03,09,12

Спектры отражения и фотоотражения структур с квантовыми ямами на основе ZnO

© А.М. Клюев¹, Н.Г. Философов², А.Ю. Серов², В.Ф. Агекян², С. Morhain³, В.П. Кочерешко^{1,¶}

 ¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия
² Санкт-Петербургский государственный университет Санкт-Петербург, Россия
³ Centre de Recherche sur l'Hétéro-Epitaxie et ses Applications CRHEA-CNRS
[¶] E-mail: Vladimir.Kochereshko@mail.ioffe.ru

Поступила в Редакцию 13 июня 2020 г. В окончательной редакции 13 июня 2020 г. Принята к публикации 16 июня 2020 г.

Исследованы спектры отражения и модуляционного фотоотражения от эпитаксиальных слоев ZnO и $Zn_{1-x}Mg_xO$, а также квантовых ям ZnO/Zn_{1-x}Mg_xO при нормальном и наклонном падении света. Сравнение экспериментально измеренных и расчетных спектров позволило уточнить некоторые параметры экситонов в этих структурах и уточнить порядок следования энергетических зон в ZnO.

Ключевые слова: гетероструктуры, квантовые ямы, экситоны, спектроскопия.

DOI: 10.21883/FTT.2020.11.50052.127

1. Введение

Широкозонные полупроводниковые соединения, такие как ZnO, GaN, MgO, AlN представляются чрезвычайно перспективными материалами для оптоэлектроники. Благодаря большой ширине запрещенной зоны такие структуры удобны для изготовления полупроводниковых лазеров, работающих в ультрафиолетовом диапазоне и сверхвысоковольтных транзисторов. Очень часто в таких структурах благодаря пьезоэффекту появляется встроенное электрическое поле напряженностью до нескольких миллионов вольт на сантиметр [1]. В то же время в этих материалах наблюдается и достаточно большая концентрация примесей, достигающая 10¹⁸ сm⁻³, что приводит к частичной экранировке этого встроенного поля. В результате величина встроенного поля меняется в зависимости от вида структуры и даже от условий, при которых они исследуются. Как следствие, многие свойства экситонных и трионных состояний, зависят от встроенного электрического поля и оказываются плохо контролируемыми. Дело доходит до того, что даже интерпретация экситонных и трионных линий в спектрах таких структур оказывается неоднозначной. Имеются значительные расхождения и в опубликованных величинах параметров экситона [2]. Более того, с шестидесятых годов [3,4] и до сих пор ведется дискуссия о порядке следования энергетических зон в оксиде цинка и гетероструктурах на основе ZnO [5]. Это обосновывает актуальность исследований этих материалов.

В работе экспериментально и теоретически исследовались спектры отражения и фотоотражения при нормальном и наклонном падении света от гетероструктур, содержащих как слои ZnO и $Zn_{1-x}Mg_xO$, так и квантовые ямы ZnO/Zn_{1-x}Mg_xO с содержанием Mg x = 0.22.

2. Эксперимент и результаты

На подложке сапфира был выращен буферный слой ZnO толщиной порядка 1 mkm, затем выращивался барьерный слой Zn_{1-x}Mg_xO толщиной 200 nm, следом за ним выращивались квантовая яма ZnO толщиной 7.1 nm, еще один барьерный слой Zn_{1-x}Mg_xO толщиной 200 nm, квантовая яма ZnO толщиной 2.7 nm и покрывающий слой Zn_{1-x}Mg_xO толщиной 200 nm.

Спектры отражения регистрировались с помощью галогенной лампы и монохроматора МДР-406, оснащенного фотоумножителем, в режиме счета фотонов, температура образца во всех экспериментах составляла 5 К. Спектры фотоотражения регистрировались при дополнительной подсветке образца импульсами лазера с длиной волны 332 nm с последующим синхронным детектированием сигнала.

На рис. 1, а представлен спектр отражения (сплошная кривая), снятый при нормальном падении света на образец при температуре 5 К. В спектре отчетливо наблюдаются экситонные линии: в слое ZnO, на энергии 3.370 eV, в слое $\text{Zn}_{1-x}\text{Mg}_x\text{O}$, на энергии 3.65 eV, и квантовой яме (КЯ) шириной 2.7 nm на энергии 3.444 eV. Эти линии были идентифицированы в работе [6] путем сравнения спектров отражения и фотолюминесценции. Однако, идентификация экситонных линий от КЯ, шириной 7.1 nm вызвала затруднения. Так в работе [7] считали, что линия экситона в широкой КЯ сильно сдвинута пьезоэлектрическим полем в длинноволновую часть спектра в область 3.2 eV, а в работе [8] предполагалось, что сигнал фотолюминесценции в этой области спектра связан с рекомбинацией донорно-акцепторных пар.

Рис. 1. *а*) Экспериментально измеренный спектр отражения (сплошная кривая) при нормальном падении света, T = 5 К. Стрелками показаны энергии экситонных резонансов в слое оксида цинка (ZnO) и квантовой яме шириной 7.1 nm (QW). Расчет спектра отражения (пунктирная кривая) с параметрами, приведенными в таблице. *b*) Экспериментально измеренный спектр отражения (сплошная кривая) при нормальном падении света, T = 5 К. Расчет спектра отражения (пунктирная кривая) без учета квантовой ямы.

Помимо этих экситонных линий в длинноволновой части спектра отражения наблюдается интерференционная картина, связанная с квантованием поляритонов в слое ZnO. Еще одно обстоятельство обращает на себя внимание: наблюдаемая в коротковолновой части спектра линия экситонного отражения имеет "перевернутую" форму. Подобное вращение контура экситонного отражения происходит при интерференции света в толстом безэкситонном слое [9,10] вблизи поверхности.

На этом же рисунке представлен расчет спектра отражения от исследуемой структуры с учетом вклада обеих КЯ. Видно, достаточно хорошее совпадение расчетного спектра с экспериментально измеренным. Для того чтобы выявить вклад КЯ шириной 7.1 nm в спектр отражения, мы провели расчет этого спектра с учетом и без учета этой КЯ, при этом все остальные параметры расчета не менялись. Видно, что в области энергий 3.36 eV не удается добиться удовлетворительного совпадения расчетного спектра с измеренным без учета вклада от этой КЯ (рис. 1, b).

Таким образом, вопреки утверждению многих статей, длинноволновый сдвиг экситонных линий в КЯ в пьезоэлектрическом поле данной структуры не так уж велик и составляет всего несколько meV. Малая величина штарковского сдвига экситонных линий, вероятно, обусловлена экранированием пьезоэлектрического поля свободными носителями, пришедшими с доноров, а также рожденными светом в процессе эксперимента.

Для дополнительной проверки этого факта были измерены спектры модулированного фотоотражения dR/R(рис. 2). В этом эксперименте для надбарьерной подсветки использовался лазер с энергией кванта 3.815 eV и строилась разность сигналов с подсветкой и без нее

$$rac{dR}{R} = rac{R(\omega_0+\delta)-R(\omega_0-\delta)}{R(\omega_0+\delta)+R(\omega_0-\delta)}.$$

Здесь: R — коэффициент отражения, ω_0 — частота экситонного резонанса, δ — вариация резонансной частоты. В расчете мы считали, что $\delta = 1$ meV.

На рис. 2 видны яркие особенности в области энергий 3.376 eV и интерференционная картина в области 3.340 eV. На этом же рисунке представлен расчетный спектр фотоотражения в предположении, что главный вклад в спектр происходит от изменения резонансной частоты экситона в толстом слое ZnO и в KЯ шириной 7.1 nm. Расчет показал, что при изменении других экситонных параметров, таких как сила осциллятора и/или

Рис. 2. Спектральная зависимость сигнала дифференциального фотоотражения при дополнительной надбарьерной подсветке. Сплошная кривя — эксперимент, пунктирная кривая расчет.

Рис. 3. Спектр отражения, зарегистрированный при наклонном падении света, T = 5 К. Стрелками указаны экситонные резонансы, поляризованные перпендикулярно гексагональной оси (P_x, P_y) и вдоль гексагональной оси (P_z) .

затухание не удается получить достаточно хорошее совпадение расчета с экспериментом.

Для дальнейшего уточнения параметров были измерены спектры отражения при наклонном падении света под углом ~ 30 градусов. Неожиданно оказалось, что при наклонном падении в спектре появляется еще одна линия отражения с энергией 3.424 eV (рис. 3). При этом общий вид спектра соответствует случаю нормального падения. Очевидно, что эта новая линия связана с экситонным переходом, поляризованным вдоль гексагональной оси. Это указывает на то, что в данной структуре реализуется нормальный порядок зон ($E_g^A < E_g^B < E_g^C$), предложенный в работе [3]. Возможно, что различие в расположении зон, представленное в разных публикациях, связано с различием механических напряжений в структурах, выращенных в разных условиях (на подложке и без подложки).

3. Теория

В расчете рассматривалась структура, состоящая из следующих слоев: подложка из сапфира, слой ZnO толщиной порядка 1 mkm, затем слой $Zn_{1-x}Mg_xO$ толщиной 200 nm, за ним КЯ толщиной 7.1 nm, еще один барьерный слой толщиной 200 nm, КЯ толщиной 2.7 nm и покрывающий слой толщиной 200 nm.

Считалось, что показатель преломления света в сапфире равен $n_{Sa} = 1.7$, фоновые диэлектрические проницаемости в ZnO и Zn_{1-x}Mg_xO одинаковы и равны $\varepsilon_0 = 4.2$ [11].

Распространение света в слоях рассчитывалось методом матриц переноса. Мы считали, что в барьерных слоях $Zn_{1-x}Mg_xO$ экситонное затухание велико

Параметры экситонов ($\hbar\omega_0$ — резонансная частота экситона, $\hbar\omega_{LT}$ — продольно поперечное расщепление, $\hbar\Gamma$ — затухание, ε_0 — фоновая диэлектрическая проницаемость)

Параметр	$\hbar\omega_0$, eV	$\hbar\omega_{LT}^*$, eV	ħΓ, meV	\mathcal{E}_0
ZnO $Zn_{1-x}Mg_xO$	3.373 3.650	6.2 9.5	1.9 15	3.82 3.75
QW 7.1 nm	3.370	14.0	2.1	3.82

Примечание. Для квантовой ямы приведена величина эффективного продольно-поперечного расщепления, полученная при переходе от нелокального отклика к локальному [12].

и пространственную дисперсию в них учитывать не нужно. Это предположение подтверждается большим неоднородным уширением экситонной линии отражения в барьерах. Отражение света от КЯ рассматривалось в модели нелокального отклика [12]. Пространственная дисперсия учитывалась только для слоя ZnO. В таблице представлены параметры экситонов, которые использовались в расчете.

При теоретическом описании "перевернутого" контура отражения (рис. 4) в барьерном слое мы считали, что происхождение безэкситонного слоя связано с наличием вблизи поверхности электрического поля, вызванного ионизованными примесями в приповерхностной области кристалла. В этом поле затухание экситона сильно возрастает, что и приводит к перевороту контура экситонного отражения.

Предположим, что концентрация ионизованных примесей вблизи поверхности равна $(N_D - N_A)$, плотность заряда этих примесей $\rho = e(N_D - N_A)$. Тогда напряжен-

Рис. 4. Измеренный спектр отражения в области экситона барьерного слоя $Zn_{1-x}Mg_xO$ (сплошная кривая) и рассчитанные спектры отражения без учета приповерхностного электрического поля (пунктирная кривая) и с учетом приверхностного поля (штрих-пунктирная кривая).

ность поля, создаваемого этими примесями, будет

$$E(z) = \frac{4\pi e}{\varepsilon_0} (N_D - N_A)(z - z_0), \quad E(0) = E_s.$$

Здесь: *z*₀ — длина экранирования поверхностных состояний свободными носителями, *E_s* — величина поля на поверхности.

То есть мы считали, что в приповерхностной области поле меняется линейно, и экситонное затухание также линейно зависит от поля.

Для расчета экситонного отражения с учетом приверхностного поля использовалась многослойная аппроксимация безэкситонного слоя. Приповерхностная область разбивалась на слои толщиной 1 nm и в каждом слое задавались параметры экситона. Мы считали, что сила осциллятора и резонансная частота не меняются от слоя к слою, а затухание линейно растет при приближении к поверхности. Такая зависимость подтверждается расчетами влияния электрического поля на атом водорода и экситон [10,13]. Сравнение экспериментально измеренного и расчетного контура отражения экситона в слое $Zn_{1-x}Mg_xO$ представлено на рис. 4 с учетом и без учета приповерхностного электрического поля.

4. Обсуждение и выводы

В настоящей работе в расчете спектров экситонного отражения мы не учитывали пространственную дисперсию в слоях $Zn_{1-x}Mg_xO$. Это связано с тем, что, во-первых, в этих слоях мы не наблюдаем размерного квантования поляритонов, во-вторых, линия отражения экситона имеет большое неоднородное уширение, что указывает на сильные флуктуации ширины запрещенной зоны в твердом растворе $Zn_{1-x}Mg_xO$. Следовательно, затухание экситона в этих слоях велико и превосходит величину продольно-поперечного расщепления. В этом случае пространственную дисперсию учитывать не нужно [12]. Действительно, рассогласование решеток ZnO и MgO достигает ~ 10%, и такой твердый раствор должен быть сильно неоднородным.

Качество слоев ZnO гораздо выше, на это указывает интерференционная структура с узкими линиями. В этом случае учет пространственной дисперсии необходим. Экситоны в квантовых ямах мы рассматривали в модели нелокального отклика.

Из сравнения экспериментально измеренного и расчетного спектров было установлено, что экситонный резонанс в КЯ 7.1 nm находится на энергии 3.37 eV. Это указывает на эффективное экранирование пьезоэлектрического поля свободными носителями. Действительно, концентрация примесей в нашей структуре составляет $(N_D - N_A) \approx 3 \cdot 10^{17} \text{ cm}^{-3}$, такой концентрации достаточно для экранирования встроенного поля уже на расстояниях $\sim 30 \text{ nm}$ [6]. Были установлены величины сил осциллятора (продольно- поперечного расщепления) и затухания экситона в слоях ZnO, Zn_{1-x}Mg_xO и в KЯ.

Спектр отражения, снятый при наклонном падении, указывает на то, что в нашей структуре реализуется нормальный порядок валентных зон в слое ZnO.

Финансирование работы

ФНГ, АЮС и ВФА благодарят проект СПбГУ INI_2019, ID: 37688845 за частичную поддержку работы.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Tomoki Abe, Tatsuya Motoyama, Masaya Yamamoto, Atsushi Yamamoto, Shohei Iwagashita, Hirofumi Kasada, Koshi Ando, and Kunio Ichino. Phys. Status Solidi C 13, 7–9, 602 (2016).
- [2] Ü. Özgür, Ya.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç. J. Appl. Phys. 98, 041301 (2005).
- [3] D.G. Thomas. J. Phys. Chem. Solids 15, 86 (1960).
- [4] Y.S. Park, C.W. Litton, T.C. Collins, D.C. Reynolds. Phys. Rev. 143, 512 (1966).
- [5] J. Puls, S. Sadofev, F. Henneberger. Phys. Rev. B 85, 041307(R) (2012).
- [6] M.N. Bataev, N.G. Filosofov, A.Yu. Serov, V.F. Agekyan, C. Mohrain, V.P. Kochereshko. Phys. Solid State, 60, 2491 (2018).
- [7] C. Morhain, T. Bretagnon, P. Lefebvre, X. Tang, P. Valvin, T. Guillet, B. Gil, T. Taliercio, M. Teisseire-Doninelli, B. Vinter, C. Deparis. Phys. Rev. B 72, 241305R (2005).
- [8] Thierry Bretagnon. Turkish J. Phys. **38**, 420 (2014).
- [9] Е.Л. Ивченко, П.С. Копьев, В.П. Кочерешко, И.Н. Уральцев, Д.Р. Яковлев, С.В. Иванов, Б.Я. Мельцер, М.А. Калитиевский. ФТП 22, 784 (1988).
- [10] В.А. Киселев, Б.В. Новиков, А.Е. Чередниченко. Экситонная спектроскопия приповерхностной области полупроводников. Изд-во СПб ун-та, СПб (2003).
- [11] Landolt-Bornstein "Numerical Data and Functional Relationship in Science and Technology" / Ed. W. Martienssen. Group III: Condensed Matter, Springer (2000).
- [12] E.L. Ivchenko. Optical Spectroscopy of Semiconductor Nanostructures. Alpha Science Int., Harrow, UK (2005).
- [13] V.V. Kolosov. J. Phys. B 20, 2359 (1987).

Редактор К.В. Емцев