08,04

Парамагнитные центры V²⁺ в иттрий-алюминиевом гранате

© В.А. Важенин¹, А.П. Потапов¹, Г.Р. Асатрян², М.Ю. Артёмов¹

 ¹ Уральский федеральный университет (Институт естественных наук и математики), Екатеринбург, Россия
² Физико-технический институт им. А.Ф. Иоффе, Санкт-Петербург, Россия
E-mail: Vladimir.Vazhenin@urfu.ru
Поступила в Редакцию 16 июня 2020 г.

Поступила в Редакцию то июня 2020 г. В окончательной редакции 16 июня 2020 г. Принята к публикации 24 июня 2020 г.

> Исследование спектра ЭПР-кристаллов $Y_3Al_5O_{12}$: V позволило определить параметры тонкой и сверхтонкой структуры тригональных центров V²⁺, обнаружено существование триклинных центров V²⁺, возникших в результате ассоциации V²⁺ с дефектами, понижающими симметрию.

Ключевые слова: гранат, примесные ионы, парамагнитный резонанс.

DOI: 10.21883/FTT.2020.11.50066.128

1. Введение

Кристаллы иттрий-алюминиевого граната $Y_3Al_5O_{12}$ (YAG) с примесью ионов V^{3+} активно применяются в лазерной технике, в частности в качестве пассивных затворов для лазеров ближнего инфракрасного диапазона и композитных лазерных элементов для твердотельных лазеров. Фототропные свойства этих кристаллов обусловлены энергетической структурой и релаксационными характеристиками ионов V^{3+} , заместивших Al^{3+} и находящихся в тетраэдрически координированном кислородном окружении (группа точечной симметрии S_4).

Ионы ванадия в зарядовом состоянии V^{2+} , заместившие в YAG октаэдрические позиции Al^{3+} с симметрией C_{3i} , были обнаружены в работах [1,2]. Авторы [1] в Х-диапазоне наблюдали ЭПР-сигналы четырех магнитно неэквивалентных центров V^{2+} с хорошо разрешенной сверхтонкой структурой (СТС) в ориентациях **В** || C_3 , C_4 , C_2 (**B** — индукция магнитного поля) и, не приводя значений параметров тонкой структуры и СТС, качественно их интерпретировали.

В работе [2] проведены исследования ЭПР-спектра YAG: V²⁺ в X- и Q-диапазонах, а также на перестраиваемом спектрометре в области частот 22–70 GHz. Были определены величины g-фактора, расщепления в нулевом магнитном поле (РНП) и параметров сверхтонкого взаимодействия (СТВ) тригональных центров V²⁺. Наблюдаемая асимметрия линий ЭПР-перехода $-1/2 \leftrightarrow 1/2$ при **B** || C₃ объяснялась разбросом величины ромбического параметра вблизи его нулевого значения. Природа ромбического искажения не обсуждалась [2].

В настоящей работе исследована симметрия и структура парамагнитных центров V^{2+} в кристаллах иттрийалюминиевого граната.

2. Образцы и методика измерений

Монокристаллы YAG: V^{2+} выращивались в Институте физических исследований АН Арм. ССР (Аштарак) методом вертикальной направленной кристаллизации из расплава в молибденовых контейнерах. С целью получения в кристалле ионов V^{2+} в расплав вводились дополнительные четырехвалентные примеси, в виде SiO₂. Концентрация ионов ванадия составляла 0.03 at.% в шихте.

Измерения спектров ЭПР проводились на спектрометре Х-диапазона EMX Plus Bruker при комнатной температуре в полях до 1.5 Т. Образцы находились во фторопластовом бочонке, обеспечивающем вращение кристалла в вертикальной плоскости и закрепленном на штанге штатного одноосного автоматического гониометра. Таким образом, можно было получить на образце любую ориентацию магнитного поля.

3. Результаты эксперимента

Как и в работах [1,2] в ЭПР-спектре исследованных образцов наблюдалось четыре магнитно неэквивалентных центра V²⁺ (электронный спин S = 3/2), главные оси Z которых совпадают с тригональными осями кристалла. Восьмикомпонентная сверхтонкая структура СТС электронных переходов обусловлена взаимодействием с ядрами ⁵¹V (ядерный спин I = 7/2, естественная распространенность 99.76%). В кубическом кристалле YAG (пространственная группа Ia3d (O_h^{10})) ионы Al³⁺ занимают 8 октаэдрических позиций (локальная симметрии C_{3i}) и 6 тетраэдрических (группа симметрии S₄) [3]. Для центров со спином S = 3/2 в этих позициях магнитные кратности будут 4 для октаэдра и 3 для тетраэдра. Ионы Y³⁺ находятся в кислородных скрученных вокруг оси C₄ кубах и имеют симметрию D₂. Таким образом, очевидно, что ионы ванадия замещают ионы A1³⁺ в октаэдрически координированных позициях кристаллической решетки. Поскольку зарядовые состояния примесного иона и матричного алюминия не совпадают возможна локальная зарядовая компенсация.

На рис. 1 и 2 приведены спектры ЭПР YAG: V^{2+} в ориентациях **В** || C_3 , C_2 , C_4 . Самые интенсивные сигналы

Рис. 1. ЭПР-спектры (первая производная спектра поглощения) ионов V^{2+} в ориентациях **В** || C₃, C₂, C₄ на частоте 9847 МНz. Номера уровней энергии снизу вверх. Интенсивность высокополевого перехода при **В** || C₃ (*a*) увеличена в 5 раз. Стрелками показаны положения переходов гипотетических триклинных центров с четным изотопом.

Рис. 2. Спектр ЭПР (вторая производная спектра поглощения) кристалла YAG: V^{2+} при **B** || C₃ на частоте 9847 MHz. Стрелками (нижними наклоненными и вертикальными) показаны положения переходов тригональных и триклинных центров V^{2+} соответственно. Верхними стрелками помечены сигналы Cr^{3+} и Mo³⁺.

внутри СТС ванадия во всех ориентациях магнитного поля принадлежат переходам тригонального центра Мо³⁺ [4-6], возникшего в результате взаимодействия расплава с молибденовым контейнером. Кроме того, при **В** || C₃ (рис. 2) рядом с Мо³⁺ наблюдается слабый сигнал тригонального центра Cr³⁺ [7], вошедшего в кристалл как неконтролируемая примесь. Как и в работе [2] сверхтонкие компоненты центров V²⁺ демонстрируют сильную асимметрию (рис. 2). На приведенных спектрах видно, что переход $1 \leftrightarrow 2 (-1/2 \leftrightarrow +1/2 в$ обозначениях [1,2]) гипотетического четного изотопа иона ванадия, детектируемый при **В** \parallel C₃ вблизи $g \approx 2$, перемещается при **В** \perp C₃ в район $g_{\text{eff}} \approx 4$. Такое поведение g-фактора свидетельствует о том, что исследуемый центр имеет электронный спин S = 3/2 и для него выполняется (как и для центра Mo³⁺) приближение слабого магнитного поля (микроволновая частота $\nu < PH\Pi$).

Спектр тригонального центра V²⁺ можно описать спиновым гамильтонианом вида [8]:

$$H_{\rm sp} = 1/3 \cdot b_{20}O_{20} + \beta(\mathbf{BgS}) + (\mathbf{SAI}) + 1/3 \cdot Q \cdot O_{20}(I) - g_n \beta_n(\mathbf{BI}),$$
(1)

где **g** — *g*-тензор, β — магнетон Бора, O_{20} — спиновый оператор Стивенса, b_{20} — параметр тонкой структуры, **I** и $O_{20}(I)$ — ядерные спиновые операторы Стивенса, **A** — тензор сверхтонкого взаимодействия, Q — параметр квадрупольного взаимодействия, g_n — ядерный *g*-фактор, β_n — ядерный магнетон.

Следует заметить, что ввиду большой величины и явной неэквидистантности СТС (рис. 2), задача оптимизации параметров (1) не может быть поделена на этапы определения тонких, а затем сверхтонких констант. Кроме того, отсутствие в экспериментальном спектре переходов с СТС из 8 интенсивных компонент, относящихся к внутридублетному переходу 3-4 и междублетному переходу 2-3 предопределяет большую ошибку в параметре b_{20} , так как положения компонент СТС внутридублетного перехода 1-2 определяет величину РНП только косвенно.

Использование в fitting процедуре положений наиболее интенсивных компонент СТС пяти электронных переходов (два при **B** || C₃, два при **B** || C₂, один при **B** || C₄) и ориентационного поведения СТС компонент перехода 1 \leftrightarrow 2 в диапазоне полярных углов $\theta = 0-19^{\circ}$, а также диагонализации матрицы энергии 32 порядка ((2S + 1)(2I + 1)) привели к следующим значениям параметров (1) в системе координат **Z** || C₃:

$$g_{\parallel} = 1.985, \quad g_{\perp} = 1.975, \quad |b_{20}| = 10545 \,\mathrm{MHz},$$

$$A_z = 234 \text{ MHz}, \quad A_\perp = 226 \text{ MHz},$$

со среднеквадратичным отклонением $F = 17 \,\mathrm{MHz}$ по 66 экспериментальным точкам. Небольшое число экспериментальных точек обусловлено сложностью отнесения компонент СТС соответствующим электронноядерным подуровням в полярной угловой зависимости вблизи С₃. При малых углах (до $\theta = 7^{\circ}$) высокополевые компоненты попадают в область пересечения электронных состояний +1/2 и -3/2, при больших — имеет место расщепление средних компонент на большое число соизмеримых по интенсивности составляющих, обусловленное появлением в СТС запрещенных переходов (электронных переходов с изменением проекции ядерного спина). Сравнение полученных величин с результатами [1,2] показывает существенное различие в величинах некоторых констант, при этом надо учитывать, что в работе [1] значения b_{20} и РНП перепутаны.

4. Обсуждение результатов

На рис. З приведены электронные уровни энергии и только наблюдаемые переходы (рис. 1, 2) центров V²⁺ в ориентациях **B** || C₃, C₂, рассчитанные с параметрами (2), но без учета СТС. В районе пересечения уровней -3/2, +1/2 большинство электронно-ядерных состояний расталкивается за счет сверхтонкого взаимодействия, что может приводить к искажению СТС. Интенсивности переходов 3–4 в ориентациях $\theta = 0^{\circ}$, $\theta = 70.5^{\circ}$ и $\theta = 90^{\circ}$ согласно расчетам крайне малы, поэтому они и не наблюдаются (рис. 1).

Расчет с приведенными выше параметрами СТС переходов V²⁺ в ориентациях **B** || C₃, C₄, C₂ показывает, что между интенсивными компонентами должны быть дублеты более слабых сигналов, обусловленные запрещенными переходами. Наибольшую интенсивность, соизмеримую с интенсивностью 8 основных компонент СТС, указанные дублеты имеют при **B** \perp C₂ (для $\theta = 35.26^{\circ}$). Экспериментальная и расчетная СТС этого перехода показаны на рис. 4. На центральную часть структуры, к сожалению, накладывается сигнал тригонального центра Mo³⁺, но тем не менее хорошо видна корреляция в интенсивностях и положениях дублетов

Рис. 3. Уровни энергии и наблюдаемые переходы центров V²⁺ в ориентациях: $a - \mathbf{B} \parallel C_3$, сплошная кривая — полярный угол $\theta = 0^\circ$, пунктир — $\theta = 70.5^\circ$; $b - \mathbf{B} \parallel C_2$, сплошная кривая — $\theta = 35.2^\circ$, пунктир — $\theta = 90^\circ$. Частота 9847 MHz.

в экспериментальном и расчетном спектрах. Надежная идентификация запрещенных переходов дает основания для определения параметра квадрупольного взаимодействия, а хорошее совпадение положений всех расчетных и наблюдаемых компонент на рис. 4 свидетельствует о его небольшой (относительно константы A) величине. С добавлением в fitting процедуру положений запрещенных переходов из ориентации $\mathbf{B} \parallel C_2$ (рис. 4) и дополнительно идентифицированных (в приближении малой величины квадрупольного взаимодействия) компонент СТС из полярной угловой зависимости вблизи C_3 по 101 экспериментальным точкам для параметров гамильтониана (1) получено

$$g_{\parallel} = 1.985(5), \quad g_{\perp} = 1.975(5),$$

 $b_{20}| = 10500(300) \text{ MHz}, \quad A_z = 236(7) \text{ MHz},$
 $A_{\perp} = 226(4) \text{ MHz}, \quad Q = 3(5) \text{ MHz},$ (2)

при среднеквадратичном отклонении F = 18 MHz. Значение ядерного g-фактора в расчетах использовалось

Рис. 4. Экспериментальная и расчетная СТС перехода $1 \leftrightarrow 2$ при **B** \parallel C₂. *a*, *b* — 1-я и 2-я производные спектра поглощения соответственно, *c* — расчет.

табличное. Частичным оправданием такой величины F служит достаточно большая ширина компонент СТС ионов V²⁺ в YAG (1.5–2.0 mT) и сложности с настрой-кой необходимых ориентаций магнитного поля.

Однако расчет с полученными параметрами (2) для высокополевого междублетного перехода при В || С3 дает восемь одинаковых компонент СТС (рис. 5, b), что совсем не согласуется с экспериментом (рис. 1, a). Аналогичное несоответствие результата расчета (рис. 6, b) эксперименту наблюдается и для перехода 3 \leftrightarrow 4 при $\theta = 90^{\circ}$ (рис. 1, *b*). Кроме того, в эксперименте интенсивные октеты компонент СТС, использованные в fitting процедуре, сопровождаются не идентифицированными сигналами (например, см. рис. 1, c). И наконец, на рис. 2 видно, что восьмерку интенсивных компонент СТС перехода 1 \leftrightarrow 2 ($-1/2 \leftrightarrow +1/2$) сопровождает октет слабых сигналов, сдвинутый на $\approx 1 \, \mathrm{mT}$ в высокие поля. Таким образом, очевидно, что описать наблюдаемый спектр, предполагая существование только тригонального центра, невозможно.

Можно предположить, что наряду с тригональным центром V^{2+} (C_{3i}) в кристалле существуют триклинные центры, возникающие в результате локальной зарядовой компенсации (например, за счет кремния, см. разд. 2), либо эффектов несвойственных замещений (antisite defects) [9]. Ближайшие катионные координационные сферы, образованные ионами Y^{3+} , Al_{oct} и Al_{tetr} вокруг V^{2+} , локализованного в позиции октаэдрического алюминия, представляют собой октаэдры, искаженные вдоль оси C_3 . Очевидно, что при малой концентрации

дефектов (как antisite, так и кремния) замещается только один из ближайших катионных узлов этих октаэдров.

Обычно кремний (ионный радиус 0.4 Å) в оксидных кристаллах образует ковалентно связанные комплексы $(SiO_4)^{4-}$, в которых кремний окружен тетраэдром кислородов. Следовательно, в гранате кремний должен находиться на месте Al_{tetr} . Ассоциация V^{2+} с такими дефектами порождает шесть одинаковых, но различно

Рис. 5. Экспериментальная и расчетная формы СТС перехода $1 \leftrightarrow 2 \quad (-3/2 \leftrightarrow -1/2)$ при В || С₃. *а* — эксперимент, *b* — *b*₂₀ = 10500 MHz, *b*₂₁ = 0, *c* — *b*₂₀ = 10500 MHz, *b*₂₁ = 2500 MHz.

Рис. 6. Экспериментальная и расчетная формы СТС перехода $2 \leftrightarrow 3$ при $\theta = 35.2^{\circ}$ и $3 \leftrightarrow 4$ при $\theta = 90^{\circ}$ (рис. 1, *b*). *а* — эксперимент, *b* — *b*₂₀ = 10500 MHz, *b*₂₁ = 0, *c* — *b*₂₀ = 10500 MHz, *b*₂₁ = 2500 MHz.

ориентированных центров с локальной симметрией C₁. Поскольку три центра из указанной шестерки связаны операцией инверсии с тремя другими в ЭПР будет наблюдаться только три магнитнонеэквивалентных спектра. Так как концентрация тригональных центров значительно больше концентрации димерных, можно сказать, что компенсация заряда центров ванадия, в основном, осуществляется нелокально.

При существовании перестановки матричных ионов [9] в результате ассоциации ионов V²⁺ со следующими дефектами: $Y^{3+} \rightarrow Al_{oct}, Al^{3+} \rightarrow Y^{3+}$, также возможны два физически не эквивалентных димерных центра. И, следовательно, в эксперименте можно было ожидать еще шесть магнитнонеэквивалентных спектров. Однако расчеты в теории функционала плотности из первых принципов [10,11] показывают, что замещение ионами иттрия октаэдрических узлов алюминия YA1 является наиболее выгодным из всех возможных механизмов размещения избыточных катионов иттрия в структуре YAG. Таким образом, по-видимому, причиной возникновения триклинных центров является наличие в окружении ионов V^{2+} антисайт дефектов типа $Y^{3+} \to Al_{oct}.$

Для описания триклинных центров в гамильтониан (1) надо добавить слагаемые вида

$$b_{21}O_{21} + b_{22}O_{22}, \tag{3}$$

где *О*_{2*m*} — косинусоидальные операторы Стивенса [8].

Наблюдаемый сдвиг триклинного октета относительно тригонального (рис. 2) можно объяснить действием параметров $|b_{21}| \approx 2500$ MHz (сдвиг по полю вниз) и $|b_{22}| \approx 250$ MHz (сдвиг вверх). Небольшие вариации указанных параметров позволяют получить экспериментальную разницу в положениях двух восьмикомпонентных спектров (рис. 2).

Появление в (1) слагаемого с b_{22} , указанной величины, практически не влияет на вид СТС высокополевых переходов при **B** || C₃, C₂, существенное влияние параметра b_{21} на форму указанных переходов приведено на рис. 5, *c*, 6, *c*. Как видно, изменение интенсивности основных СТС компонент и появление большого количества запрещенных электронно-ядерных переходов (см. рис. 5, *c*, 6, *c*) делает расчетный спектр качественно близким к экспериментальному. Согласно расчетам, возникают сателлиты и у восьми сверхтонких компонент переходов (при **B** || C₃, C₂ и C₄), использованных в процедуре оптимизации.

При этих расчетах не учитывалось существование спектров от еще двух триклинных центров, повернутых на углы $\varphi = \pm 2\pi/3$. Для иллюстрации вклада этого эффекта стрелками на рис. 1 показаны положения переходов трех триклинных центров с $|b_{21}| \approx 2500 \text{ MHz}$ гипотетического четного изотопа иона ванадия.

Таким образом, предположение о существовании триклинного центра V^{2+} с примерными (оцененными) параметрами тонкой структуры позволяет качественно

объяснить экспериментальный спектр во всех ориентациях магнитного поля. В пользу существования иных триклинных центров (с меньшими значениями b_{21} и b_{22}) говорит наблюдаемая асимметрия формы линии тригонального центра V²⁺ (рис. 2). Реализация нескольких физически не эквивалентных димерных центров существенно усложнит наблюдаемый спектр и уменьшит степень разрешения сверхтонких компонент.

Для количественного описания этих центров (при произвольной ориентации оси X в плоскости перпендикулярной Z || C₃) следует определить величины всех параметров (1), (3), а кроме того и слагаемых вида $c_{21}\Omega_{21} + c_{22}\Omega_{22}$, где Ω_{2m} — синусоидальные операторы Стивенса, c_{2m} — параметры тонкой структуры [8]. Для решения указанной задачи необходима идентификация достаточно большого количества электронно-ядерных переходов существующих в кристалле триклинных центров, что при экспериментальном разрешении спектра не представляется возможным (рис. 5, *c*, 6, *c*).

5. Заключение

В исследованных кристаллах иттрий-алюминиевого граната YAG: V спектры ЭПР представляют наложение электронно-ядерных переходов интенсивного тригонального центра V²⁺ и более слабых триклинных димерных центров (возможно нескольких типов). Наиболее распространенными триклинными центрами скорее всего являются ассоциаты V²⁺ с дефектами перестановки типа $Y^{3+} \rightarrow Al_{oct}$ или комплексами (SiO₄)⁴⁻.

Благодарности

Авторы выражают благодарность А.В. Фокину за помощь в вычислениях.

Финансирование работы

В.А. Важенин., А.П. Потапов и М.Ю. Артёмов благодарны Министерству науки и образования РФ за финансовую поддержку работы (FEUZ-2020-0054).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- И.И. Карпов, Б.Н. Гречушников, В.Ф. Корягин, А.М. Кеворков, Фам За Нгы. ДАН СССР. Физика 244, 74 (1979).
- [2] Г.В. Абагян, Г.Р. Асатрян, А.А. Мирзаханян, Л.А. Оганесян, А.К. Петросян. ФТТ **31**, 281 (1989).
- [3] М.Л. Мейльман, М.И. Самойлович. Введение в спектроскопию ЭПР активированных монокристаллов. Атомиздат, М. (1977). С. 30.
- [4] Kh.S. Bagdasarov, V.V. Bershov, V.O. Martirosyan, M.L. Meilman. Phys. Status Solidi B 46, 745 (1971).

- [5] Kh.S. Bagdasarov, Yu.N. Dubrov, I.N. Marov, V.O. Martirosyan, M.L. Meilman. Phys. Status Solidi B 56, K65 (1973).
- [6] Г.С. Шакуров, Г.Р. Асатрян, Л.В. Мингалиева, А.Г. Петросян, К.Л. Ованесян. ФТТ **60**, 2002 (2018).
- [7] Г.И. Ветрогон, В.И. Даниленко, В.Я. Кабанченко, В.В. Осико, А.М. Прохоров, А.Н. Терентьевский, М.И. Тимошечкин. ФТТ 22, 3216 (1980).
- [8] С.А. Альтшулер, Б.М. Козырев. Электронный парамагнитный резонанс соединений элементов промежуточных групп. Наука, М. (1972). С. 121.
- [9] Г.Р. Асатрян, Д.Д. Крамущенко, Ю.А. Успенская, П.Г. Баранов, А.Г. Петросян. ФТТ 56, 1106 (2014).
- [10] Bo Liu, Mu Gu, Xiaolin Liu, Shiming Huang, Chen Ni. Appl. Phys. Lett. 94, 121910 (2009).
- [11] Ana Belen Munoz-Garcia, Emilio Artacho, Luis Seijo. Phys. Rev. B 80, 014105 (2009).

Редактор Е.Ю. Флегонтова