05

Зондовая микроскопия и электронно-транспортные свойства тонких эпитаксиальных пленок Мо на сапфире

© Л.А. Фомин,¹ И.В. Маликов,¹ В.А. Березин,¹ А.В. Черных,¹ А.Б. Логинов,² Б.А. Логинов³

¹ Институт проблем технологии микроэлектроники и особо чистых материалов РАН,

142432 Черноголовка, Московская обл., Россия

² Московский государственный университет им. М.В. Ломоносова,

119991 Москва, Россия

³ Национальный исследовательский университет МИЭТ,

124498 Москва, Россия

e-mail: fomin@iptm.ru

Поступило в Редакцию 1 апреля 2020 г. В окончательной редакции 1 апреля 2020 г. Принято к публикации 1 апреля 2020 г.

Проведены исследования поверхности и электронно-транспортных свойств эпитаксиальных тонких пленок молибдена. Экспериментальные результаты сравнивались с известными квантовыми моделями влияния рельефа поверхности пленок на их сопротивление.

Ключевые слова: эпитаксиальные пленки, тугоплавкие металлы, межсоединения, шероховатая поверхность, атомно-силовая микроскопия.

DOI: 10.21883/JTF.2020.11.49970.110-20

Введение

В современной кремниевой технологии микроэлектроники в качестве межсоединений. выступают металлические пленочные поликристаллические проводники. Было показано [1], что увеличение удельного сопротивления проводящей линии будет сильно ограничивать длину межсоединения и отрицательно влиять на характеристики интегральных микросхем. В международном плане по развитию полупроводниковой технологии (ITRS) проблема увеличения сопротивления при уменьшении размеров металлических подводящих соединений была названа "Большим вызовом".

Традиционно применяемые в настоящее время для металлизации в микроэлектронике алюминий и медь с уменьшением размеров элементов и возрастанием плотности тока в них перестают удовлетворять современным требованиям. Низкие температуры плавления этих металлов ограничивают их применение, поскольку характерные процессы деградации, приводящие к отказам активных и пассивных элементов интегральных схем, активируются с ростом отношения рабочей температуры к температуре плавления.

Одним из методов решения указанных проблем является поиск альтернативных материалов для технологии интегральных схем. При этом с точки зрения надежности очевидным преимуществом обладают системы, использующие тугоплавкие металлы. Например, вольфрам в сравнении с алюминием при относительно низком удельном сопротивлении характеризуется высокой температурой взаимодействия с кремнием и низким значением коэффициента линейного расширения. По этой причине вольфрам достаточно давно рассматривался как материал для шин металлизации интегральных схем, работающих при высоких температурах и плотностях тока [2].

Основным механизмом возникновения сопротивления в металлах при комнатной температуре является рассеяние электронов проводимости на фононах (колебаниях решетки). Электроны также могут рассеиваться на примесях, плоских и линейных дефектах в кристаллах и на внешних поверхностях проводника. По мере того, как геометрические размеры проводника уменьшаются и становятся сравнимыми с длиной свободного пробега электронов или даже меньше, вклад в сопротивление, обусловленный рассеянием электронов на внешних поверхностях проводника, возрастает.

В связи с развитием суб-10 nm электроники при уменьшении линейных размеров элементов металлических материалов до величин, сравнимых с длиной пробега электронов, качество поверхностей начинает иметь важное значение в проводимости и транспортных эффектах. Сопротивление медного проводника шириной 10 nm возрастает более чем на порядок [3]. Непосредственной причиной этого является рассеяние электронов проводимости на поверхности проводника, а также границах зерен, обычно описываемое классическими моделями Фукса-Зондгеймера [4,5] и Майадеса и Шацкеса [6,7] на основе решения уравнения переноса Больцмана. В модели Фукса-Зондгеймера задается коэффициент зеркальности р, который есть вероятность того, что электроны отражаются от поверхности зеркально, а 1 - pесть вероятность диффузного рассеяния электронов. Этот коэффициент является единственным параметром поверхности в данной модели. При зеркальном отражении электроны проводимости не теряют энергию, таким образом, оно не приводит к увеличению сопротивления. Для больших размеров проводника эта модель предсказывает для удельного сопротивления обратную пропорциональность от размеров, что также подтверждается экспериментальными измерениями. Однако с уменьшением размеров большую роль начинают играть квантовые эффекты [8-12], которые в данной модели игнорируются, так как в нее не входят длина волны электрона, угол падения и шероховатость границы раздела. Позже была предложена [13] альтернативная модель рассеяния на поверхности, в которой коэффициент зеркальности зависит от угла подлета (угла скольжения) электронов к поверхности, а также от ее шероховатости. Согласно этой модели, увеличение удельного сопротивления проводника в основном обусловлено рассеянием электронов, налетающих на шероховатую поверхность под большими углами скольжения. Малоугловые электроны, летящие параллельно поверхности, "шунтируют" сопротивление пленки. При малых углах подлета вероятность диффузного рассеяния 1 – р пропорциональна углу подлета с коэффициентом пропорциональности Q, который определяет интенсивность рассеяния электронов из-за шероховатости поверхности. Однако для малых размеров проводника эта модель также не годится, так как даже в условиях правомерности квазиклассического приближения для корректного описания отражения электронов от поверхности и выводу граничных условий для функции распределения в уравнении Больцмана необходимо привлечение квантовых моделей [14-17]. Разработанные подходы, например, для гелиевых температур, позволят применить и учитывать их и для комнатной температуры.

Экспериментальные данные по размерным эффектам для пленок металлов сверхмалых толщин крайне ограничены. По всей видимости, это связано со сложностью получения однородных сплошных пленок сверхмалых толщин и измерений их характеристик. Требуется выращивание сплошных пленок с высокой степенью однородности в диапазоне толщин 0.5-10 nm. Имеются экспериментальные данные о пленках Pt, в которых были обнаружены осцилляции удельного сопротивления в зависимости от толщины. Некоторые интересные результаты были представлены в работе [18,19] для пленок CoSi₂ в диапазоне толщин 6-100 nm. Было найдено, что эти пленки являются металлическими и их остаточная длина свободного пробега составляла около 100 nm. В работах [20,21] проведены измерения поверхности тонких (70 nm) пленок золота, нанесенных на слюду в сверхвысоком вакууме. Из измерений были получены автокорреляционные функции для сканов поверхности размерами 20 × 20 nm и определены статистические параметры шероховатой поверхности, такие как среднеквадратичная флуктуация и корреляционная длина. Зависимости проводимости пленок от температуры и толщины сравнивались с теорией из работ [15,16]. Толщинные зависимости проводимости пленок золота на слюде были взяты из работы [22]. Значения толщин составляли от 35 до 126 nm. Полученные экспериментальные результаты достаточно хорошо согласовывались с теорией. В наших более ранних работах [12,23,24] исследовалась поверхность и электронно-транспортные свойства пленок W, Ni и Mo. Однако шероховатость и электронно-транспортные свойства для сверхмалых толщин не были исследованы. В настоящей работе проведены дополнительные исследования пленок Мо для сверхмалых толщин.

В настоящей работе была использована разработанная нами модель влияния шероховатости поверхности пленок металлов на их электронно-транспортные свойства. Изготовлены эпитаксиальные тонкие пленки молибдена по ранее разработанной технологии. Проведены измерения образцов методами атомно-силовой микроскопии (ACM) и сканирующей туннельной микроскопии (CTM), направленные на исследование статистических свойств поверхности.

1. Теоретическая модель

Рассмотрим модель транспорта электронов по волноводу с шероховатой границей раздела с учетом размерного квантования. Будем считать, что электрон движется в прямоугольной потенциальной яме с бесконечно высокими стенками по оси z, в то время как движение в направлениях x и y свободное с волновым двумерным вектором k. Шероховатость поверхности изменяет ширину потенциальной ямы и ее положение относительно начала отсчета по оси z, входя тем самым в оператор потенциальной энергии U(z(r)), где r = (x, y) — двумерный вектор в плоскости пленки. Таким образом, стационарное уравнение Шредингера записывается в виде

$$-\frac{\hbar^2}{2m}\nabla^2\psi + U(z(r))\psi = E\psi.$$
(1)

Шероховатую границу общего вида можно свести к гладкой с помощью преобразований сдвига и растяжения. Оператор сдвига и его обратный оператор имеют вид:

$$S_h = \delta(z_1 + h(\mathbf{r}_1) - z_2)\delta(\mathbf{r}_1 - \mathbf{r}_2), \qquad (2a)$$

$$S_h^{-1} = \delta(z_1 - h(\mathbf{r}_1) - z_2)\delta(\mathbf{r}_1 - \mathbf{r}_2),$$
 (26)

а оператор растяжения и его обратный:

$$S_{\lambda} = \lambda^{1/2}(\mathbf{r}_1)\delta(\lambda(\mathbf{r}_1)z_1 - z_2)\delta(\mathbf{r}_1 - \mathbf{r}_2), \qquad (3a)$$

$$S_{\lambda}^{-1} = \lambda^{-1/2}(\mathbf{r}_1)\delta(z_1/\lambda(\mathbf{r}_1) - z_2)\delta(\mathbf{r}_1 - \mathbf{r}_2).$$
(36)

Действие этих операторов на волновые функции переводит их в

$$\psi'_{h}(\mathbf{r}_{2}, z_{2}) = S_{h}\psi(\mathbf{r}_{1}, z_{1}) = \psi(\mathbf{r}_{2}, z_{2} - h(\mathbf{r}_{2})),$$
 (4a)

$$\psi_{\lambda}'(\mathbf{r}_{2}, z_{2}) = S_{\lambda}\psi(\mathbf{r}_{1}, z_{1}) = \lambda^{-1/2}(\mathbf{r}_{2})\psi(\mathbf{r}_{2}, z_{2}/\lambda(\mathbf{r}_{2})).$$
(46)

В новом базисе этих волновых функций (после последовательного применения операторов растяжения и сдвига) оператор потенциальной энергии уже не зависит от шероховатости поверхности. Вместо этого к гамильтониану в уравнении (1) в новом базисе добавляется член

$$V = -\frac{\hbar^2}{2m} \left(S_{\lambda} S_h \nabla^2 S_h^{-1} S_{\lambda}^{-1} - \nabla^2 \right),$$
 (5)

который ответственен за рассеяние на шероховатой поверхности. Матричные элементы этого оператора в новом базисе представляются в виде

$$\langle \psi_m | V | \psi_n \rangle = \frac{\hbar^2 k_m k_n}{m^* S} \int_S d^2 \mathbf{r} h(\mathbf{r}) \exp(-i\mathbf{q}\mathbf{r}) = \frac{\hbar^2 k_m k_n}{m^*} f(\mathbf{q}),$$
(6)

где $f(\mathbf{q}) = \frac{1}{S} \int_{S} d^2 \mathbf{r} h(\mathbf{r}) \exp(-i\mathbf{q}\mathbf{r})$ — двумерный фурье

образ распределения флуктуаций высоты относительно среднего значения $h(\mathbf{r})$ (рельефа поверхности), k_m и k_n — *z*-компоненты волновых векторов соответственно *т* и *п* — подзон размерного квантования в рассматриваемой прямоугольной яме. Присутствие оператора V приводит к тому, что состояние $|\phi\rangle = |k_n, \mathbf{k}\rangle$ (в импульсном представлении) рассеивается в другие состояния, например $|\psi\rangle = |k_m, \mathbf{k}'\rangle$, при этом двумерный вектор рассеяния равен $q(\phi \rightarrow \psi) = \mathbf{k}' - \mathbf{k}$. В результате возможны переходы в пределах одной зоны пространственного квантования (n = m), а также между такими подзонами $(n \neq m)$. Если проекция **q** на направление тока (вдоль оси x) не равна нулю, то такое рассеяние в результате (с учетом всех переходов) приводит к диссипации импульса электрона (тока) и появлению электрического сопротивления. Интенсивность рассеяния вдоль направления х в единицу времени равна

$$\frac{1}{\tau} = \frac{2\pi}{\hbar} \sum_{\psi} \frac{-q(\varphi - \psi)}{k_x(\varphi)} |(\psi|V|\varphi)|^2 \delta(\varepsilon_{\varphi} - \varepsilon_{\psi}).$$
(7)

Из (6) и (7) следует, что интенсивность рассеяния пропорциональна квадрату модуля двумерного фурье образа рельефа поверхности, т. е. спектральной плотности флуктуаций (СПФ) шероховатости. Удельную проводимость пленки можно найти, используя теорию линейного отклика и подставляя найденный оператор рассеяния V, как было сделано в работах [14,15]:

$$\sigma = \sigma_0 \frac{3\pi}{2dk_F} \sum_{n=1}^{N_d} \frac{1 - (k_n/k_F)^2}{1 + (d_1^*/d)^3 n^2},$$
(8)

где $d_n^* = (\pi^2 Q_n l_0 / k_F^2)^{1/3} n^{2/3}$, n — номер подзоны, $Q_n = m^* dk_F / (\hbar k_n^2 \tau_n)$, l_0 — длина свободного пробега электронов в объеме, σ_0 — проводимость объемного материала. Переходя в (7) к интегрированию по углу рассеяния, находим

$$Q_{n} = \frac{2\hbar^{2}k_{F}^{2}}{dk_{F}m^{*}} \sum_{m=1}^{Nd} \int_{0}^{\pi} d\phi \left(1 + \frac{\sqrt{k_{F}^{2} - k_{m}^{2}}}{\sqrt{k_{F}^{2} - k_{n}^{2}}} \cos(\phi)\right)$$
$$\times \frac{k_{m}^{2}}{k_{F}^{2}} |f(\mathbf{q})|^{2}.$$
(9)

Как правило, в моделях рассеяния электронов на поверхности используют гауссову функцию для СПФ. Из такого приближения однозначно следует, что рассеяние электронов с большим q можно пренебречь, и рассеяние является малоугловым для эпитаксиальных пленок с большой корреляционной длиной шероховатости с углом рассеяния $\phi < q_c/k_F$, где $q_c = 2\pi/L_c$, L_c — корреляционная длина шероховатости, а при $(3/2k_F)\pi^2/d^2 \ge 1/L_c$ реализуется режим только внутриподзонного рассеяния. Однако в модели самоаффинных фракталов [17], которую можно использовать для описания шероховатости поверхностей раздела, ассимптотика $|f|^{2}(q)$ при больших q равна q^{-2H} с точностью до некоторого численного множителя, где Н — показатель шероховатости (связанный с фрактальной размерностью Хауздорфа *D* соотношением H = 3 - D). Можно показать, что при H < 3/4 рассеяние малоугловых $(n \sim 1)$ электронов на большой угол существенно и всегда реализует режим межподзонного рассеяния. При этом в формуле (9) сумма по номерам подзон расходится. Это приводит к большим значениям d_1 в формуле (8) и к квадратичной зависимости σ от d. В то время как при больших Н множитель при n² в формуле (8) мал, что приводит к более пологим зависимостям проводимости от толщины пленки. Согласно работе [17], зависимость проводимости от толщины может быть и более резкой. Чем больше фрактальная размерность рельефа поверхности пленки, тем зависимость от толщины резче.

2. Методики экспериментов

В качестве исследуемых образцов для верификации данной модели транспорта электронов изготовлены эпитаксиальные пленки Мо. Для выращивания пленок использовался метод импульсного лазерного осаждения в сверхвысоком вакууме (10^{-9} Torr). Подробнее технология выращивания пленок описана в наших предыдущих работах [24-26]. Морфология выращенных пленок исследовалась методами АСМ и СТМ. Для СТМ измерений была использована платиновая игла, для которой предварительно проводилась проверка одноострийности по кривой подвода. Размеры СТМ кадров составлял 300×300 nm, а ACM кадров — 1000×1000 nm. CTM измерения выполнены на сканирующем зондовом микроскопе СММ-2000 (Завод ПРОТОН, г. Москва, Россия) на сканере с резонансной частотой 12 kHz [27], а АСМ — на микроскопе P47-Solver (НТ-МДТ, Москва, Зеленоград, Россия) с использованием кантилеверов TipsNano (Москва, Зеленоград, Россия). Также было снято тестовое АСМ изображение высокого разрешения на СММ-2000, для получения которого использовался кантилевер фирмы Brucker (США) марки "MSCT" с острием иглы радиусом 2 nm. На СТМ изображениях параметры шероховатости рассчитаны программой микроскопа СММ-2000 в соответствие с международным стандартом ISO 4287, на АСМ изображениях эти же параметры были рассчитаны с помощью программы "gwyddion" [28].

Рис. 1. СТМ (слева) 300×300 nm и ACM (справа) 1000×1000 nm изображения поверхности пленок Mo с толщинами 65 (*a*), 55 (*b*) и 13 (*c*) nm, выращенных на *R*-плоскости сапфира.

3. Сравнение результатов СТМ и АСМ измерений

На рис. 1 показаны АСМ и СТМ изображения поверхности трех выращенных пленок Мо разной толщины. Из рисунка видно, что АСМ и СТМ измерения дают разные результаты. Полный разброс высот на АСМ-кадре получается всегда меньше, чем на СТМ-кадре. Разрешение в режиме СТМ значительно больше, поскольку более острая СТМ-игла лучше проникает в малые поры, однако пока остается неопределенным вопрос степени влияния неоднородности по проводимости и работе выхода электрона на точность определения высот точек рельефа, что требует дальнейшего более подробного изучения по отношению к элементному и химическому состоянию материалов на поверхности изучаемых нами образцов.

Зависимости среднеквадратичной шероховатости, корреляционной длины и фрактальной размерности от толщины пленок показаны на рис. 2. Среднеквадратичная шероховатость, полученная из СТМ изображений, в

Рис. 2. Зависимость средней шероховатости (*a*), корреляционной длины (*b*) и фрактальной размерности (*c*) поверхности пленок Мо от их толщины по результатам АСМ и СТМ измерений.

основном выше, чем из АСМ изображений одного и того же образца (рис. 2, a). В то же время корреляционная длина, полученная из СТМ, в разы меньше, чем из АСМ (рис. 2, b), а фрактальная размерность, полученная из СТМ, превышает ту, что получена из АСМ (рис. 2, c). Это свидетельствует о том, что подстановка в формулу (8) спектральной плотности флуктуаций, полученную из СТМ, даст большую вероятность рассеяния на большие углы.

Зависимость удельной проводимости пленок от их толщины

Для исследования поведения проводимости пленок при малых толщинах была изготовлена новая серия образцов с толщинами менее 10 nm. Были измерены сопротивления пленок, напыленных через маску в виде мостиков, и получены зависимости их сопротивления от температуры, начиная от комнатной до температуры жидкого гелия 4.2 K с шагом 0.1 K. Зависимости сопротивления от температуры для ультратонких пленок

Рис. 3. Температурная зависимость сопротивления эпитаксиальной пленки Мо толщиной менее 3 nm.

имели характерный вид с минимумом при температурах 30–100 К, который обусловлен процессами "вымерзания" фононов при уменьшении температуры ниже комнатной и появлением эффекта слабой локализации [29]

Рис. 4. АСМ изображение (a) и изображение в токах растекания (b) края пленки Мо, толщиной ~ 6 nm, во время одновременной записи проводящим кантилевером.

Рис. 5. Зависимость удельной проводимости эпитаксиальных пленок Мо от их толщины при малых толщинах (*a*) и во всем диапазоне толщин (*b*). Квадраты — комнатная температура, кружки — точка минимума сопротивления.

при дальнейшем уменьшении температуры. Характерная зависимость сопротивления от температуры для пленки Мо толщиной 3 nm показана на рис. 3. С уменьшением толщины пленок этот минимум сопротивления смещался ближе к комнатной температуре, и разница в сопротивлении при комнатной температуре и в точке минимума сокращалась, поскольку основной вклад в сопротивление давало рассеяние на шероховатой поверхности. АСМ измерения поверхности ультратонких пленок показали, что их рельеф повторяет рельеф сапфировой подложки. На рис. 4 показаны АСМ изображение (рис. 4, a), а также ACM изображение, полученное одновременно в режиме токов растекания (рис. 4, b) края пленки Мо, толщиной ~ 6 nm. Для одновременного получения этих изображений использовался проводящий кантилевер. Видно, что рельеф ультратонкой пленки не отличается от рельефа подложки, и край пленки можно определить только по появлению проводимости.

Журнал технической физики, 2020, том 90, вып. 11

Таким образом, при малых толщинах статистические характеристики поверхности пленок (среднеквадратичная шероховатость, корреляционная длина и фрактальная размерность) не меняются с толщиной и совпадают с характеристиками подложки, которые известны [18]. АСМ измерения в режиме токов растекания также показывают, что пленки сплошные (реализуется послойный рост).

Зависимости удельной проводимости пленок от толщины при комнатной температуре и в точке минимума сопротивления представлены на рис. 5. При малых толщинах (2–8 nm) зависимость удельной проводимости от толщины при комнатной температуре близка к квадратичной, а в точке минимума сопротивления к кубической (рис. 5, *a*). Квадратичная зависимость подтверждает нашу модель рассеяния электронов на фрактальной поверхности, поскольку показатель шероховатости, согласно экспериментальным данным (рис. 2, *c*), $H = 3 - D \approx 0.5 < 3/4$. Однако кубическая зависимость проводимости от толщины при низких температурах не объясняется в рамках этой теории. Возможно, ее можно объяснить с точки зрения работы [17]. При этом рассеянием на фононах можно пренебречь по сравнению с поверхностным рассеянием. По всей видимости, то, что при малых толщинах пленок их статистические характеристики не меняются с толщиной, и объясняет достаточно гладкую степенную зависимость на рис. 5, а. При больших толщинах характер зависимости удельной проводимости от толщины меняется. При комнатной температуре она ведет себя как $\sigma \sim d^{0.3}$, а в точке минимума сопротивления — близка к линейной. Такое резкое изменение хода кривых можно объяснить изменением рельефа поверхности, который сам начинает сильно зависеть от толщины (рис. 2, b).

5. Обсуждение результатов

Полученные экспериментальные результаты устраняют противоречие между наблюдаемой квадратичной размерной зависимостью σ от толщины при комнатной температуре и большой величиной корреляционной длины по сравнению с фермиевской длиной волны электрона $L_c/\lambda_F \gg 1$ для исследуемых пленок. Тем не менее при больших толщинах зависимость σ от толщины даже более пологая, чем предсказывает теория для гауссового СПФ, что можно объяснить зависимостью рельефа поверхности от толщины. Сравнение результатов СТМ и АСМ измерений показало существенное (в разы) отличие среднеквадратичной шероховатости и корреляционной длины, полученных двумя методами. Вследствие этого имеется необходимость в дальнейших дополнительных исследованиях степени достоверности определения высот рельефа методом СТМ при наличии неоднородностей проводимости и работы выхода электрона по поверхности. При этом в настоящей работе мы пока в большей степени опирались на результаты снятия рельефа методом АСМ.

Заключение

Методами СТМ и АСМ исследована поверхность эпитаксиальных пленок Мо, выращенных на *R*-плоскости сапфира. Из полученных изображений были найдены статистические характеристики поверхности, от которых зависит сопротивление, вызванное рассеянием на поверхности. Найдены зависимости от толщины удельной проводимости пленок при комнатной температуре и при температуре, где их сопротивление минимально. Было проведено сравнение полученных данных с фрактальной моделью шероховатости поверхности и ее влияния на электронно-транспортные свойства тонких пленок, учитывающей морфологию поверхности через спектральную плотность флуктуаций.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Kapur P., McVittie J.P., Saraswat K.C. // IEEE Trans. Electron Dev. 2002. Vol. 49. P. 590–597.
- [2] Hain M., Kürner H., Neureither B., Röhl S. // Appl. Surf. Sci. 1995. Vol. 91. P. 374–377.
- [3] Pan C.Y., Naeemi A. // IEEE Electron Dev. Lett. 2014. Vol. 35. N 2. P. 250–252.
- [4] *Fuchs K.* // Math. Proc. Cambridge Philos. Soc. 1938. Vol. 34. P. 100.
- [5] Sondheimer E.H. // Adv. Phys. 1952. Vol. 1. P. 1.
- [6] Mayadas A.F., Shatzkes M. // Phys. Rev. B. 1970. Vol. 1. P. 1382.
- [7] Mayadas A.F., Shatzkes M., Janak J.F. // Appl. Phys. Lett. 1969. Vol. 14. P. 345.
- [8] Falkovsky L.A. // Adv. Phys. 1983. Vol. 32. P. 753.
- [9] Tesanovic Z., Jaric M.V., Maekawa S. // Phys. Rev. Lett. 1986. Vol. 5. P. 2760.
- [10] Trivedi N., Ashcroft N.W. // Phys. Rev. B. 1988. Vol. 38. P. 12298.
- [11] Makarov N.M., Moroz N.M., Yampol'skii V.A. // Phys. Rev. B. 1995. Vol. 52. P. 6087.
- [12] Михайлов Г.М., Маликов И.В., Черных А.В. // Письма в ЖЭТФ. 1997. Т. 66. № 11. С. 693–698. [Mikhailov G.M., Malikov I.V., Chernykh A.V. // JETP Lett. 1997. Vol. 66. N 11. P. 725–731.]
- [13] Soffer S.B. // J. Appl. Phys. 1967. Vol. 38. N 4. P. 1710-1713.
- [14] Fishman G., Calecki D. // Phys. Rev. B. 1991. Vol. 43.
 P. 11581-11585.
- [15] Sheng L., Xing D.Y., Wang Z.D. // Phys. Rev. B. 1995. Vol. 51.
 P. 7325.
- [16] Munoz R.C., Finger R.Y., Arenas C.D., Kremer G., Moraga L. // Phys. Rev. B. 2002. Vol. 66. P. 205401.
- [17] Palasantzas G. // Phys. Rev. B. 1998. Vol. 58. N 15.
 P. 9685–9688.
- [18] Fischer G., Hoffmann H. // Solid State Commun. 1980. Vol. 35 P. 793.
- [19] Hensel J.C., Tung R.T., Poate J.M., Unterwald F.C. // Phys. Rev. Lett. 1985. Vol. 54. P. 1840.
- [20] Munoz R.C., Vidal G., Kremer G., Moraga L., Arenas C., Concha A. // J. Phys.: Condens. Matter. 2000. Vol. 12. P. 2903.
- [21] Munoz R.C., Vidal G., Mulsow M., Lisoni J.G., Arenas C., Concha A., Mora F., Espejo R., Kremer G., Moraga L., Esparza R., Haberle P. // Phys. Rev. B. 2000. Vol. 62. P. 4686.
- [22] Sambles J.R., Elsom K.C., Jarvis J.D. // Philos. Trans. R. Soc. A. 1982. Vol. 304. P. 365.
- [23] Фомин Л.А., Маликов И.В., Винниченко В.Ю., Калач К.М., Пяткин С.В., Михайлов Г.М. // Поверхность. 2008. № 2.
 С. 1-6. [Fomin L.A., Malikov I.V., Vinnichenko V.Yu., Kalach K.M., Pyatkin S.V., Mikhailov G.M. // J. Synch. Investig. 2008. Vol. 2. P. 104–109.]
- [24] Malikov I.V., Mikhailov G.M. // J. Appl. Phys. 1997. Vol. 82.
 N 11. P. 5555-5559.
- [25] Mikhailov G.M., Chernykh A.V., Petrashov V.T. // J. Appl. Phys. 1996. Vol. 80. P. 948.

- [26] Михайлов Г.М., Маликов И.В., Черных А.В., Петрашов В.Т. // ФТТ. 1996. Т. 38. С. 3212. [Mikhailov G.M., Malikov I.V., Chernykh A.V., Petrashov V.T. // Phys. Solid State. 1996. Vol. 38. P. 1754.]
- [27] Логинов Б.А., Логинов П.Б., Логинов В.Б., Логинов А.Б. // Наноиндустрия. 2019. № 6. С. 32–44.
- [28] Gwyddion Free SPM (AFM, SNOM/NSOM, STM, MFM) data analysis software, http://gwyddion.net/, дата последнего обращения 5.03.2020.
- [29] Bergman G. // Phys. Rep. 1984. Vol. 107. N 1. P. 1-58.