09

Корреляция между параметрами дисперсионных зависимостей показателей преломления и координационными числами катионов для кристаллов семейства лангасита

© Н.И. Сорокин

Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия

E-mail: nsorokin1@yandex.ru

Поступила в Редакцию 6 июля 2020 г. В окончательной редакции 6 июля 2020 г. Принята к публикации 8 июля 2020 г.

Для оптических кристаллов семейства лангасита La₃Ga₅SiO₁₄ (структурный тип Ca₃Ga₂Ge₄O₁₄, пр. гр. *P*321) обнаружена корреляция между параметрами дисперсионных кривых показателей преломления и координационными числами катионов в их структурах.

Ключевые слова: лангасит, оксиды, монокристаллы, показатель преломления, координационное число.

DOI: 10.21883/FTT.2020.11.50068.142

1. Введение

Сложные оксиды семейства лангасита (La₃Ga₅SiO₁₄) относятся к структурному типу Ca₃Ga₂Ge₄O₁₄ (пр. гр. P321). Их химическую формулу можно записать в виде $A_3BC_3D_2O_{14}$, где катионы A, B, C и D расположены в четырех типах позиций — правильных системах точек пр. гр. P321. Способность структуры лангасита к широким изоморфным замещениям катионов приводит к усложнению химического состава и получению большого числа новых кристаллов.

Кристаллы семейства лангасита являются многофункциональными материалами, обладающими пьезоэлектрическими, оптическими, лазерными, люминесцентными, акустическими и магнитными свойствами. Их активные исследования включены в динамично развивающиеся направления в пьезотехнике, акустоэлектронике, фотонике и физике мультиферроиков (см. ссылки в [1]). Работы в области получения новых лангаситовых кристаллов и исследования их атомного строения и физических свойств продолжаются.

Оптические свойства кристаллов $A_3BC_3D_2O_{14}$ характеризуются отсутствием электронных и колебательных переходов в спектральной области $0.2-8\,\mu$ m (окно прозрачности). Фундаментальными характеристиками оптических кристаллов являются показатели преломления *n* и их дисперсионная зависимость $n(\lambda)$, лежащие в основе структурной рефрактометрии [2]. Знание показателей преломления $n(\lambda)$ необходимо при расчете эксплуатационных характеристик приборов и устройств с использованием оптических материалов, а также для применения рефрактометрических в структурной химии.

Одной из задач структурной рефрактометрии является нахождение корреляций между оптическими (показатели преломления) и кристаллохимическими характеристиками (химическая связь, координация атомов, тип структуры) ионных кристаллов [2,3]. Несмотря на то, что семейство лангасита уже насчитывает более двух сотен соединений и твердых растворов, только для менее десятка из них известны экспериментальные значения показателей преломления [4-6]. Для измерений показателей преломления лангаситов требуется получать их в виде объемных монокристаллов высокого оптического качества. Рост таких кристаллов представляет сложную технологическую задачу и требует больших ресурсных затрат. Кроме измеренных в экспериментах показателей преломления, в работе [1] методом молекулярной рефракции проведен теоретический расчет показателей преломления для пятнадцати новых кристаллов. Этим ограничивается объем рефрактометрических данных для кристаллов семейства лангасита. Поскольку кристаллы $A_3BC_3D_2O_{14}$ имеют сходные особенности строения, представляет интерес поиск для них корреляций между показателями преломления и структурными характеристиками.

Целью настоящей работы является изучение взаимосвязи между параметрами дисперсионных кривых показателей преломления $n(\lambda)$ и координационными числами катионов N_{cat} для оптических кристаллов семейства лангасита.

Структурный тип Ca₃Ga₂Ge₄O₁₄

Родоначальником структурного типа кристаллов, названных впоследствии семейством лангасита (лантангаллиевого силиката La₃Ga₅SiO₁₄) является кальцийгаллиевый германат Ca₃Ga₂Ge₄O₁₄. Впервые соединение Ca₃Ga₂Ge₄O₁₄ было синтезировано в [7], его кристаллическая структура изучена в [8]. Структура Ca₃Ga₂Ge₄O₁₄ подобна структуре пьезоэлектрического кристалла кварца и относится к тригональной сингонии, тригональнотрапецоэдрическому классу симметрии 32, пр. гр. P321 с одной формульной единицей в элементарной ячейке (Z = 1).

В элементарной ячейке кристаллов семейства лангасита $A_3BC_3D_2O_{14}$ находится 23 иона. Крупные катионы Aнаходятся в позициях 3e на двойных осях симметрии. Они окружены восемью анионами кислорода, образуя координационный полиэдр (томсоновский куб) $[AO_8]$. Катионы B находятся в позициях 1a на пересечении двойной и тройной осей симметрии, в октаэдрах $[BO_6]$. Катионы C находятся в позициях 3f на двойных осях, в тетраэдрах $[CO_4]$. Катионы D находятся в позициях 2d на тройных осях, в тетраэдрах $[DO_4]$. Для позиций 3e, 1a и (3f, 2d) характерна восьмерная, шестерная и четверная координация по кислороду и координационное число (КЧ) катионов равно $N_{cat} = 8$, 6 и 4 соответственно.

Все позиции 3e, 1a, 3f и 2d допускают широкие изоморфные замещения катионов, при этом их координаты, полиэдры и КЧ остаются неизменными.

Четыре вида катионных полиэдров упакованы в два слоя, которые попеременно располагаются вдоль оптической оси (кристаллографической оси *c*) [8]. Первый слой состоит из тетраэдров [CO₄] и [DO₄], второй слой — из октаэдров [BO₆] и томсоновских кубов [AO₈].

Для стабильности структуры $A_3BC_3D_2O_{14}$ существенным фактором является то обстоятельство, что кристаллический каркас, состоящий из октаэдров $[BO_6]$ и тетраэдров $[CO_4]$ и $[DO_4]$, стабилизируется крупными катионами (например, La³⁺, Pr³⁺ и Nd³⁺) в восьмерной координации. Напротив, крупные катионы в октаэдрических и тетраэдрических позициях дестабилизируют структуру, поэтому позиции *B*, *C* и *D* занимают катионы меньшего радиуса. При этом размер тетраэдра $[DO_4]$ меньше, чем тетраэдра $[CO_4]$, в результате катионы меньшего размера будут размещаться в позиции *D*, а большего — в позиции *C*.

Несмотря на то, что кристаллы семейства лангасита обладают широким изоморфизмом атомов (разных сортов и ионных радиусов) в катионных позициях, они имеют в дифракционных исследованиях узкие интенсивные брэгговские пики, свидетельствующие об их регулярной и совершенной средней структуре [9].

3. Дисперсионные зависимости *n*(λ) в ионных кристаллах

Для ионных кристаллов вдали от полосы поглощения применима модель эффективного осциллятора (уравнение Зельмейера)

$$n^{2} - 1 = A_{0}\lambda^{2}/(\lambda^{2} - \lambda_{0}^{2}), \qquad (1)$$

где A_0 — множитель, связанный с силовыми характеристиками осцилляторов и λ_0 — характеристическая длина волны для края УФ поглощения. Для определения параметров A_0 и λ_0 уравнение (1) преобразуют к

линейному виду

$$[n^2 - 1]^{-1} = -A/\lambda^2 + B, \qquad (2)$$

где $A = \lambda_0^2/A_0$, $B = 1/A_0$ и $\lambda_0^2 = A/B$. Формула (1) для эффективного осциллятора может быть приведена к виду (уравнение Вемпла–Дидоминико) [10,11]:

$$n^{2} - 1 = E_{d}E_{0}/[E_{0}^{2} - (h\nu)^{2}], \qquad (3)$$

где hv — энергия фотона, E_0 — энергия осциллятора, E_d — дисперсионная энергия. Параметры уравнений (1) и (3) связаны между собой выражениями

$$E_0 = h\nu_0 = hc/\lambda_0,$$

$$E_d = A_0 E_0.$$
 (4)

В [10,11] было показано, что дисперсионная энергия *E*_d зависит от ряда кристаллохимических параметров

$$E_d = \beta N_{cat} Z_a N_e, \tag{5}$$

где N_{cat} — КЧ катиона, Z_a — валентность аниона, N_e — эффективное число валентных электронов аниона. Коэффициент пропорциональности равен $\beta = 0.26 \pm 0.04$ eV для ионных кристаллов и $\beta = 0.37 \pm 0.05$ eV для ковалентных кристаллов.

Тогда из уравнений (4) и (5) получаем связь между параметрами A_0 и λ_0 дисперсионных кривых $n(\lambda)$

$$A_0 = K \cdot \lambda_0, \tag{6}$$

где коэффициент пропорциональности $K = \beta N_{cat} Z_a N_e/hc$. Одним из сомножителей в коэффициенте пропорциональности между параметрами A_0 и λ_0 является КЧ катионов N_{cat} . Для оптических кристаллов семейства лангасита $A_3BC_3D_2O_{14}$ величина КЧ катионов изменяется в 2 раза: $N_{cat} = 4$ (катионы C и D), $N_{cat} = 6$ (катионы B) и $N_{cat} = 8$ (катионы A).

Корреляция между параметрами кривых n(λ) и КЧ катионов для кристаллов семейства лангасита

Для ионных кристаллов семейства лангасита параметры $Z_a = 2$ (анион O^{2-}) и $N_e = 8$ (валентные электроны $2s^22p^6$ для аниона O^{2-}), поэтому величина коэффициента K определяется КЧ катионов. Рассчитанные значения коэффициента пропорциональности в уравнении (6) при $\beta = 0.26 \text{ eV}$ составляют (λ_0 измеряется в nm) $K = 1.336 \cdot 10^{-2}$, $2.004 \cdot 10^{-2}$ и $2.672 \cdot 10^{-2}$ nm⁻¹ для $N_{cat} = 4$, 6 и 8 соответственно.

Тригональные (одноосные) кристаллы со структурой типа лангасита обладают двумя (обыкновенным n_o и необыкновенным n_e) показателями преломления. Они являются оптически положительными кристаллами, для них выполняется условие $n_e > n_o$. В дальнейшем, все расчеты будут проведены для обыкновенного показателя

Кристалл	Множитель А0	Длина волны λ_0 , nm	Источник
La ₃ Ga ₅ SiO ₁₄	2.503	128.0	
La ₃ Ga ₅ GeO ₁₄	2.563	135.2	
La ₃ Ga _{5.5} Nb _{0.5} O ₁₄	2.657	141.6	
La ₃ Ga _{5.5} Ta _{0.5} O ₁₄	2.631	135.1	эксперимент
	2.643	135.1	[4,6,12,13]
	2.635	136.0	
$Ca_2Ga_2Ge_4O_{14}$	2.133	127.8	
$Sr_2Ga_2Ge_4O_{14}$	2.129	127.7	
$Pb_3Ga_2Ge_4O_{14}$	2.904	168.0	
$La_3Ga_5ZrO_{14}$	2.535	132.9	
$La_3Ga_5TiO_{14}$	2.682	145.3	
$La_3Ga_5SnO_{14}$	2.538	134.1	
$La_{3}Zr_{0.5}Ga_{5}Si_{0.5}O_{14}$	2.529	129.3	
$La_{3}Ta_{0.25}Ga_{5.25}Si_{0.5}O_{14}$	2.585	131.8	
$La_{3}Ta_{0.25}Zr_{0.5}Ga_{5.25}O_{14}$	2.606	134.1	
$La_3SnGa_{3.1}Al_{1.9}O_{14}$	2.558	133.6	
$La_{2.88}Sr_{0.12}Ta_{0.56}Ga_{5.44}O_{14}$	2.647	135.1	расчет [1]
Nd ₃ Ga ₅ SiO ₁₄	2.513	130.4	
$Ba_3Ga_2Ge_4O_{14}$	2.232	120.5	
$Ba_3TaGa_3Si_2O_{14}$	2.306	119.8	
$Sr_{3}TaGa_{3}Si_{2}O_{14}$	2.138	124.5	
$Sr_3NbGa_3Si_2O_{14}$	2.106	134.8	
$Ca_3TaGa_3Si_2O_{14}$	2.116	124.5	
Ca ₃ NbGa ₃ Si ₂ O ₁₄	2.137	132.6	

Таблица 1. Параметры дисперсионных кривых показателей преломления $n(\lambda)$ для кристаллов $A_3BC_3D_2O_{14}$ семейства лангасита

Рис. 1. Корреляция между параметрами экспериментальных кривых $n(\lambda)$ для кристаллов семейства лангасита: наклонные кресты — эксперимент [4,6,12,13], прямые линии — расчет по (6) при $N_{cat} = 4$, 6 и 8. Ромбы, кружки и квадраты — экспериментальные данные для оксидных кристаллов с $N_{cat} = 4$, 6 и 8 (табл. 2).

Рис. 2. Корреляция между параметрами рассчитанных кривых $n(\lambda)$ для кристаллов семейства лангасита: прямые кресты — расчет методом молекулярной рефракции [1], прямые линии — расчет по (6) при $N_{cat} = 4$, 6 и 8. Ромбы, кружки и квадраты — экспериментальные данные для оксидных кристаллов с $N_{cat} = 4$, 6 и 8 (табл. 2).

OKCURHINGE REPRETATION C $N_{cut} = 4$ ZnO2 2.672 194.1 2.711 204.0 1.346 91.4 LiGaO2 1.346 91.4 [5,11] Ga2(MoO4)3 2.229 149.7 [5,11] Tb2(MoO4)3 2.272 153.4 [5,11] OKCHRINGE REPRETATION C $N_{cut} = 6$ MgO 1.947 109.9 [5,12] CaO 2.283 125.5 Al ₂ O3 2.052 92.7 [7] To2 3.718 199.2 [1] TiO2 4.905 2.37.1 [1] STIO3 4.173 2.18.7 [1] BaTiO3 4.263 220.7 [1] LiNbO3 3.895 186.8 [1] KTa03 3.453 165.9 [1] KTa03 3.942 200.7 [1] MgA1604 1.926 102.7 [2] ZnWO4 3.485 166.5 [3.285 B	Кристалл	Множитель А0	Длина волны λ ₀ , nm	Источник		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Оксидные кристаллы с $N_{cat}=4$					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ZnO ₂	2.672	194.1			
SiO2 1.346 91.4 [5,11] LiGaO2 1.905 130.8 [5,11] Ga2(MoO4)3 2.229 149.7 [5,11] Оксидные кристаллы с $N_{cat} = 6$ Оксидные кристаллы с $N_{cat} = 6$ MgO 1.947 109.9 CaO 2.283 125.5 AlgO3 2.052 92.7 ToO2 3.718 199.2 TiO2 4.905 237.1 Y3AlsO12 2.288 111.9 SrTiO3 4.173 218.7 BaTiO3 4.263 220.7 LiTaO3 3.485 165.9 LiNbO3 3.895 186.8 KTaO3 3.646 191.1 KTaO3 3.942 200.7 ZmW04 3.485 166.5 Ba2NaNb_5O15 3.942 200.7 Coccuption k protration c $N_{cat} = 8$ ThO2 3.276 118.4 Zr0.89 Y _{0.13} O.1934 3.447 139.7 <td< td=""><td></td><td>2.711</td><td>204.0</td><td></td></td<>		2.711	204.0			
L(GaO ₂ Ga ₂ (MoO ₄) ₃ 1.905 2.229 130.8 149.7 153.4 [5,11] OKCHURHBE KPUCTAULINE C $N_{cat} = 6$ MgO 1.947 109.9 2.283 125.5 2.27 Al ₂ O ₃ 2.052 92.7 1CO ₂ 3.718 199.2 TiO ₂ 4.905 237.1 2.288 111.9 5 57IO ₃ 4.173 218.7 BaTiO ₃ 4.263 220.7 [11] 111 111 111 SrTiO ₃ 4.263 220.7 [11] [11] 111 111 SrTiO ₃ 4.263 200.7 [11] [11] 111 1	SiO ₂	1.346	91.4	[5,11]		
GB2 (MoO ₄) ₃ 2.229 149.7 Tb2 (MoO ₄) ₃ 2.272 153.4 OKCHUMHBE KPHCTALLIG C $N_{cat} = 6$ MgO 1.947 109.9 CaO 2.283 125.5 Al ₂ O ₃ 2.052 92.7 TeO ₂ 3.718 199.2 TiO ₂ 4.905 2337.1 Y ₃ Al ₅ O ₁₂ 2.288 111.9 SrTiO ₃ 4.173 218.7 BaTiO ₃ 4.263 220.7 LiTaO ₃ 3.485 165.9 LiNbO ₃ 3.895 186.8 KTaO ₃ 3.646 191.1 KTaO ₃ 3.485 166.5 Ba2NaNb ₅ O ₁₅ 3.942 200.7 Diccurration c N _{cat} = 8 Diccurration c N _{cat} = 8 [5] ThO ₂ 3.276 132.6 Ba2NaNb ₅ O _{1.5} 3.285 184.4 Zr _{0.869} Y _{0.131} O _{1.934} 3.447 139.7 Zr _{0.869} Y _{0.131} O _{1.934} 3.447 139.4 Ho _{6.85} Y _{0.150} O _{1.955}	LiGaO ₂	1.905	130.8			
Tb ₂ (MoQ ₄) ₃ 2.272 153.4 Оксидинае кристаллы с $N_{cat} = 6$ MgO 1.947 109.9 CaO 2.283 125.5 Al ₂ O ₃ 2.052 92.7 TeO ₂ 4.905 237.1 Y ₃ Al ₅ O ₁₂ 2.288 111.9 SrTiO ₃ 4.173 218.7 BaTO ₃ 4.263 220.7 [1] LiNbO ₃ 3.885 165.9 [1] KTaO ₃ 3.4263 200.7 [1] KTaO ₃ 3.485 166.5 [1] KTaO ₃ 3.646 191.1 [5] KTaO ₄ 3.942 200.7 [5] Okcurumae kpuctannus c $N_{cat} = 8$ ThO ₂ 3.276 132.6 ThO ₂ 3.275 139.4 [5] ThO ₂ 3.285 118.4 139.7 Zt _{0.869} Y _{0.131} O _{1.934} 3.447 139.7 [5] H _{0.594} Y _{0.095} O _{1.95} 3.495 130.4 [5] <td>$Ga_2(MoO_4)_3$</td> <td>2.229</td> <td>149.7</td>	$Ga_2(MoO_4)_3$	2.229	149.7			
Оксидные кристаллы с $N_{cat} = 6$ MgO CaO 1.947 109.9 CaO 2.283 125.5 Al ₂ O ₃ 2.052 92.7 TeO ₂ 3.718 199.2 TiO ₂ 4.905 237.1 Y ₃ Al ₅ O ₁₂ 2.288 111.9 SrTiO ₃ 4.173 218.7 BaTiO ₃ 4.263 220.7 [11] LiTaO ₃ 3.485 165.9 [11] LiTaO ₃ 3.485 165.9 [11] KTao ₆₅ Nb _{0.35} O ₃ 3.793 201.4 MgAl ₂ O ₄ MgAl ₂ O ₄ 1.926 102.7 ZnWO ₄ 3.485 166.5 Ba ₂ NaNb ₅ O ₁₅ 3.942 200.7 [5] [5] ThO ₂ 3.276 132.6 Zr _{0.869} Y _{0.131} O _{1.934} 3.447 139.7 27.38.4H ₆₁₁ Y _{0.009} O _{1.95} 3.495 139.4 [5] Hf _{0.951} Y _{0.150} O _{1.95} 3.282 130.0 137.6 [5]	$Tb_2(MoO_4)_3$	2.272	153.4			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Оксидные кристал	ллы с $N_{cat} = 6$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MgO	1.947	109.9			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CaO	2.283	125.5			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Al_2O_3	2.052	92.7			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TeO ₂	3.718	199.2			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TiO ₂	4.905	237.1			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Y ₃ Al ₅ O ₁₂	2.288	111.9			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SrTiO ₃	4.173	218.7			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	BaTiO ₃	4.263	220.7	[11]		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	LiTaO ₃	3.485	165.9			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	LiNbO ₃	3.895	186.8			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	KTaO ₃	3.646	191.1			
MgAl ₂ O ₄ 1.926102.7ZnWO ₄ 3.485166.5Ba ₂ NaNb ₅ O ₁₅ 3.942200.7Оксидные кристаллы с $N_{cat} = 8$ ТhO ₂ 3.276132.63.285118.4Zr _{0.869} Y _{0.131} O _{1.934} 3.447Zr _{0.894} Hf _{0.11} Y _{0.095} O _{1.95} 3.495Hf _{0.904} Y _{0.096} O _{1.952} 3.282Hf _{0.85} Y _{0.15} O _{1.955} 3.197127.6127.6	KTa _{0.65} Nb _{0.35} O ₃	3.793	201.4			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$MgAl_2O_4$	1.926	102.7			
Ba ₂ NaNb ₅ O ₁₅ 3.942 200.7 Оксидные кристаллы с $N_{cat} = 8$ ThO ₂ 3.276 132.6 Zr _{0.869} Y _{0.131} O _{1.934} 3.447 139.7 Zr _{0.894} Hf _{0.11} Y _{0.095} O _{1.95} 3.495 139.4 Hf _{0.904} Y _{0.096} O _{1.952} 3.282 130.0 Hf _{0.85} Y _{0.15} O _{1.925} 3.197 127.6	$ZnWO_4$	3.485	166.5			
Оксидные кристаллы с $N_{cat} = 8$ ThO2 3.276 132.6 3.285 118.4 Zr_{0.869}Y_{0.131}O_{1.934} 3.447 139.7 Zr_{0.894}Hf_{0.11}Y_{0.095}O_{1.95} 3.495 139.4 Hf_{0.904}Y_{0.096}O_{1.952} 3.282 130.0 Hf_{0.85}Y_{0.15}O_{1.925} 3.197 127.6	$Ba_2NaNb_5O_{15}$	3.942	200.7			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Оксидные кристаллы с $N_{cat} = 8$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ThO ₂	3.276	132.6			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		3.285	118.4			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Zr_{0.869}Y_{0.131}O_{1.934}$	3.447	139.7	[5]		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$Zr_{0.894}Hf_{0.11}Y_{0.095}O_{1.95}$	3.495	139.4			
Hf _{0.85} Y _{0.15} O _{1.925} 3.197 127.6	$Hf_{0.904}Y_{0.096}O_{1.952}$	3.282	130.0			
	$Hf_{0.85}Y_{0.15}O_{1.925}$	3.197	127.6			

Таблица 2. Параметры дисперсионных кривых экспериментальных показателей преломления $n(\lambda)$ для оксидных кристаллов

преломления, поскольку показатели преломления n_e и n_o различаются незначительно ($\Delta n = 0.01 - 0.03$ [4]).

В [4,6,12,13] имеются экспериментальные данные по дисперсии показателей преломления для семи кристаллов семейства лангасита, в [1] для пятнадцати кристаллов они рассчитаны методом молекулярной рефракции. Все кристаллы обладают слабой дисперсионной зависимостью показателей преломления $n(\lambda)$. Их значения параметров A_0 и λ_0 для обыкновенного показателя n_o приведены в табл. 1.

На рис. 1 показаны зависимость экспериментальных параметров A_0 от λ_0 для кристаллов со структурой лангасита и теоретические зависимости $A_0 = K\lambda_0$ при КЧ катионов $N_{cat} = 4$ (позиции 3f и 2d), $N_{cat} = 6$ (позиции 1a) и $N_{cat} = 8$ (позиции 3e). На рис. 2 показаны аналогичные зависимости для рассчитанных методом молекулярной рефракции параметров A_0 от λ_0 кристаллов со структурой лангасита. Для сравнения на рис. 1 и 2 также приведены экспериментальные данные для трех групп оксидных кристаллов с известными КЧ катионов $N_{cat} = 4$, 6 и 8 [5,11], для которых значения A_0 и λ_0 нами были рассчитаны по приведенным в [5,11] значениям энергий E_0 и E_d (табл. 2). Можно видеть, что как экспериментальные (рис. 1), так и рассчитанные рефрактометрические данные (рис. 2) кристаллов семейства лангасита сильно отклоняются от теоретических зависимостей $A_0 = f(\lambda_0)$ при $N_{cat} = 4$ и 8, и близки к теоретической зависимости при $N_{cat} = 6$.

На рис. З приведены общая зависимость экспериментальных и рассчитанных параметров A_0 от λ_0 для кристаллов со структурой лангасита и теоретическая зависимости $A_0 = K\lambda_0$ при КЧ катионов $N_{cat} = 6$ в границах изменения параметра $\beta = 0.26 \pm 0.04$ eV. Видно, что для некоторых лангаситовых кристаллов наблюдается отклонение вниз параметров A_0 , λ_0 от теоретической зависимости $N_{cat} = 6$.

Это может быть связано со следующими причинами. Во-первых, наиболее вероятно, что корреляционная

Рис. 3. Корреляция между параметрами экспериментальных (наклонные кресты) и расчетных (прямые кресты) кривых $n(\lambda)$ для кристаллов семейства лангасита: прямая линия — расчет по (6) при $N_{cat} = 6$ и $\beta = 0.26$ eV, штриховые линии границы расчета при $\beta = 0.26 \pm 0.04$ eV.

Рис. 4. Корреляция между параметрами экспериментальных (наклонные кресты) и расчетных (прямые кресты) дисперсионных кривых $n(\lambda)$ для кристаллов семейства лангасита: прямая линия — расчет по (6) при $N_{cat} = 5.55$ и $\beta = 0.26$ eV.

зависимость соответствует среднему значению для КЧ катионов с учетом их весовых множителей в структуре лангасита $A_3BC_3D_2O_{14}$ (рис. 4)

$$N_{cat} = (3N_A + N_B + 3N_C + 2N_D)/9 = 5.55.$$

Во-вторых, возможно необходимо учитывать ковалентный вклад в химическую связь в лангаситах, для которых наблюдается отклонение от теоретической зависимости $N_{cat} = 6.$

5. Заключение

Оксиды семейства лангасита $A_3BC_3D_2O_{14}$ отличаются высокой степенью ионности химической связи и высокой "чувствительностью" их оптических свойств к КЧ катионов. Показано, что для оптических кристаллов семейства лангасита взаимосвязь коэффициентов A_0 и λ_0 из дисперсионных зависимостей $n(\lambda)$ определяется средним значением КЧ катионов $N_{cat} = 5.55$. Полученная корреляция подтверждает применимость метода молекулярной рефракции (ионных рефракций оксидов) для расчета показателей преломления лангаситовых кристаллов.

Благодарности

Автор выражает благодарность А.Ф. Константиновой и Т.Г. Головиной за просмотр статьи и сделанные замечания.

Финансирование работы

Работа выполнена при поддержке Министерства науки и высшего образования в рамках выполнения работ по Государственному заданию ФНИЦ "Кристаллография и фотоника" РАН.

Список литературы

- [1] А.Ф. Константинова, Т.Г. Головина, Б.В. Набатов, А.П. Дудка, Б.В. Милль. Кристаллография **60**, 1950 (2015).
- [2] С.С. Бацанов. Структурная рефрактометрия. Высш. шк., М. (1976). 304 с.
- [3] Н.И. Сорокин. Неорган. материалы 55, 80 (2019).
- [4] О.А. Батурина, Б.Н. Гречушников, А.А. Каминский, А.Ф. Константинова, А.А. Маркосян, Б.В. Милль, Г.Г. Ходжабадян. Кристаллография 32, 406 (1987).
- [5] R.D. Shannon, R.C. Shannon, O. Medenlach, R.X. Fischer. J. Phys. Chem. Ref. Data. 31, 931 (2002).
- [6] А.В. Буташин, Л.Е. Ли, А.Ф. Константинова, И.А. Гудим. Кристаллография 49, 524 (2004).
- [7] Б.В. Милль, А.В. Буташин, А.М. Эллерн, А.А. Майер. Изв. АН СССР. Неорган. материалы 17, 1648 (1981).
- [8] Е.Л. Белоконева, Н.В. Белов. ДАН СССР 260, 1363 (1981).
- [9] А.П. Дудка. Кристаллография 62, 374 (2017).
- [10] S.H. Wemple, M. Di Domenico. Phys. Rev. Lett. 23, 1156 (1969.)
- [11] S.H. Wemple, M. Di Domenico. Phys. Rev. B. 3, 1338 (1971).
- [12] О.А. Бузанов, Е.В. Забелина, Н.С. Козлова. Кристаллография 52, 690 (2007).
- [13] J. Stade, L. Bohate, M. Hengst. Cryst. Res. Technol. 10, 1113 (2002).

Редактор Ю.Э. Китаев