11

Комбинированный радиопоглотитель на основе ферритового слоя и решеток резистивных квадратов

© В.И. Пономаренко, И.М. Лагунов

Физико-технический институт Крымского федерального университета им. В.И. Вернадского, Симферополь, Россия E-mail: vponom@gmail.com

Поступило в Редакцию 27 мая 2020 г. В окончательной редакции 27 мая 2020 г. Принято к публикации 31 мая 2020 г.

Рассмотрена экранирующая металлическую плоскость радиопоглощающая структура в виде ферритового слоя с расположенным на нем диэлектрическим слоем, содержащим решетку резистивных квадратов. Решена задача дифракции плоской электромагнитной волны, нормально падающей на структуру. На основе решения задачи оптимизации показано, что в отличие от ферритового слоя, являющегося малоотражающим в дециметровом и метровом диапазонах длин волн, комбинированная структура при общей толщине менее 5 ст обеспечивает малое отражение и в области сантиметровых волн.

Ключевые слова: радиопоглощающая структура, коэффициент отражения, дифракция электромагнитных волн.

DOI: 10.21883/PJTF.2020.17.49893.18398

Широкополосные поглотители электромагнитных волн (ПЭВ) с рабочим диапазоном длин волн от сантиметров и менее до десятков метров находят применение в безэховых камерах, предназначенных для испытаний на электромагнитную совместимость излучающей и принимающей аппаратуры, устанавливаемой на самолетах, ракетах и других объектах [1,2]. Основой таких ПЭВ является ферритовый слой, например, из никель-цинкового феррита NZ03, который при толщине меньше сантиметра эффективно поглощает в метровом и частично дециметровом диапазоне длин волн, обеспечивая коэффициент отражения по мощности (КО), не превышающий нескольких процентов [3,4]. Для расширения рабочего диапазона в коротковолновую область на ферритовом слое располагают дополнительные структуры, например пирамидальную или шахтную [5-7]. Такие структуры совместимы с ферритовым слоем в том плане, что не экранируют его в длинноволновой области и в то же время эффективно поглощают энергию электромагнитной волны в коротковолновой области. Определенным недостатком этих дополнительных структур является их неплоская поверхность, а в случае шахтной решетки большая (порядка дециметров) оптимальная толщина.

В настоящей работе рассматривается ПЭВ, в котором в качестве дополнительной к ферритовому слою структуры использован слой недиспергирующего диэлектрика с расположенной в нем решеткой резистивных квадратов.

Целью работы является исследование совместимости решеточной структуры со слоем феррита NZ03, а также расчет оптимальных параметров структуры.

Исследуемая структура, изображенная на рис. 1, расположена на металлической плоскости 1, состоит из слоя феррита 2 толщиной \tilde{d} и слоя диэлектрика толщиной d с относительной диэлектрической проницаемостью ε , в котором расположено N плоских решеток резистивных квадратов с поверхностными сопротивлениями ρ_i и стороной $2s_i$, i = 1, 2, ... N, период структуры 2b.

Решетки делят диэлектрический слой на слои с толщинами $d_i, d_1 + d_2 + \ldots + d_{N+1} = d$. Структура расположена на металлическом зеркале, лежащем в плоскости $z = d + \tilde{d}$. Плоская электромагнитная волна, зависящая от времени по закону $\exp(-i\omega t)$, где i — мнимая единица, ω — циклическая частота, поляризованная вдоль оси у и падающая на структуру нормально из области свободного пространства.

Задача дифракции решается методом, аналогичным примененному в [8–10], и сводится к задаче рассеяния волны ТЕМ в эквивалентном волноводе — канале Флоке. Решение задачи рассеяния в эквивалентном волноводе основывается на разделении "больших" резистивных квадратов на малые "элементарные" прямоугольники и

Рис. 1. ПЭВ на основе решеток резистивных квадратов с ферритовым слоем. Пояснение в тексте.

№ п/п	$d_n^{(15)},$ mm	$d_n^{(30)},$ mm	$ ho_n^{(15)}, \ \Omega$	$ ho_n^{(30)}, \ \Omega$	$s_n^{(15)},$ mm	$s_n^{(30)}, mm$
1	3.5	4.2	319	320	2.6	2.9
2	9.4	9.1	238	238	3.5	3.5
3	10.9	11	238	263	4.3	4.3
4	10.6	11	195	238	3.9	3.7
5	5.6	4.7	-	-	-	-

Оптимальные параметры структур

решении задачи возбуждения волновода токами, текущими по "элементарным" прямоугольникам [11]. Число учитываемых гармоник канала Флоке типов ТЕМ, H_{mn} и E_{mn} , а также число разбиений резистивных квадратов на элементы определялись путем наращивания до значений, выше которых КО по амплитуде переставал меняться в пределах абсолютной погрешности 0.002.

При решении задачи оптимизации критерием Crэффективности радиопоглощающей структуры являлся минимум максимального значения КО по мощности в расчетном диапазоне длин волн 0.033–30 m. При фиксированной толщине d параметрами оптимизации являлись величины ρ_i , ε , s_i , b, \tilde{d} , i = 1, 2, ..., N, а также толщины d_i , i = 1, 2, ..., N + 1. Для нахождения Crприменялся метод координатного спуска [12]. С целью отбора глобального минимума расчеты проводились с различными начальными значениями параметров оптимизации.

В таблице приведены оптимальные значения параметров структуры при числе решеток N = 4 и общей толщине диэлектрического слоя d = 4 сm. Верхний индекс (15) в обозначениях параметров соответствует максимальной длине волны диапазона, в котором проводилась оптимизация, равной 15 m, индекс (30) соответствует максимальной длине волны, равной 30 m.

На рис. 2, 3 приведены зависимости коэффициента отражения по мощности $|R|^2$ от длины волны для оптимизированных структур, параметры которых представлены в таблице. Для сравнения приведены значения коэффициента отражения от ферритового слоя. Из рисунков видно, что наложение на ферритовый слой диэлектрического слоя с размещенными в нем решетками из резистивных квадратов приводит к существенному уменьшению КО в коротковолновой части диапазона длин волн и некоторому увеличению КО в средней части диапазона, тогда как в длинноволновой его части КО комбинированного радиопоглотителя мало отличается от КО ферритового слоя.

Как показали расчеты, при d = 5 сm, N = 5 критерий эффективности ухудшается в сторону увеличения на 0.005 при $\lambda_{\text{max}} = 30$ m и на 0.001 при $\lambda_{\text{max}} = 15$ m, где λ_{max} — максимальная длина волны рабочего диапазона.

С уменьшением толщины *d* и числа решеток *N* по сравнению со значениями, приведенными в таблице,

критерий эффективности *Cr* комбинированного поглотителя ухудшается. Так, при d = 3 cm, N = 3 этот критерий равен 0.053 при $\lambda_{max} = 15$ m и 0.079 при $\lambda_{max} = 30$ m.

Таким образом, оптимальная толщина комбинированного поглотителя близка к 4.6 cm при числе решеток, равном 4, и толщине диэлектрической части, равной 4 cm. Одновременное отклонение значений параметров от оптимальных не более чем на 5% приводит к ухудшению критерия качества не более чем на 0.01.

На основе решения задачи дифракции на экранирующей металлическую плоскость комбинированной периодической структуре в виде решеток резистивных квадратов, расположенных в слое диэлектрика, лежащем на ферритовом слое, проведена оптимизация структуры и получены оптимальные зависимости коэффициента отражения от длины волны при различных толщинах

Рис. 2. Зависимости КО комбинированного поглотителя (1) и КО ферритового слоя толщиной 5.9 mm (2) от длины волны в диапазоне 0.033-15 m.

Рис. 3. Зависимости КО комбинированного поглотителя (1) и КО ферритового слоя толщиной 6.2 mm (2) от длины волны в диапазоне 0.033-30 m.

 $[\]varepsilon^{(15)} = 1, \varepsilon^{(30)} = 1.2, b^{(15)} = 5.4 \,\mathrm{mm}, b^{(30)} = 5.7 \,\mathrm{mm}, \tilde{d}^{(15)} = 5.9 \,\mathrm{mm}, \tilde{d}^{(30)} = 6.2 \,\mathrm{mm}, Cr^{(15)} = 0.041, Cr^{(30)} = 0.065$

диэлектрической структуры. Показано, что радиопоглощающая структура на основе решеток резистивных квадратов совместима с ферритовым слоем и в комбинации с ним образует ПЭВ, эффективно поглощающий электромагнитные волны в широкой полосе частот. При общей толщине структуры около 4.6 cm и числе решеток, равном 4, коэффициент отражения по мощности не превышает 0.065 для структуры с рабочим диапазоном 0.033-30 m и 0.041 для структуры диапазона 0.033-15 m. Увеличение толщины структуры до 5.7 cm и числа решеток до 5 приводит к некоторому ухудшению частотной характеристики. Уменьшение общей толщины до 3.7 cm и числа решеток до 3 приводит к значительному ухудшению эффективности комбинированного ПЭВ. При близкой общей толщине по критерию минимума отражения в диапазоне частот исследованный оптимальный ПЭВ превосходит такой известный аналог, как покрытие ДОН-11 [7], в котором на ферритовом слое располагаются ферритовые пирамиды, а также обладающий кратно большей толщиной ПЭВ с шахтной решеткой на ферритовом слое [6]. По сравнению со структурами [5], в которых на ферритовом слое располагаются диэлектрические пирамиды, исследованный ПЭВ имеет меньшую толщину при той же эффективности.

Результаты работы могут быть использованы при проектировании широкополосных ПЭВ для безэховых камер.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] *Мицмахер М.Ю., Торгованов В.А.* Безэховые камеры СВЧ. М.: Радио и связь, 1982. 189 с.
- [2] Богуш В.А., Борботько Т.В., Гусинский А.В., Лыньков Л.М., Тамело А.А. Электромагнитные излучения. Методы и средства защиты. Минск.: Бестпринт, 2003. 406 с.
- [3] Helberg H, Kose V. // Z. Angew. Phys. 1965. V. 19. N 6. P. 509-514.
- [4] Roy N. // Z. Angew. Phys. 1965. V. 19. N 4. P. 303-309.
- [5] *Туганов П.Ю.* // Инновационные технологии: теория, инструменты, практика. 2014. № 2. С. 156–158.
- [6] Будагян И.Ф., Мировицкий Д.И., Пономаренко В.И. // Радиотехника. 1982. Т. 37. № 1. С. 38-44.
- [7] Пономаренко В.И. Радиофизическая теория и методы расчета поглотителей электромагнитных волн. Докт. дис. Симферополь: Изд-во Симф. гос. ун-та, 1992. 326 с.
- [8] Безуглов Д.А., Звездина М.Ю., Лагунов И.М., Матвеев М.И., Пономаренко В.И., Синявский Г.П., Соколова С.В., Черкесова Л.В., Шаламов Г.Н., Шокова Ю.А. Композиционные материалы: разработка и применение. Новосибирск: АНС "СибАК", 2017. 180 с.
- [9] Пономаренко В.И., Лагунов И.М. // ЖТФ. 2020. Т. 90. В. 6. С. 1009–1015. DOI: 10.21883/PJTF.2020.17.49893.18398-18
- [10] Пономаренко В.И., Лагунов И.М. // Электромагнитные волны и электронные системы. 2018. Т. 23. № 6. С. 30–35. DOI: 10.18127/j15604128-201806-05

- В.И. Пономаренко, И.М. Лагунов
- [11] Никольский В.В., Никольская Т.И. Электродинамика и распространение радиоволн. М.: Наука, 1989. 544 с.
- [12] Васильев Ф.П. Методы оптимизации. М.: Факториал Пресс, 2001. 824 с.