства КР-полос в спектре напыленной пленки наблюдаются фактически при тех же частотах, которые характерны для кристаллической ПДА-мишени. Однако известно, что частота линий КР в спектре ПДА сильно зависит от степени сохранности кристаллической элементарной ячейки ПДА или степени ее деформированности под действием внешних или внутренних напряжений и других факторов. Таким образом, сохранение положений линий КР в данном случае может служить веским аргументом в пользу того, что при высокочастотном магнетронном напылении перенос фрагментов ПДА фазы из объема мишени в пленку может происходить без значительного разрушения материнской кристаллической решетки исходного ПДА (мишени). Другими словами, входящие в состав напыляемой пленки включения функционального полимера лишь незначительно отличаются по структуре от исходного полимера.

Помимо линий, соответствующих структуре исходного ПДА, в КР-спектрах напыленной пленки наблюдается широкая полоса с вершиной вблизи 1800 cm⁻¹, что не характерно для исходного ПДА, обладающего совершенной кристаллической структурой. Анализ литературы показывает, что подобная линия встречается в спектрах структур, содержащих цепочечную углеродную фазу, например, в КР-спектрах sp-гибридизованных углеродных цепочек, внедренных в многостенные нанотрубки [27], или в кумуленовой форме аморфного карбина, отожженного под высоким давлением [28]. В работе [29] серия линий с волновыми числами в диапазоне $1700-2200 \, \text{сm}^{-1}$ приписывается колебаниям sp-гибридизованных цепочек в структуре углеродсеребряных композитов. В то же время, данная линия не встречается в спектрах углеродных цепочек с *sp*-гибридизацией, находящихся в растворе [30,31], и не предсказывается моделями, в которых рассчитывается спектр идеальных цепочечных структур, стабилизированных различными радикалами [32]. Все это позволяет предположить ее связь с деформацией структуры цепочек. Данное предположение подтверждается расчетами спектра фононных колебаний цепочки с изгибами в гармоническом приближении [33]. Этот вывод находится в соответствии с результатами, представленными в [30].

Присутствие в спектре напыленной пленки фона люминесценции свидетельствует о наличии разупорядоченной фазы в структуре образца. Это также подтверждается наличием в спектре КР широких полос вблизи 1380 и 1600 сm⁻¹, соответствующих *D*- и *G*-линиям, положение и ширина которых характерны для разупорядоченного углерода [34,35].

3.3. РФЭС

В таблице представлены результаты анализа элементного состава кристалла ПДА и напыленной пленки методом РФЭС. Данные элементного анализа свидетельствуют о том, что в синтезированных структурах доля углерода увеличивается по сравнению с исходным кристаллом ПДА, при этом уменьшается доля серы. Это свидетельствует о том, что в процессе переноса структуры происходит небольшое уменьшение количества стабилизирующих радикалов (так называемых боковых заместителей ПДА). Присутствие кислорода связано как с наличием данного элемента в составе тозильной группировки, так и с формированием на поверхности образца адсорбированного слоя. В свою очередь, присутствие азота и незначительной доли других примесей также может объясняться наличием адсорбатов на поверхности. Значительное влияние поверхностного слоя на РФЭС-спектр обусловлено малой глубиной анализа, составляющей 0.5-3 nm [36].

На рис. 5, *а* представлен спектр C1s линии для кристалла ПДА. Вычитание фона производилось методом Тугарда [37], на рисунке фон представлен пунктиром. Во вкладке приведено разложение C1s по двум гауссовым составляющим, отвечающим химическим связям углерода. Пик с энергией 284.3 eV соответствует C-C-связям [38,39]. В свою очередь, линии, отвечающие C-O-, C-N-, C-S-связям, имеют схожее положение около 286.5 eV [3,40-43]. Наложение данных линий приводит к большой ширине соответствующего им пика и не позволяет разрешить их по отдельности. Аналогичное разложение проводилось для спектра 1s-линии напыленной пленки.

При вычитании линий химических связей из спектров 1s-линий были получены спектры потерь энергии электронов, представленные на рис. 5, *b*. На данном рисунке ноль энергии отсчитывается от положения максимума C1s-линии. В данном спектре присутствуют пики потерь энергии, связанные с возбуждениями плазмонов в исследуемом материале, а также одноэлектронными переходами.

Пик с энергией $3.8-4.1\,\text{eV}$ соответствует возбуждению π -плазмонов в углеродных цепочках [44]. Присутствие данной линии в спектре исходного кристалла

Элементный состав кристалла ПДА и напыленной пленки

	C 1s	O 1s	S 2p	N 1s	Other
PDA-crystal	74.49	18.95	4.21	2.04	0.32
Film	78.87	14.88	2.92	2.80	0.53

Рис. 5. С1ѕ-линия кристалла ПДА. Во вкладке представлено разложение спектра по линиям химических связей (*a*). Спектры потерь энергии электронов в ПДА и материале пленки (*b*).

связано с формированием в ПДА цепочек на основе *sp*-связи. π -плазмон в спектре напыленной пленки отвечает возбуждению колебаний как во фрагментах, имеющих структуру исходного полимера, так и в искаженных углеродных цепочках.

Пик с энергией 22 eV отвечает коллективному возбуждению всей электронной подсистемы ($\pi + \sigma$). Положение данного пика позволяет оценить плотность материала [45]. Согласно проведенной оценке, плотность ПДА и напыленной пленки приблизительно одинаковы и составляют около 1.5 g/cm³.

Кроме того, в спектрах наблюдаются три пика с энергиями 6.5, 8 и 11 eV, которые соответствуют одночастичным межзонным переходам [46], связанным со сложной зонной структурой кристалла полидиацетилена. В свою очередь, для аморфных углеродных структур в спектрах потерь, как правило, наблюдается небольшое число межзонных переходов меньшей интенсивности [47]. Таким образом, уменьшение интенсивности и количества линий в диапазоне 5–13 eV можно связать с разупорядочением структуры покрытия.

Согласно полученным результатам, напыленная пленка представляет собой аморфную углеродную матрицу, содержащую агломераты наноразмерных включений кристаллического ПДА наряду с включениями искаженных цепочечных фрагментов, структура которых сформировалась во время переноса материала мишени на подложку.

4. Обсуждение результатов

Как правило, формирование полимерной структуры при магнетронном распылении происходит благодаря переносу малых фрагментов материала мишени, которые либо вступают в химическую реакцию на поверхности формируемой пленки, либо взаимодействуют в плазме, если давление в рабочей камере достаточно велико (~ 50 Torr) [15,16,48,49]. В нашем случае длина свободного пробега распыляемых фрагментов оказывается слишком велика для их взаимодействия в плазме, поскольку рабочее давление составляло 10^{-3} Torr. Кроме того, при распылении происходит разрушение структуры стабилизаторов (боковых заместителей скелета ПДА). Например, в процессе магнетронного распылениия может повреждаться структура бензольных колец [50]. Таким образом, перенос материала в наших условиях происходит небольшими фрагментами, из которых на поверхности растущей пленки формируется новая структура. Синтезируемые в схожих условиях при ВЧ-распылении полимеров покрытия, как правило, обладают разупорядоченной структурой [15,48]. Вследствие этого можно предположить, что появление в структуре напыленной пленки деформированных цепочек, о котором свидетельствует широкая линия 1800 cm^{-1} в КР-спектрах, связано именно с взаимодействием небольших квазиодномерных фрагментов полимера на поверхности растущей пленки.

Однако положения большинства линий в КР-спектре пленки практически не отличаются от таковых для кристалла ПДА. Это свидетельствует о том, что полимерные включения в пленке достаточно упорядочены, а их структура практически не отличается от структуры исходного кристалла, что нехарактерно для магнетронного распыления. По нашему предположению, перенос полимера также может осуществляться благодаря испарению материала мишени, связанному с локальным нагревом кристаллов ПДА. Нагрев вызывается воздействием ионного потока, бомбардирующего мишень при магнетронном распылении. Схожий эффект описан в [51]. Для его реализации в случае металлических мишеней поток тепла уменьшают, изолируя их от охлаждаемых магнитов магнетронной системы. В нашем случае теплоотвод от закрепленных на мишени кристаллов ПДА происходил неэффективно из-за их низкой теплопроводности [52]. Согласно литературным данным, испарение различных полимеров приводит к формированию высокоупорядоченных покрытий на основе исходного материала [53–55].

Таким образом, сочетание испарения и распылении при магнетронном осаждении может позволить создавать композитные структуры, представляющие собой аморфную углеродную матрицу, содержащие наноразмерные полимерные включения, повторяющие структуру распыляемого материала.

5. Заключение

В работе представлены результаты исследования пленок, полученных высокочастотным магнетронным распылением мишени, содержащей кристаллы ПДА. Согласно данным ПЭМ, пленки представляют собой аморфную углеродную матрицу с агломератами наноразмерных включений. Присутствие D- и G-линий в КР-спектрах подтверждает формирование аморфной углеродной фазы в структуре пленки. Наличие в КР-спектре пленки линий, соответствующих колебаниям исходного кристалла ПДА, свидетельствует о переносе фрагментов структуры полимера в пленку. Появление линии 1800 cm⁻¹ указывает на формирование фрагментов на основе искаженных *sp*-гибридизованных углеродных цепочек. Наличие *п*-плазмона с положением около 4 eV в спектрах потерь энергии рентгеновских фотоэлектронов подтверждает наличие структуры на основе sp-гибридизации: искаженных углеродных цепочек и полидиацетиленовых фрагментов. Согласно нашему предположению, формирование искаженных sp-гибридизованных цепочек происходит на поверхности растущей пленки из небольших распыленных sp-гибридизованных кластеров исходного ПДА. В свою очередь, перенос полимерных фрагментов, структура которых незначительно отличается от структуры ПДА, связан с испарением вследствие локального нагрева кристаллов, расположенных на поверхности магнетронной мишени.

Благодарности

Авторы выражают благодарность за обсуждение результатов В.В. Хвостову.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- А.В. Елопов, В.Б. Зайцев, Д.М. Жигунов, Г.А. Шандрюк, А.А. Ежов, А.С. Мерекалов, Л.А. Головань. Изв. РАН. Сер. физ. 83, 41 (2019).
- [2] В.А. Данько, С.А. Злобин, И.З. Индутный, И. П. Лисовский, В.Г. Литовченко, Е.В. Михайловская, П.Е. Шепелявый, Е. Бегун. Материалы электрон. техники 4, 52 (2013).
- [3] O.A. Streletskiy, I.A. Zavidovskiy, O.Yu. Nischak, A.A. Haidarov. Vacuum 175, 109286 (2020).
- [4] А.В. Колубаев, А.В. Белый, И.А. Буяновский, Е.А. Колубаев, В.А. Кукареко, О.В. Сизова, М.М. Хрущов. Изв. вузов 62, 8, 52 (2019).
- [5] М.М. Хрущов, М.В. Атаманов, Е.А. Марченко, М.И. Петржик, И.С. Левин. Изв. РАН. Сер. физ. 78, 10, 1257 (2014).
- [6] Q. Cheng, S. Xu, K. Ostrikov. Acta Mater. 58, 560 (2010).
- [7] D. Babić, R. Tsu, R.F. Greene. Phys. Rev. B 45, 14150 (1992).
- [8] V. Türck, S. Rodt, O. Stier, R. Heitz, R. Engelhardt, U.W. Pohl, D. Bimberg, R. Steingrüber. Phys. Rev. B 61, 15, 9944 (2000).

- [9] M. Fu, F. Ehrat, Yu Wang, K.Z. Milowska, C. Reckmeier, A.L. Rogach, J.K. Stolarczyk, A.S. Urban, J. Feldmann. Nano Lett. 15, 6030 (2015).
- [10] H. Mertens, J.S. Biteen, H.A. Atwater, A. Polman. Nano lett. 6, 2262 (2006).
- [11] С.Н. Штыков, Т.Ю. Русанова. Рос. хим. журн. LII, 92 (2008)
- [12] E. Palesch, A. Marek, P. Solarc, O. Kylian, J. Vyskocil, H. Biederman, V. Cech. Thin Solid Films 544, 593 (2013).
- [13] P. Solař, O. Polonskyi, A. Choukourov, A. Artemenko, J. Hanuš, H. Biederman, D.Slavínská. Surf. Coatings Technol. 205, S42 (2011).
- [14] J.C. Tuberquia, G.K. Jennings. ACS Appl. Mater. Interfaces 5, 7, 2593 (2013).
- [15] H. Biederman, P. Bílková, J. Ježek, P. Hlídek, D. Slavínská. J. Non-Crystal. Solids 218, 44 (1997).
- [16] M. Drabik, O. Polonskyi, O. Kylian, J. Cechvala, A. Artemenko, I. Gordeev, A. Choukourov, D. Slavinska, I. Matolinova, H. Biederman. Plasma Proc. Polymers 7, 7, 544 (2010).
- [17] A. Choukourov, J. Hanuš, J. Kousal, A. Grinevich, Y. Pihosh, D. Slavínská, H. Biederman. Vacuum 81, 4, 517 (2006).
- [18] M. Kitoh, Y. Honda. Thin Solid Films 271, 1-2, 92 (1995).
- [19] A.N. Shchegolikhin, O.L. Lazareva. Spectrochim. Acta A 53, 1, 67 (1997).
- [20] R. Baughman, D. Galvão, C. Cui, S. Dantas. Chem. Phys. Lett. 269, 3-4, 356 (1997).
- [21] Г.А. Виноградов. Успехи химии 53, 1, 135 (1984).
- [22] A.A. Voevodin, J.G. Jones, J.S. Zabinski, Zs. Czigány, L. Hultman. J. Appl. Phys. 92, 4980 (2002).
- [23] M. Zarrabian, N. Fourches-Coulon, G. Turban, C. Marhic, M. Lancin. Appl. Phys. Lett. 70, 2535 (1997).
- [24] H. Song, L. Ji, H. Li, X. Liu, W. Wang, H. Zhou, J. Chen. ACS Appl. Mater. Interfaces 8, 6639 (2016).
- [25] R.J. Young, R.T. Read, D. Bloor, D. Ando. Faraday Discus. Chem. Soc. 68, 509 (1979).
- [26] R.T. Read, R.J. Young. J. Mater Sci. 19, 1, 327 (1984).
- [27] X. Zhao, Y. Ando, Y. Liu, M. Jinno, T. Suzuki. Phys. Rev. Lett. 90, 18, 187401-1 (2003).
- [28] Т.Д. Варфоломеева, С.В. Попова, А.Г. Ляпин, С.Г. Ляпин, В.В. Бражкин, Ю.П. Кудрявцев, С.Е. Евсюков. Письма в ЖЭТФ 66, 237 (1997).
- [29] A. Jurkevičiūtė, G. Klimaitė, T. Tamulevičius, J. Fiutowski, H. Rubahn, S. Tamulevičius. Adv. Eng. Mater. 22, 1900951 (2019).
- [30] H. Tabata, M. Fujii, S. Hayashi, T. Doi, T. Wakabayashi. Carbon 44, 15, 3168 (2006).
- [31] B. Pan, J. Xiao, J. Li, P. Liu, C. Wang, G. Yang. Sci. Adv. 1, 9, e1500857 (2015).
- [32] R.R. Tykwinski. Chem. Record 15, 6, 1060 (2015).
- [33] F. Cataldo. Polyynes: Synthesis, Properties, and Applications. CRC Press (2005). P. 233.
- [34] A.C. Ferrari, J. Robertson. Phys. Rev. B 61, 20, 14095 (2000).
- [35] J.-T. Jiu, H. Wang, C.-B. Cao, H.-S. Zhu. J. Mater. Sci. 34, 21, 5205 (1999).
- [36] M.P. Seah. Vacuum **34**, 463 (1984).
- [37] S. Tougaard. Surf. Sci. 216, 3, 343 (1989).
- [38] B.K. Tay, X. Shi, H.S. Tan, D.H.C. Chua. Surf. Interface Anal. 28, 1, 231 (1999).
- [39] R.G. Lacerda, P. Hammer, F.L. Freire, F. Alvarez, F.C. Marques. Diamond Rel.Mater. 9, 3–6, 796 (2000).

- [40] G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, K.M. Abramski. Opt. Exp. 20, 19463 (2012).
- [41] R.N. Oosterbeek, C.K. Seal, M.M. Hyland. Appl. Surf. Sci. 321, 432 (2014).
- [42] E.T. Kang, H.C. Ti, K.G. Neoh. Polym J. 20, 845 (1988).
- [43] R.K. Shervedani, A. Amini. Carbon 93, 762 (2015).
- [44] Ю.Г. Коробова, В.Г. Бабаев, В.В. Хвостов, М.Б. Гусева. Вестн. Моск. ун-та. Сер. 3. Физика. Астрономия 1, 33 (2008).
- [45] B. Schultrich. Tetrahedrally Bonded Amorphous Carbon Films I. Springer Berlin Heidelberg, Berlin, Heidelberg (2018). 752 p.
- [46] J. Knecht, B. Reimer, H. Bassler. Chem. Phys. Lett. 49, 2, 327 (1977).
- [47] И.А. Завидовский, О.А. Стрелецкий, О.Ю. Нищак, Н.Ф. Савченко, С.В. Дворяк, А.В. Павликов. ЖТФ 90, 3, 489 (2020).
- [48] H. Biederman, M. Zeuner, J. Zalman, P. Bílková, D. Slavínská, V. Stelmasuk, A. Boldyreva. Thin Solid Films **392**, *2*, 208 (2001).
- [49] I. Kholodkov, H. Biederman, D. Slavinska, A. Choukourov, M. Trchova. Vacuum 70, 4, 505 (2003).
- [50] K. Fukushima, Y. Ikeda, T. Hayashi, N. Kikuchi, E. Kusano, A. Kinbara. Thin Solid Films **392**, *2*, 254 (2001).
- [51] G.A. Bleykher, A.O. Borduleva, V.P. Krivobokov, D.V. Sidelev. Vacuum 132, 62 (2016).
- [52] M.N. Wybourne, B.J. Kiff, D.N. Batchelder. Phys. Rev. Lett. 53, 6, 580 (1984).
- [53] S.G. Hansen, T.E. Robitaille. Appl. Phys. Lett. 52, 1, 81 (1988).
- [54] S. Tomaru, K. Kubodera, S. Zembutsu, K. Takeda, M. Hasegawa. Electron. Lett. 23, 11, 595 (1987).
- [55] Y. Takahashi, M. Iijima, Y. Oishi, M. Kakimoto, Y. Imai. Macromolecules 24, 12, 3543 (1991).

Редактор К.В. Емцев