07.2

Свойства резистивных структур на основе полиморфных фаз оксида галлия

© В.М. Калыгина¹, В.И. Николаев², А.В. Алмаев¹, А.В. Цымбалов¹, Ю.С. Петрова¹, И.А. Печников³, П.Н. Бутенко^{2,3}

¹ Национальный исследовательский Томский государственный университет, Томск, Россия

² ООО "Совершенные кристаллы", Санкт-Петербург, Россия

³ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия E-mail: kalygina@ngs.ru

Поступило в Редакцию 16 апреля 2020 г. В окончательной редакции 30 мая 2020 г. Принято к публикации 30 мая 2020 г.

Рассмотрено влияние УФ-излучения и сильного электрического поля на вольт-амперные характеристики резистивных структур на основе полиморфных пленок оксида галлия (Ga₂O₃). Пленки Ga₂O₃ осаждались методом хлоридной газофазной эпитаксии (HVPE) на гладкие и структурированные сапфировые подложки с базисной ориентацией (0001). На гладких подложках растут пленки α -Ga₂O₃, а на структурированных — пленки оксида галлия, содержащие α - и ε -фазы. В структурах металл/Ga₂O₃/металл на основе двухфазных пленок обнаружен эффект переключения. При воздействии излучения с $\lambda = 254$ nm и сильного электрического поля структуры переходят из состояния с низким сопротивлением в состояние с высоким сопротивлением.

Ключевые слова: оксид галлия, пленки, HVPE, полиморфизм, ультрафиолет, солнечно-слепые структуры.

DOI: 10.21883/PJTF.2020.17.49891.18341

Оксид галлия является бинарным полупроводниковым соединением, которое может кристаллизоваться в пяти модификациях: α , β , γ , δ и ε [1–3]. Благодаря своим физико-химическим свойствам этот широкозонный полупроводник представляет практический интерес для создания солнечно-слепых детекторов УФ-диапазона, высоковольтных приборов, газовых сенсоров, прозрачных электродов и т.д. [4]. На данный момент наиболее изученным является β -Ga₂O₃ ($E_g \sim 4.8 \, {\rm eV}$) благодаря его высокой термической и химической стабильности [5-7]. β-Ga₂O₃ обладает моноклинной решеткой, параметры которой имеют большое рассогласование с другими полупроводниковыми кристаллами, такими как Al₂O₃, Si, SiC и др. Это осложняет рост высококачественных слоев β-Ga₂O₃, включая эпитаксиальный, на этих подложках [8]. Политип α -Ga₂O₃, имеющий структуру корунда и характеризующийся небольшой разницей в постоянных кристаллической решетки с сапфиром ($\Delta c/c = 3.3\%$ и $\Delta a/a = 4.5\%$), кристаллизуется на его поверхности в слоях высокого структурного совершенства [9]. Отметим, что α-Ga₂O₃ обладает наибольшим значением ширины запрещенной зоны (5.1–5.3 eV) [10], что позволяет рассматривать его в качестве перспективы для создания солнечно-слепых детекторов в диапазоне глубокого УФ.

Эпитаксиальные пленки оксида галлия *n*-типа проводимости, легированные оловом, выращивались методом хлоридной газофазной эпитаксии (HVPE) в реакторе ООО "Совершенные кристаллы". Для осаждения использовались гладкие и структурированные сапфировые подложки (PSS) с ориентацией (0001). В одном ростовом процессе на гладких подложках были получены слои чистой фазы α -Ga₂O₃, а на профилированных — двухфазные слои с колончатыми структурами α -Ga₂O₃/ ε -Ga₂O₃ [11,12]. Цель настоящей работы — изучить особенности электрических и фотоэлектрических характеристик тонких слоев оксида галлия в зависимости от структуры подложки.

Для измерения электрических характеристик на поверхности слоев оксида галлия посредством магнетронного напыления через шаблон формировались платиновые контакты, расстояние между которыми d = 1.85 mm. Затем пластины разрезались на отдельные чипы размером 1.85×1 mm. Полученные образцы распаивали в корпусы марки TO-8.

Темновые вольт-амперные и фотоэлектрические характеристики измерялись при комнатной температуре с помощью источника-измерителя Keithley 2611. В качестве источника УФ-излучения использовались лампа VL-6 с фильтром, обеспечивающая максимум излучения при $\lambda = 254$ nm, и эксимерная KrCl-лампа с $\lambda = 222$ nm. Структуры, сформированные на гладких подложках, имели темновые токи (I_D), не превышающие 10–70 pA при напряжениях от 0 до ± 200 V. Значения тока при воздействии излучения (I_L) с $\lambda = 254$ nm практически не отличались от темновых, в то время как при облучении с $\lambda = 222$ nm наблюдалось увеличение электропроводности образцов (рис. 1, a).

Одной из причин отсутствия отклика образцов на излучение с $\lambda = 254$ nm может быть несколько бо́льшая ширина запрещенной зоны оксидной пленки, выращенной на гладкой сапфировой подложке. При использовании источника с $\lambda = 222$ nm квант энергии излучения

Рис. 1. a — вольт-амперные характеристики образца α -Ga₂O₃: Sn, полученного на гладкой сапфировой подложке: темновой ток (I_D) и токи при воздействии УФ ($\lambda = 254$ и 222 nm) (I_L). b — вольт-амперные характеристики двухфазного образца α - ε -Ga₂O₃: Sn, полученного на структурированной сапфировой подложке в интервале $-200 \leq U \leq +200$ V: I — исходная темновая BAX; 2, 3 — ВАХ при воздействии УФ; 4 — темновая BAX после выключения УФ; 5 — темновая BAX после воздействия сильного электрического поля и УФ-излучения на BAX структур металл/ α -Ga₂O₃/ ε -Ga₂O₃/металл: I — исходная темновая BAX; 2 — BAX при воздействии УФ; 3 — темновая BAX после выключения УФ; 4, 5 — темновые BAX после выключения УФ; 4, 5 — темновые BAX после воздействия сильного электрического поля.

равен 5.06 eV и близок к краю собственного поглощения, а при $\lambda = 254$ nm составляет $h\nu = 4.88$ eV, что меньше указанного выше значения E_g для α -Ga₂O₃.

Вольт-амперные характеристики (ВАХ) слоев на структурированных подложках симметричны относительно полярности напряжения U в интервале $-200 \le U \le +200$ V (рис. 1, *b*). Исходные темновые ВАХ (до воздействия сильных электрических полей и УФ-излучения) имеют вид кривых с максимумом (рис. 1, *b*, *c*, кривые *I*). При подаче смещения на образцы темновой ток I_D увеличивается и достигает максимального значения при $U_m = 50 - 70$ V. Дальнейшее повышение напряжения приводит к резкому снижению I_D , и при напряжениях выше 80-100 V наблюдается сравнительно слабая зависимость темнового тока от напряжения. Во время действия источника с $\lambda = 254$ nm зависимость *I* от *U* по-прежнему имеет выраженный максимум, и ток при освещении *I_L* незначительно превосходит темновой *I_D* (рис. 1, *c*, кривые *1*, *2*). После выключения УФ повышенные значения *I_D* сохраняются в течение нескольких суток, если на образцы не подавать высокое напряжение (рис. 1, *c*, кривая *3*). Однако если на образец подать смещение, примерно равное 100–200 V, то характер темновой вольт-амперной характеристики резко изменяется: на кривой зависимости *I* от *U* исчезает максимум и темновой ток при низких напряжениях снижается на два порядка (рис. 1, *c*, кривые *4*, *5*); ВАХ описываются монотонной зависимостью тока от напряжения; образец переходит в состояние с высоким сопротивлением (BC). На рис. 2, *a* приведены темновые ВАХ одного

Рис. 2. a — эффект переключения в структурах металл/ α -Ga₂O₃/ ε -Ga₂O₃/металл: *оп* — состояние с низким сопротивлением, *off* — состояние с высоким сопротивлением. b — влияние УФ-излучения на ВАХ после переключения образца в состояние с высоким сопротивлением.

из образцов до и после воздействия УФ-излучения и сильного электрического поля, показывающие эффект переключения образца из состояния с низким сопротивлением в состояние с ВС. После переключения структуры обнаруживают высокую чувствительность к УФ-излучению в интервале $-60 \le U \le +60$ V (рис. 2, b).

Большие начальные значения темновых токов в образцах на PSS могут быть связаны с присутствием двух политипов оксида галлия, где в случае полярной фазы ε -Ga₂O₃ возможно образование областей двумерного электронного газа (2DEG) [13]. ε -Ga₂O₃ имеет сегнето-электрические свойства [14], вектор спонтанной поляризации ориентирован вдоль направления оси роста [0001] (ось *c*). Под действием сильного электрического поля поляризация может изменять направление на противоположное. Снижение тока при $U > U_m$, вероятно, вызвано

нарушением условий существования 2DEG, возможно за счет изменения вектора спонтанной поляризации \mathbf{P}_{sp} . В результате структура переходит из проводящего состояния в состояние с высоким сопротивлением.

Чувствительность к УФ-излучению с $\lambda = 254$ nm двухфазных слоев на PSS-подложке, вероятно, обусловлена тем, что ε -фаза Ga₂O₃ имеет меньшую ширину запрещенной зоны по сравнению с α -фазой. Подводя итог, можно сделать следующие выводы.

1. Электрические и фотоэлектрические характеристики эпитаксиальных пленок Ga₂O₃, выращенных HVPE-методом, зависят от их структуры, которая в свою очередь определяется профилем сапфировой подложки.

2. В двухфазных образцах с α -Ga₂O₃/ ε -Ga₂O₃ выявлен эффект переключения под влиянием электрического поля из состояния с низким сопротивлением в состояние с BC.

3. Чувствительность к УФ-излучению в структурах с двухфазной пленкой оксида галлия появляется только после переключения в ВС-состояние.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Lee S.-D., Ito Y., Kaneko K., Fujita S. // Jpn. J. Appl. Phys. 2015. V. 54. P. 030301. https://doi.org/10.7567/JJAP.54.030301
- [2] Dakhel A.A. // Solid State Sci. 2013. V. 20. P. 54–58. https://doi.org/10.1016/j.solidstatesciences.2013.03.009
- [3] Stepanov S.I., Nikolaev V.I., Bougrov V.E., Romanov A.E. // Rev. Adv. Mater. Sci. 2015. V. 44. P. 63–86.
- [4] Cora I., Mezzadri F., Boschi F., Bosi M., Caplovicova M., Calestani G., Dodony I., Pecza B., Fornari R. // CrystEngComm. 2017. V. 19. P. 1509–1516. https://doi.org/10.1039/C7CE00123A
- [5] Guo D., Qin X., Lv M., Shi H., Su Y., Yao G., Wang S., Li C., Li P., Tang W. // Electron. Mater. Lett. 2017. V. 13. P. 483–488. https://doi.org/10.1007/s13391-017-7072-y
- [6] Qian L, Wu Z., Zhang Y., Lai P., Liu X., Li Y. // ACS Photon. 2017. V. 4. P. 2203–2211. https://doi.org/10.1021/acsphotonics.7b00359
- [7] Roberts J.W., Chalker P.R., Ding B., Oliver R.A., Gibbon J.T., Jones L.A.H., Dhanak V.R., Phillips L.J., Major L.J., Massabuau F.C. // J. Cryst. Growth. 2019. V. 528. P. 125254. https://doi.org/10.1016/j.jcrysgro.2019.125254
- [8] Xia X., Chen Y., Feng Q., Liang H., Tao P., Xu M., Du G. // Appl. Phys. Lett. 2016. V. 108. P. 202103. https://doi.org/10.1063/1.4950867
- [9] Son H., Choi Y., Hwang J., Jeon D. // ECS J. Solid State Sci. Technol. 2019. V. 8. P. Q3024–Q3027. https://doi.org/10.1149/2.0051907jss
- [10] Xu Y, Zhang C, Cheng Y, Li Z, Cheng Y, Feng Q, Chen D, Zhang J, Hao Y. // Materials. 2019. V. 12. P. 3670. https://doi.org/10.3390/ma12223670

- [11] Nikolaev V.I., Pechnikov A.I., Nikolaev V.V., Scheglov M.P., Chikiryaka A.V., Stepanov S.I., Medvedev O.S., Shapenkov S.V., Ubyivovk E.V., Vyvenko O.F. // J. Phys.: Conf. Ser. 2019. V. 1400. P. 055049. https://doi:10.1088/1742-6596/1400/5/055049
- [12] Shapenkov S., Vyvenko O., Ubyivovk E., Medvedev O., Varygin G., Chikiryaka A., Pechnikov A., Scheglov M., Stepanov S., Nikolaev V. // Phys. Status Solidi A. First published: 14 February 2020. P. 1900892. https://doi.org/10.1002/pssa.201900892
- [13] Cho S.B., Mishra R. // Appl. Phys. Lett. 2018. V. 112.
 P. 162101. https://doi.org/10.1063/1.5019721
- [14] Mezzadri F., Calestani G., Boschi F., Delmonte D., Bosi M., Fornari R. // Inorgan. Chem. 2016. V. 55. P. 12079–12084. https://doi.org/10.1021/acs.inorgchem.6b02244