03,04,19

Синтез, структура и теплофизические свойства апатитов $Pb_{10-x}Bi_x(GeO_4)_{2+x}VO_4)_{4-x}$ (x = 0-3) в области 350-950 К

© Л.Т. Денисова¹, М.С. Молокеев^{2,3}, В.М. Денисов¹, Е.О. Голубева¹, Н.А. Галиахметова¹

¹ Институт металлургии и материаловедения, Сибирский федеральный университет,

Красноярск, Россия

² Институт инженерной физики и радиоэлектроники, Сибирский федеральный университет,

Красноярск, Россия

³ Институт физики им. Л.В. Киренского ФИЦ КНЦ СО РАН,

Красноярск, Россия

E-mail: antluba@mail.ru

Поступила в Редакцию 4 июля 2020 г. В окончательной редакции 4 июля 2020 г. Принята к публикации 8 июля 2020 г.

Из исходных оксидов PbO, Bi₂O₃, GeO₂ и V₂O₅ твердофазным синтезом в интервале температур 773–1073 К впервые получены соединения $Pb_{10-x}Bi_x(GeO_4)_{2+x}(VO_4)_{4-x}$ (x = 0-3) со структурой апатита. С использованием рентгеноструктурного анализа определена их структура. Методом дифференциальной сканирующей калориметрии исследовано влияние температуры на теплоемкость синтезированных соединений. По экспериментальным данным $C_p = f(T)$ рассчитаны термодинамические свойства.

Ключевые слова: ванадатогерманаты свинца-висмута, апатиты, структура, высокотемпературная теплоем-кость, термодинамические свойства.

DOI: 10.21883/FTT.2020.11.50056.141

1. Введение

Соединений со структурой апатита M₁₀(ZO₄)₆X₂ (M = Ca, Ba, Pb, и др.; Z = P, As, V, Si, Ge и др.;X = OH, F, Cl, Br, J, O и др.) уже давно привлекают внимание исследователей и практиков [1-9]. Связано это с уникальными свойствами прикладного характера. Они используются в качестве биоматериалов, сенсоров, люминофоров, лазерных и флуоресцентных материалов, катализаторов [10-12]. Отличительной способностью соединений со структурой апатитов является способность их структурных единиц к замещению другими ионами. Так, например, замена свинца в апатите Pb₅(GeO₄)(VO₄)₂ на редкоземельные элементы позволяет получить соединения $Pb_{10-x}R_x(GeO_4)_{2+x}(VO_4)_{4-x}$ (R = P3Э, x = 0-3) с той же структурой [9,13]. Кристаллическая структура апатитов относится к гексагональной сингонии, пространственная группа Р6₃/*m* [7,11,14]. Для них характерно наличие двух структурно неэквивалентных позиций в катионной подрешетке (М1) и (M2). В связи с поиском новых материалов, обладающих такими свойствами, полагали, что замена свинца на ${\rm Bi}^{3+}$ в соединении ${\rm Pb}_5({\rm GeO}_4)({\rm VO}_4)_2$ позволит получить $Pb_{10-x}Bi_x(GeO_4)_{2+x}(VO_4)_{4-x}$ (x = 1-3) со структурой апатита. Такие соединения не получены, структура и их свойства не исследованы.

В настоящей работе представлены результаты синтеза, исследований структуры и теплофизических свойств соединений $Pb_{10-x}Bi_x(GeO_4)_{2+x}(VO_4)_{4-x}$ (x = 1-3).

2. Экспериментальная часть

Порошки соединений $Pb_{10-x}Bi_x(GeO_4)_{2+x}(VO_4)_{4-x}$ получали твердофазным синтезом из PbO, Bi₂O₃, V₂O₅ — ос.ч, GeO₂ — 99.999%. Для этого стехиометрические смеси предварительно прокаленных оксидов перетирали в агатовой ступке и прессовали в таблетки. Их обжигали на воздухе при температурах 773, 873, 973 и 1073 К по 10 h. Отметим, что образцы с x = 2, 3при последней температуре слегка подплавились. Для достижения полноты протекания твердофазной реакции после каждой температуре образцы перетирали и снова прессовали. Контроль фазового состава полученных образцов проводили с использованием рентгеноструктурного анализа. Порошковые рентгенограммы апатитов $Pb_{10-x}Bi_x(GeO_4)_{2+x}(VO_4)_{4-x}$ (x = 1-3) (для соединения $Pb_5(GeO_4)(VO_4)_2$ (x = 0) данные по структуре получены ранее [2]) при комнатной температуре получены на дифрактометре Bruker D8 ADVANCE (Си K_{α} -излучение) с использованием линейного детектора VANTEC. Шаг сканирования составлял 0.016°, а время экспозиции на каждый шаг 2 s. Уточнение Ритвельда проведено в программе ТОРАЅ 4.2 [15].

Измерение теплоемкости апатитов $Pb_{10-x}Bi_x(GeO_4)_{2+x}(VO_4)_{4-x}$ проводили на термоанализаторе STA 449 С Jupiter (NETZSCH, Германия). Методика экспериментов аналогична описанной в [16]. Ошибка экспериментов не превышала 2%.

Рис. 1. Кристаллическая структура $Pb_{10-x}Bi_x(GeO_4)_{2+x}(VO_4)_{4-x}$.

3. Результаты и обсуждение

Установлено, что кристаллическая структура $Pb_{10-x}Bi_x(GeO_4)_{2+x}(VO_4)_{4-x}$ (x = 1-3) изоструктурна соединению $Pb_{10}(GeO_4)_2(VO_4)_4$, структура которого установлена ранее [2,9,17]. Поэтому структура этого

x	1	2	3
Sp. Gr	$P6_3/m$	$P6_3/m$	$P6_3/m$
a, Å	10.08657(6)	10.0802(2)	10.0624(1)
<i>c</i> , Å	7.37010(6)	7.3512(2)	7.3154(1)
$V, \text{ Å}^3$	649.369(9)	646.88(3)	641.46(1)
$d, g/sm^3$	7.230	7.319	7.438
Z	1	1	1
2θ -interval, °	10-120	10-120	10 - 120
$R_p, \%$	5.63	6.03	6.46
$R_p, \%$	4.40	4.75	5.08
$R_{\rm exp},\%$	3.80	3.08	3.30
χ^2	1.48	1.96	1.96

Таблица 1. Основные параметры съемки и уточнения структуры кристаллов $Pb_{10-x}Bi_x(GeO_4)_{2+x}(VO_4)_{4-x}$

Примечание. а, b, c, β — параметры я чейки; V — объем ячейки; d — рассчитанная плотность; факторы недостоверности: R_{wp} — весовой профильный, R_p — профильный. R_{exp} — ожидаемый, R_B — интегральный; χ^2 — качество подгонки.

1.53

2.47

2.08

 $R_B,\%$

кристалла взята в качестве стартовой модели для уточнения. Для преобразования структуры в обе независимые позиции ионов свинца (Pb1) и (Pb2) поместили ионы Pb/Bi (рис. 1). Для единственной позиции Ge/V было рассчитано соотношение между

Рис. 2. Экспериментальный (1), расчетный (2) и разностный (3) профили рентгенограмм $Pb_{10-x}Bi_x(GeO_4)_{2+x}(VO_4)_{4-x}$ (x = 1 (a); 2 (b); 3 (c)) после уточнения Ритвельда; штрихи указывают расчетные положение рефлексов.

Атом	x	у	z	B _{iso}	Occ	
x = 1						
Pb1	1/3	2/3	0.0060(5)	1.45(7)	0.981(45)	
Bi1	1/3	2/3	0.0060(5)	1.45(7)	0.019(45)	
Pb2	0.25335(15)	0.0016(3)	0.25	1.37(7)	0.848(30)	
Bi2	0.25335(15)	0.0016(3)	0.25	1.37(7)	152(30)	
Ge	0.3989(4)	0.3821(4)	0.25	0.30(10)	1/2	
V	0.3989(4)	0.3821(4)	0.25	0.30(10)	1/2	
01	0.3036(18)	0.4802(18)	0.25	3.23)	1	
02	0.5897(17)	0.4934(16)	0.25	3.2(3)	1	
O3	0.3582(12)	0.2599(12)	0.0635(13)	3.2(3)	1	
x = 2						
Pb1	1/3	2/3	0.0065970	2.00(9)	0.60(12)	
Bi1	1/3	2/3	0.0065(7)	2.00(9)	0.40(12)	
Pb2	0.25458(19)	0.0030(3)	0.25	1.90(9)	0.90(12)	
Bi2	0.25458(19)	0.0030(3)	0.25	1.90(9)	0.10(12)	
Ge	0.3951(5)	0.3815(5)	0.25	0.44(12)	2/3	
V	0.3951(5)	0.3815(5)	0.25	0.44(12)	1/3	
01	0.303(2)	0.483(2)	0.25	4.3(4)	1	
02	0.5786(19)	0.5037(19)	0.25	4.3(4)	1	
O3	0.3528(14)	0.2590(14)	0.0631(17)	4.3(4)	1	
x = 3						
Pb1	1/3	2/3	0.0058(8)	2.13(10)	0.40(17)	
Bi1	1/3	2/3	0.0058(8)	2.13(10)	0.60(17)	
Pb2	0.2545(2)	0.0021(4)	0.25	1.68(10)	0.88(12)	
Bi2	0.2545(2)	0.0021(4)	0.25	1.68(10)	0.12(12)	
Ge	0.3973(6)	0.3846(6)	0.25	0.30(13)	5/6	
V	0.3973(6)	0.3846(6)	0.25	0.30(13)	1/6	
01	0.317(3)	0.500(3)	0.25	5.1(5)	1	
02	0.574(2)	0.499(2)	0.25	5.1(5)	1	
O3	0.3587(18)	0.2560(17)	0.069(2)	5.1(5)	1	

Таблица 2. Атомные координаты и изотропные тепловые параметры (Å) кристаллов $Pb_{10-x}Bi_x(GeO_4)_{2+x}(VO_4)_{4-x}$

Ge: V ионами, учитывая предложенную химическую формулу. В дальнейшем их заселенности были фиксированы в ходе уточнений. Тепловые параметры всех атомов уточнены в изотропном приближении. Уточнение шло стабильно и дало низкие величины R-факторов (табл. 1, рис. 2). Координаты атомов и основные длины связей представлены в табл. 2 и 3 соответственно.

Влияние замещения свинца висмут на в $Pb_{10-x}Bi_x(GeO_4)_{2+x}(VO_4)_{4-x}$ на параметры элементарной ячейки показано на рис. 3. Видно, что с увеличением концентрации висмута все параметры ячейки (a, c, V) уменьшаются, в то время как значение плотности — увеличивается. Уменьшение объема ячейки с ростом содержания висмута согласуется с меньшим ионным радиусом Bi³⁺ по сравнению с ионом Pb²⁺, и подтверждает тот факт, что предложенные химические формулы трех соединений близки к действительности.

На рис. 4 показано влияние температуры на теплоемкость апатитов $Pb_{10-x}Bi_x(GeO_4)_{2+x}(VO_4)_{4-x}$ (x = 1-3).

Рис. 3. Влияние состава апатитов $Pb_{10-x}Bi_x(GeO_4)_{2+x}(VO_4)_{4-x}$ на параметры их элементарной ячейки: a = b (1), c (2), d (3), V (4).

Рис. 4. Влияние температуры на молярную теплоемкость $Pb_{10-x}Bi_x(GeO_4)_{2+x}(VO_4)_{4-x}$, x = 0 (1), 1 (2), 2 (3), 3 (4).

Здесь же, для сравнения приведены данные для $Pb_{10}(GeO_4)_2(VO_4)_4$, полученные нами ранее [18]. Видно, что с ростом температуры значения C_P для всех исследованных составов апатитов закономерно увеличиваются, а на кривых $C_P = f(T)$ нет различных экстремумов. Это, по-видимому, может свидетельствовать о том, что у этих соединений в исследованной области температур нет полиморфных превращений. Кроме того, по мере роста содержания висмута значения теплоемкости апатитов $Pb_{10-x}Bi_x(GeO_4)_{2+x}(VO_4)_{4-x}$ так же увеличиваются (рис. 3).

Установлено, что температурные зависимости теплоемкости исследованных соединений описываются уравнением [19]:

$$C_p = a + bT + cT^{-2} + dT^2, (1)$$

которое лучше, чем уравнение Майера-Келли [20]:

$$C_p = a + bT + cT^{-2}$$
(2)

описывает экспериментальные значения теплоемкости. Отметим, что подобное наблюдалось и для апатита $Pb_8La_2(GeO_4)_4(VO_4)_2$ [21]. Такое поведение теплоемкости для $Pb_{10-x}Bi_x(GeO_4)_{2+x}(VO_4)_{4-x}$ при высоких температурах, по-видимому, связано с тем, что с приближением к температуре плавления теплоемкость твердых тел аномально увеличивается [22]. Так, например, по данным [1], температура плавления апатита $Pb_{10}(GeO_4)_2(VO_4)_4$ равна 1178 К. Нами установлено, что для $Pb_8Bi_2(GeO_4)_4(VO_4)_2$ и $Pb_7Bi_3(GeO_4)_5(VO_4)$ они близки и равны 1013 К.

Уравнение (1) для исследованных апатитов $Pb_{10-x}Bi_x(GeO_4)_{2+x}(VO_4)_{4-x}$ имеет следующий вид: x = 1:

$$C_p = (1024.5 \pm 22.92) - (189.6 \pm 49.2) \cdot 10^{-3}T$$
$$- (120.5 \pm 12.64) \cdot 10^5 T^{-2} + (24.77 \pm 2.83) \cdot 10^{-5}T^2,$$
(3)
$$r = 2$$

$$x = 2.$$

$$C_p = (1113.5 \pm 32.84) - (388.4 \pm 72.6) \cdot 10^{-3}T$$
$$- (161.0 \pm 17.31) \cdot 10^5 T^{-2} + (42.93 \pm 4.32) \cdot 10^{-5} T^2,$$
(4)

$$C_p = (1045.8 \pm 49.89) - (233.9 \pm 11.1) \cdot 10^{-3}T$$
$$- (125.2 \pm 26.06) \cdot 10^5 T^{-2} + (39.17 \pm 6.66) \cdot 10^{-5} T^2.$$
(5)

Коэффициенты корреляции для уравнений (3-5) равны соответственно 0.9986, 0.9986 и 0.9978. С использованием этих уравнений по известным термодинамическим соотношениям рассчитаны термодинамические функции исследованных апатитов. Эти результаты приведены в табл. 4 (для незамещенного апатита $Pb_{10}(GeO_4)_2(VO_4)_4$ такие данные получены нами ранее [18]).

x = 1					
(Pb1/Bi1)-O1	2.509(11)	(GeV)-O1	1.690(11)		
$(Pb1/Bi1)-O2^{i}$	2.833(11)	(Ge/V)-O2	1.674(11)		
$(Pb1/Bi1) - O3^{1}$	2.861(10)	(Ge/V) - O3	1.752(10)		
(Pb2/Bi2)-O1 ⁱⁱ	2.774(15)				
$(Pb2/Bi2)-O2^{iii}$	2.236(14)				
(Pb2/Bi2)-O3	2.653(10)				
$(Pb2/Bi2)-O3^{iv}$	2.535(10)				
x = 2					
(Pb1/Bi1) - O1	2.484(14)	(Ge/V) - O1	1.687(14)		
$(Pb1/Bi1) - O2^{i}$	2.969(13)	(Ge/V) - O2	1.631(14)		
$(Pb1/Bi1) - O3^{i}$	2.909(12)	(Ge/V) - O3	1.751(13)		
(Pb2/Bi2)-O1 ⁱⁱ	2.79(2)	~ /			
(Pb2/Bi2)-O2 ⁱⁱⁱ	2.167(17)				
(Pb2/Bi2)-O3	2.641(12)				
(Pb2/Bi2)-O3 ^{iv}	2.509(12)				
x = 3					
(Pb1/Bi1)-O1	2.402(16)	(GeV)-O1	1.709(18)		
$(Pb1/Bi1) - O2^{i}$	2.951(16)	(Ge/V)-O2	1.565(16)		
$(Pb1/Bi1) - O3^{i}$	2.846(15)	(Ge/V) - O3	1.752(15)		
(Pb2/Bi2)-O1 ⁱⁱ	2.92(3)	. ,			
(Pb2/Bi2)-O2 ⁱⁱⁱ	2.20(2)				
(Pb2/Bi2)-O3	2.587(15)				
(Pb2/Bi2)-O3 ^{iv}	2.566(15)				

Примечание. Элементы симметрии: (i) — x^{+1} , $-y^{+1}$, -z; (ii) — x + y, -x, -z + 1/2; (iii) — y + 1, x - y, -z + 1/2; (iv) — y, -x + y, -z.

Сравнить полученные данные с результатами других авторов не представлялось возможным вследствие их отсутствия. Тем не менее, это можно сделать с помощью аддитивного метода Неймана—Коппа [23–25]:

$$C_{p298}(j) = \sum_{i} C_{p298}(i) \tag{6}$$

где $C_{p298}(j)$ — молярная теплоемкость сложного оксидного соединения, $C_{p298}(i)$ — молярная теплоемкость *i*-го простого оксида, m_i — мольная доля соответствующего простого оксида. Установлено, что рассчитанные по уравнению (6) значения С_р для исследованных апатитов меньше экспериментальных значений на 4.2, 4.5 и 6.7% (для x = 1, 2 и 3 соответственно). По данным [22] положительные или отрицательные отклонения от аддитивного правила Неймана-Коппа связаны с изменениями в частотах колебаний атомов в сложном оксидном соединении по сравнению с простыми оксидами. Необходимые для расчетов по уравнению (6) значения $C_{p298}(i)$ для PbO, Bi₂O₃, GeO₂ и V₂O₅ взяты из работы [24]. Такие же отклонения от экспериментальных величин дает и инкрементный метод Кумока [26].

<i>Т</i> , К	$C_p,$ $J \mathrm{K}^{-1} \mathrm{mol}^{-1}$	$H^{\circ}(T) - H^{\circ}(350 \mathrm{K}),$ kJ mol ⁻¹	$S^{\circ}(T) - S^{\circ}(350 \mathrm{K}),$ J K ⁻¹ mol ⁻¹	$-\Delta G/T^*,$ J K ⁻¹ mol ⁻¹		
x = 1						
350	884.3	I –	—	—		
400	905.3	44.77	119.5	7.60		
450	920.2	90.43	227.1	26.12		
500	931.5	136.7	324.6	51.17		
550	940.9	183.5	413.9	80.14		
600	949.3	230.8	496.1	111.4		
650	957.2	278.5	572.4	144.0		
700	965.2	326.5	643.6	177.2		
750	973.4	375.0	710.5	210.5		
800	982.0	423.9	773.6	243.7		
850	991.2	473.2	773.6	243.7		
900	1000	523.0	890.3	309.2		
		x = 2	I	1		
250	905 1		I	1		
350	895.1	-	121.4	- 7.71		
400	921.3	43.40	121.4	7.71		
430	940.2	92.02	231.0	20.35		
550	954.9	139.4	422.5	52.05 81.62		
550	907.0	187.5	422.5	01.02		
650	9/9./	250.2	586 1	115.0		
030 700	991.9	203.4	560.1	140.9		
700	1003	353.4	720.0	101.0		
/ 30	1019	363.9	729.9	240.5		
850	1055	457.2	/90.1 850.2	249.5		
830	1050	489.5	010 7	203.3		
900	1008	542.5	919.7	517.2		
		x = 3				
350	910.7	-	-	-		
400	938.0	46.25	123.5	7.85		
450	959.7	93.70	235.2	27.00		
500	978.8	142.2	337.4	53.01		
550	996.8	191.6	431.5	83.20		
600	1014	241.8	519.0	83.20		
650	1033	293.0	600.9	150.1		
700	1053	345.2	678.2	185.1		
750	1073	398.3	751.5	220.4		
800	1095	452.5	821.5	255.8		
850	1119	507.9	888.5	291.1		
900	1144	564.4	953.2	326.1		

Таблица 4. Термодинамические свойства апатитов $Pb_{10-x}Bi_x(GeO_4)_{2+x}(VO_4)_{4-x}$ (x = 1-3)

Примечание. * — $\Delta G/T = [H^{\circ}(T) - H^{\circ}(350 \text{ K})]/T - [S^{\circ}(T) - S^{\circ}(350 \text{ K})]$

4. Заключение

Выполнен синтез оксидных соединений $Pb_{10-x}Bi_x(GeO_4)_{2+x}(VO_4)_{4-x}$ (x = 0-3) с апатитоподобной структурой. Впервые определена их кристаллическая структура. Методом дифференциальной сканирующей калориметрии измерены их высокотемпературные теплоемкости. Установлено, что в области 350–900 К температурные зависимости $C_p = f(T)$ описываются уравнением Сталла-Вестрама-Зинке. На основании экспериментальных данных рассчитаны термодинамические свойства сложных оксидов.

Благодарность

Авторы выражают благодарность Красноярскому региональному центру коллективного пользования ФИЦ КНЦ СО РАН.

Финансирование работы

Работа выполнена в рамках государственного задания на науку ФГАОУ ВО "Сибирский федеральный университет", номер проекта FSRZ-2020-0013.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] T. Yano, Y. Nabeta, A. Watanabe. Appl. Phys. Lett. 18, 570 (1971).
- [2] С.А. Иванов. Журн. структурн. химии 31, 4, 80 (1990).
- [3] M. Gospodinov. Cryst. Res. Thechnol. 25, 3, (K61) (1990).
- [4] M. Gospodinov, D. Petrova, P. Sveshtarov, V. Marinova. Mater. Res. Bull. 31, 8, 1001 (1996).
- [5] L. Kovács, A. Péter, M. Gospodiniv, R. Capelletti. Phys. Status Solidi C 2, 1, 689 (2005).
- [6] E. Chakroun-Ouadhour, R. Ternane, D. Ben Hassan-Chehimi, M. Trabelsi-Ayadi. Mater. Res. Bull. 43, 2451 (2008).
- [7] M. Pasero, A.R. Kampf, C. Ferraris, I.V. Pekov, J. Rakovan, T.J. White. Eur. J. Mineral. 22, 163 (2010).
- [8] F.X. Zhang, M. Lang, J.M. Zhang, Z.Q. Cheng, Z.X. Liu, J. Lian, R.C. Ewing. Phys. Rev. B. 85, 214116-1 (2012).
- [9] Л.Т. Денисова, Е.О. Голубева, Н.В. Белоусова, В.М. Денисов, Н.А. Галиахметова. ФТТ 61, 7, 1397 (2019).
- [10] С.В. Добрыднев, М.Ю. Молодцова. Изв. ТулГУ. Естеств. науки 1, 2, 212 (2014).
- [11] А.В. Игнатов, Г.М. Савинкова, Е.Г. Дидоренко, А.Ю. Талыкова, Е.И. Гетьман, Л.В. Пасечник. Вестн. Донецкого нац. ун-та. Сер. А 1, 152 (2014).
- [12] Т. Каназава. Неорганические фосфатные материалы. Наук. думка, Киев (1998). 298 с.
- [13] В.Д. Журавлев, Ю.А. Великодный. Журн. неорган. химии 54, 10, 1626 (2009).
- [14] В.К. Каржавин Термодинамические величины химических элементов. Примеры их практического применения. Апатиты: Изд-во Кольского науч. центра РАН. (2011). 160 с.
- [15] Bruker AXS TOPAS V4: General Profile and structure analysis software for powder diffraction data. User's Munual. Bruker AXS, Karsruhe, Germany (2008).
- [16] Л.Т. Денисова, Л.А. Иртюго, Ю.Ф. Каргин, В.В. Белецкий, В.М. Денисов. Неорган. материалы 53, 1, 71 (2017).
- [17] С.А. Иванов, В.Е. Заводник. Кристаллография 34, 4, 824 (1989).
- [18] Л.Т. Денисова, Ю.Ф. Каргин, Е.О. Голубева, Н.В. Белоусова, В.М. Денисов. Неорган. материалы 55, 2, 182 (2019).
- [19] Д. Сталл, Э. Вестрам, Г. Зинке. Химическая термодинамика органических соединений. Мир, М. (1971). 807 с.
- [20] C.G. Maier, K.K. Kelley. J. Am. Chem. Soc. 54, 5, 3243 (1932).
- [21] Л.Т. Денисова, А.Д. Изотов, Ю.Ф. Каргин, В.М. Денисов, Н.А. Галиахметова. ДАН **477**, *3*, 313 (2017).
- [22] Л.Ф. Резницкий. Калориметрия твердого тела (структурные, магнитные, электронные превращения). Изд-во МГУ, М. (1981). 184 с.
- [23] Г.К. Моисеев, Н.А. Ватолин, Л.А. Маршук, Н.И. Ильиных. Температурные зависимости приведенной энергии Гиббса некоторых неорганических веществ (альтернативный банк данных ACTPA. OWN). УрО РАН, Екатеринбург (1997). 230 с.

- [24] J. Leitner, P. Chuchvalec, D. Sedmidubsý, A. Strejc, P. Abrman. Thermochim. Acta 395, 27 (2003).
- [25] J. Laitner, P. Voñka, D. Sedmidubský, P. Svoboda. Thermochim. Acta 497, 7 (2010).
- [26] В.Н. Кумок. Прямые и обратные задачи химической термодинамики. Наука, Новосибирск (1987). С. 108–123.

Редактор Т.Н. Василевская

1833