Метод расчета рабочих характеристик кремниевых гетеропереходных солнечных элементов с произвольными параметрами кристаллической подложки

© И.Е. Панайотти¹, Е.И. Теруков^{2,3}, И.С. Шахрай^{2,4}

¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия

² Санкт-Петербургский государственный электротехнический университет "ЛЭТИ", Санкт-Петербург, Россия ³ НТЦ тонкопленочных технологий в энергетике при Физико-техническом институте им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия

07

Поступило в Редакцию 15 мая 2020 г. В окончательной редакции 15 мая 2020 г. Принято к публикации 19 мая 2020 г

Исследованы особенности токовых процессов в кремниевых гетеропереходных тонкопленочных солнечных элементах. Предложенная модель учитывает амбиполярный характер движения носителей заряда и позволяет рассчитывать рабочие характеристики при произвольном соотношении между длиной диффузии и толщиной кристаллической подложки. Описан численный метод оценки скорости рекомбинационных потерь на поверхностях кремниевых пластин, основанный на сравнительном анализе экспериментальных значений токов короткого замыкания и напряжений холостого хода.

Ключевые слова: гетеропереходные солнечные элементы, кристаллические кремниевые подложки, поверхностные рекомбинационные потери.

DOI: 10.21883/PJTF.2020.17.49883.18377

Гетеропереходные тонкопленочные солнечные элементы — НІТ-элементы (НІТ — heterojunction with intrinsic thin-layer solar cells), изготовленные на основе кристаллического кремния, широко используются в процессе производства современных солнечных батарей. В настоящее время эффективность лучших образцов превышает 26% [1,2]. Дальнейшее улучшение рабочих характеристик НІТ-элементов является актуальной задачей современной солнечной энергетики.

Процесс изготовления НІТ-элемента включает в себя этап формирования гетеропереходов на обеих поверхностях кристаллической кремниевой (*c*-Si) подложки путем нанесения тонких пленок аморфного гидрогенизированного кремния *p*-и *n*-типа. Обычно используются пластины *c*-Si, легированные донорной примесью с концентрацией $N_d \ge 10^{15}$ сm⁻³, с исходным объемным временем жизни свободных носителей заряда $\tau_0 \ge 1.5$ ms. Толщина подложки составляет 90–160 μ m.

В [3] был предложен метод моделирования процессов в HIT-элементах, основанный на использовании экспериментальных значений плотностей токов короткого замыкания J_{sc} . Однако развитая теория учитывала только случай $L_{diff} \gg d$, где L_{diff} — длина диффузии носителей заряда, а d — толщина подложки. Такое соотношение не всегда выполняется в реальных условиях. Например, на околоземных орбитах вследствие облучения солнечных элементов частицами высоких энергий времена жизни носителей заряда заметно снижаются, и длина диффузии может оказаться сравнимой с толщиной подложки. С целью интерпретации экспериментальных данных об уменьшении J_{sc} после радиационного воздействия на НІТ-элементы в [4] была предложена модель, справедливая для произвольного соотношения между L_{diff} и d. Однако в [4] были рассмотрены только близкие к режиму короткого замыкания условия фотоэлектрического преобразования, когда концентрации избыточных носителей зарядов малы по сравнению с уровнем легирования подложки $\Delta p \ll N_d$. Целью данного исследования является разработка обобщенной модели переноса зарядов в кристаллических кремниевых подложках с произвольными параметрами во всем токовом диапазоне.

В рамках предлагаемой модели НІТ-элемент рассматривается как $p^+ - n - n^+$ -диод, базой которого является кристаллическая кремниевая подложка (рис. 1), причем $p^+ - n$ - и $n - n^+$ -гетеропереходы формируют достаточно высокие потенциальные барьеры для электронов и дырок соответственно [5], так что

$$J_p(x=0) \approx J$$
 и $J_n(x=d) \approx J$, (1)

где J < 0 — проекция на ось *x* вектора полной плотности тока **J** (рис. 1), а J_p и J_n — проекции на ось *x* плотностей дырочного и электронного токов. Зонная структура НІТ-элемента указывает на практически полное отсутствие контактной разности потенциалов у $n-n^+$ -гетероперехода [5]. При этом область пространственного заряда p^+-n -гетероперехода проникает в глубь кристаллической подложки лишь на несколько

⁴ГК "Хевел", Москва, Россия E-mail: panaiotti@mail.ioffe.ru

Рис. 1. Полупроводниковая структура НІТ-элемента.

десятых микрометра, поэтому толщины квазинейтральной базы и подложки практически совпадают.

В [4] было обосновано, что вследствие многократного переотражения падающего излучения внутри полупроводниковой структуры в модели правомерно использовать усредненное значение скорости фотогенерации электронно-дырочных пар $G \approx \text{const}(x)$, где x — координата сечения *п*-базы. Кроме того, в силу крайне малых величин напряженности электрического поля в *n*-базе при характерных для НІТ-элемента рабочих плотностях токов можно исключить из рассмотрения дрейфовый механизм переноса электронов и дырок. В режимах максимальной выходной мощности и холостого хода концентрации избыточных носителей заряда Δp могут быть сравнимы и даже значительно превосходить N_d [3]. Поэтому в расчетах следует одновременно учитывать как снижение времени жизни носителей заряда за счет влияния механизмов оже-рекомбинации [6], так и амбиполярный характер их диффузионного движения. Распределения $\Delta p(x)$ в *n*-базе можно найти из решения одномерного стационарного уравнения непрерывности для дырок $G - \frac{\Delta p}{\tau} + D \frac{d^2 \Delta p}{dr^2} = 0,$

гле

$$D = D_p \frac{2b\Delta p + bN_d}{\Delta p(b+1) + bN_d}$$
(3)

— амбиполярный коэффициент диффузии [7], D_p коэффициент диффузии дырок, b = 2.8 — отношение подвижностей электронов и дырок в кристаллическом кремнии, $\tau = [\tau_0^{-1} + \tau_{Auger}^{-1}]^{-1}$ — результирующее объемное время жизни носителей заряда в *n*-базе, $au_{Auger} = [C_n(N_d + \Delta p)^2 + C_p(N_d + \Delta p)\Delta p]^{-1}$ — время жизни носителей заряда при оже-рекомбинации, $C_n = [2.8 \cdot 10^{-31} + (2.5 \cdot 10^{-22}) / (N_d + \Delta p)^{0.5}] \text{ сm}^6/\text{s},$ $C_p = 10^{-31} \text{ сm}^6/\text{s}$ [3]. Поскольку фотогенерация неравновесных электронно-дырочных пар соответствует включению в эквивалентную электрическую схему НІТ-элемента генератора тока с плотностью тока J_{sc} [8], граничные условия для уравнения (2) определим как

$$\frac{d\Delta p}{dx} = -\frac{J - J_{surf}}{qD}$$
 при $x = 0, \frac{d\Delta p}{dx} = 0$ при $x = d$, (4)

где q — заряд электрона, $J_{surf} > 0$ — проекция на ось х вектора суммарной плотности тока поверхностной рекомбинации. $J_{surf} = S_0 \Delta p(x = 0) + S_d \Delta p(x = d)$, где S₀ и S_d — скорости поверхностной рекомбинации на фронтальной и тыльной сторонах подложки. Уравнения (2)-(4) являются основой для численного моделирования произвольных токовых процессов в HIT-элементах. Однако в настоящей работе ограничимся рассмотрением случаев, когда возможно аналитическое представление результатов вычислений.

Оценки показывают, что в интервале $0 < |J| \leq J_{sc}$, где $J_{sc} \approx 35-40 \,\mathrm{mA/cm^2}$ в условиях AM1.5, значения D и $L_{diff} = \sqrt{D\tau}$ в основном определяются величиной плотности тока и слабо зависят от координаты х. Тогда из решения уравнения (2) с граничными условиями (4) можно получить аналитическую зависимость

$$J = \frac{\operatorname{sh}\left(\frac{d}{L_{diff}}\right)}{\operatorname{ch}\left(\frac{d-x}{L_{diff}}\right)} \left(-qGL_{diff} + \frac{qD\Delta p(x)}{L_{diff}}\right) + J_{surf}, \quad (5)$$

которая на границе p^+ -*n*-гетероперехода (в сечении x = 0) имеет вид

$$J = -J_{sc} + \frac{qD\Delta p(x=0)}{L_{diff}} \tanh\left(\frac{d}{L_{diff}}\right) + J_{surf}.$$
 (6)

Здесь

(2)

$$J_{sc} = qGL_{diff} \tanh\left(\frac{d}{L_{diff}}\right) \tag{7}$$

 плотность тока фотогенерации электронно-дырочных пар [4].

Падение напряжения на структуре HIT-элемента U практически полностью определяется величиной прямого смещения p^+ -*n*-гетероперехода [3]:

$$U \approx \frac{kT}{q} \ln \left\{ \frac{\Delta p(x=0)[\Delta p(x=0) + N_d]}{n_i^2(T)} \right\}, \qquad (8)$$

где $n_i(T)$ — собственная равновесная концентрация носителей заряда в подложке при заданной температуре *T*; *k* — постоянная Больцмана.

В режиме холостого хода (J = 0) распределение избыточных носителей заряда в n-базе Δp_{oc} является практически однородным, поэтому $J_{surf} = qS\Delta p_{oc}$, где $S = S_0 + S_d$ — суммарная скорость поверхностной рекомбинации. Концентрация Δp_{oc} связана с напряжением холостого хода U_{oc} через выражение (8). Тогда величину S можно оценить с помощью (6), используя результаты измерений J_{sc} и U_{oc} :

$$S \approx \frac{J_{sc}}{q\Delta p_{oc}} - \frac{D}{L_{diff}} \tanh\left(\frac{d}{L_{diff}}\right).$$
 (9)

Рис. 2 демонстрирует результаты вычисления суммарной скорости поверхностной рекомбинации. В расчетах были использованы параметры образцов НІТ-элементов из работы [9] с эффективной площадью подложки $\sim 238 \,\mathrm{cm}^2$. Получено, что $U_{oc} = 0.714 \,\mathrm{V}$ [9] соответствует $S \approx 0.3$ cm/s, причем $\Delta p_{oc} \approx 1.36 \cdot 10^{16}$ cm⁻³, $au \approx 844\,\mu$ s, а $D/D_p \approx 1.45$. Значение U_{oc} для S=0

Рис. 2. Оценочные значения суммарной скорости поверхностной рекомбинации. $I_{sc} = 9.267 \text{ A}, N_d = 10^{15} \text{ cm}^{-3}, d = 150 \, \mu \text{m}, \tau_0 = 1.5 \text{ ms}$ [9].

Рис. 3. Теоретические вольт-амперные характеристики НІТ-элемента. $N_d = 10^{15} \text{ cm}^{-3}$, $d = 150 \,\mu\text{m}$. Сплошная кривая — $\tau_0 = 1.5 \text{ ms}$, штриховая кривая — $\tau_0 = 75 \,\mu\text{s}$.

следует рассматривать как предельное прямое падение напряжения на области объемного заряда p^+ —*n*-гетероперехода при данном токе короткого замыкания I_{sc} . Реальные скорости поверхностной рекомбинации, вероятно, несколько отличаются от их оценочных значений, так как модель основана на ряде указанных выше приближений и не учитывает наличия токов утечки различного происхождения. Однако, на наш взгляд, предложенный метод определения *S* может быть использован на практике для экспресс-оценки качества поверхности кристаллических кремниевых пластин.

На рис. 3 представлены результаты расчета вольт-амперных характеристик, полученные с помощью (6) и (8), в приближении S = 0. Сплошная кривая построена для случая $\sqrt{D_p \tau_0} \gg d$ и $J_{sc} = 39$ mA/cm². Штриховая кривая моделирует ухудшение работы HIT-элемента под действием радиации вследствие двадцатикратного снижения τ_0 , когда $\sqrt{D_p \tau_0} \approx 2d$. Плотность тока короткого замыкания при этом уменьшается на 7.8% до ~ 36 mA/cm², а максимальная мощность, вырабатываемая HIT-элементом, падает на 22.3% с 22.27 до 17.30 mW/cm².

Финансирование работы

Работа выполнена в рамках государственного задания ФТИ им. А.Ф. Иоффе в области фундаментальных научных исследований.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Yamamoto K., Yoshikawa K., Yoshida W., Irie T., Kawasaki H., Konishi K., Asatani T., Kanematsu M., Mishima R., Nakano K., Uzu H., Adachi D. High efficiency α-Si/c-Si heterojunction solar cells // 27th Int. Conf. on amorphous and nanocrystalline semiconductors. Program Book. Seoul, Korea, 2017. P.92.
- [2] Миличко В.А., Шалин А.С., Мухин И.С., Ковров А.Э., Красилин А.А., Виноградов А.В., Белов П.А., Симовский К.Р. // УФН. 2016. Т. 186. № 8. С. 801–852.
- [3] Саченко А.В., Шкребтий А.И., Коркишко Р.М., Костылев В.П., Кулиш Н.Р., Соколовский И.О. // ФТП. 2015. Т. 49.
 В. 2. С. 271–277.
- [4] Панайотти И.Е., Теруков Е.И. // Письма в ЖТФ. 2019.
 Т. 45. В. 5. С. 9–12.
- [5] Форш П.А., Жигунов Д.М., Бобыль А.В., Теруков Е.И., Кашкаров П.К. // Аморфные и микрокристаллические полупроводники. Х Междунар. конф. СПб.: ФТИ им. А.Ф. Иоффе РАН, 2016. С. 209–210.
- [6] Kobayashi E., De Wolf S., Jacques L., Christmann G., Descoeudres A., Nicolay S., Despeisse M., Watabe Y., Balif C. // Appl. Phys. Lett. 2016. V. 109. P. 153503.
- [7] Шалимова К.В. Физика полупроводников. М.: Энергоатомиздат, 1985. 392 с.
- [8] Sze S.M. Physics of semiconductor devices. John Wiley & Sons, 1981. Ch. 14.2. [Зи С. Физика полупроводниковых приборов. Пер. с англ. М.: Мир, 1984. Кн. 2. Гл. 14.2.].
- [9] Теруков Е.И., Абрамов А.С., Андронников Д.А., Емцев К.В., Панайотти И.Е., Титов А.С., Шелопин Г.Г. // ФТП. 2018.
 Т. 52. В. 7. С. 792–795.

5