Расчет доз аморфизации кремния при облучении легкими ионами средних энергий

© Е.В. Окулич¹, В.И. Окулич², Д.И. Тетельбаум¹

 ¹ Нижегородский государственный университет им. Н.И. Лобачевского, 603950 Нижний Новгород, Россия
 ² Нижегородский институт управления — филиал Российской академии народного хозяйства и государственной службы при Президенте Российской Федерации, 603950 Нижний Новгород, Россия

E-mail: eokulich@nifti.unn.ru

Поступила в Редакцию 19 декабря 2019 г. В окончательной редакции 14 января 2020 г. Принята к публикации 16 апреля 2020 г.

На основе ранее предложенной диффузионно-коагуляционной модели дефектообразования при ионном облучении кремния путем численного решения соответствующих кинетических уравнений рассчитаны дозы аморфизации ($\Phi_{\rm am}$) для ионов средних энергий с массой $M_1 \leq 31$ а.е.м. Предполагается, что аморфизация на данной глубине происходит при дозе, при которой достигается некоторая пороговая величина суммарной концентрации вакансий и дивакансий ($C_{\rm am}$). Варьируемыми параметрами при расчетах являлись: энергия ионов, плотность ионного тока, температура, а также пороговая энергия смещения атома (E_d) и $C_{\rm am}$. Определены границы примененимости диффузионно-коагуляционной модели. Сравнение полученных результатов расчетов, проведенных в этих границах, с опубликованными экспериментальными данными показало (с учетом вариации экспериментальных данных и определенной свободы выбора параметров E_d и $C_{\rm am}$) удовлетворительное соответствие расчетных и экспериментальных значений $\Phi_{\rm am}$.

Ключевые слова: кремний, облучение легкими ионами, диффузионно-коагуляционная модель дефектообразования, расчет доз аморфизации.

DOI: 10.21883/FTP.2020.08.49649.9338

1. Введение

Ионно-лучевые методы воздействия на материалы начиная с 70-х годов прошлого века играют весьма важную, а во многих случаях определяющую роль в технологии производства приборов микроэлектронной и наноэлектронной техники. Свойства ионно-облученного полупроводника, как непосредственно после облучения, так и после термической обработки, критическим образом зависят от степени радиационного повреждения, что требует знания зависимости последней от условий облучения. Особенно важна эта проблема для кремния, который был и остается на достаточно длительную перспективу основным полупроводниковым материалом электронной техники.

Особый интерес вызывает явление аморфизации, наблюдающееся при достаточно больших дозах облучения и сильно влияющее на кинетику пострадиационного отжига.

Несмотря на длительную историю исследования аморфизации кремния, большого количества теоретических и экспериментальных работ, посвященных данной проблеме (см., например, [1]), она остается не до конца решенной. Это связано с большим количеством факторов, влияющих на кинетику радиационного повреждения: масса и энергия ионов, температура, плотность ионного тока и доза. Для тяжелых ионов (условно — с атомными массами $M_1 > 40$ а.е.м.) температура при облучении и плотность ионного тока в определенных пределах не оказывают сильного влияния на степень радиационного повреждения. В то же время для легких ионов они являются доминирующими.

Широко используемая для расчета радиационного повреждения общедоступная программа SRIM [2] не учитывает вторичных эффектов, определяющих уровень повреждения во время и после облучения, и потому не может непосредственно применяться для оценки доз аморфизации в случае легких ионов. Метод молекулярной динамики (МД) в принципе позволяет учитывать как первичные, так и вторичные процессы [3,4]. Однако ввиду высоких требований к компьютерным ресурсам расчеты этим методом ограничиваются рассмотрением процессов, происходящих в объемах очень малого размера, за времена порядка нескольких наносекунд и менее после прохождения отдельного иона и для объемов малого размера. Однако в Si вторичные процессы, сопровождающие радиационные повреждения (диффузия, аннигиляция элементарных дефектов — вакансий (V) и собственных межузельных атомов (I), объединение их в более крупные дефекты [5]), при температурах вблизи комнатной происходят за времена, существенно превышающие указанный порядок величины. При этом элементарные дефекты успевают продиффундировать на значительные расстояния, $\sim 10^{-6} - 10^{-5}$ см [6,7], что намного больше типичных размеров модельных областей в расчетах методом МД.

В работах [8,9] используется модель аморфизации Si, не требующая учета указанных вторичных процессов и опирающаяся на представление о накоплении и рекристаллизации локальных аморфных нанообластей (amorphous pockets, AP), образующихся непосредственно при прохождении иона и представляющих собой, согласно используемой модели [8,9], скопления близко расположенных друг к другу V и I (комплексы вида $I_m V_n$), координаты которых рассчитываются методом Монте-Карло. В работе [3] наличие локальных разупорядоченных областей с тем же названием АР обнаружено при моделировании методом МД. Однако в [3] констатируется, что для легких ионов (типа бора) АР играют лишь малую роль в разупорядочении по сравнению с одиночными V и I. В работе [10] из сравнения экспериментальных данных с модельными оценками для таких ионов, как Si⁺, также делается вывод о преобладающей (по сравнению с АР) роли разбегающихся из каскадных областей точечных дефектов при комнатной температуре. Таким образом, весьма проблематично использование модели аморфизации, основанной на представлении об образовании и отжиге АР, для ионов с малыми массами.

Трудоемкость расчетов методами МД и динамического метода Монте-Карло, а также сложность интерпретации таких результатов затрудняют оценки дозы аморфизации для широкого набора параметров процесса облучения. В этом отношении преимуществом обладают аналитические методы, основанные на решении кинетических уравнений. В [11] для легких ионов была предложена аналитическая диффузионно-коагуляционная (ДК) модель накопления радиационных дефектов. В [12] на основе этой модели для ионов с атомными массами $M_1 \leq 31$ а.е.м. были выполнены расчеты с использованием разработанного повреждения от плотности ионного тока и температуры. При этом, в отличие от [11], были учтены диффузионные процессы.

В настоящей работе приводятся результаты расчетов доз аморфизации кремния легкими ионами (B⁺, N⁺, Si⁺ и P⁺) на основе ДК модели в зависимости от плотности ионного тока (*j*) и температуры мишени (*T*) при энергиях ионов E = 50 и 100 кэВ. Результаты расчетов сравниваются с опубликованными экспериментальными литературными данными.

2. Методика расчета

Прежде всего следует уточнить термин "доза аморфизации". Принято представление о том, что аморфизация — это фазовый переход первого рода из кристаллического в разупорядоченное состояние, при котором отсутствует дальний порядок в пространственном распределении атомов [1]. Согласно распространенной модели, впервые предложенной Р. Смолуховским [13] для случая нейтронного облучения и группой исследователей с участием одного из авторов данной работы для ионного облучения [14], аморфизация при ионном облучении происходит в том случае, когда концентрация радиационных дефектов достигает некоторого порогового значения. Так как радиационные дефекты при ионном облучении неоднородно распределены по глубине, логично предположить, что с ростом дозы аморфизация вначале происходит на глубине, где концентрация дефектов максимальна, а затем аморфизованный слой расширяется в обе стороны, т.е. процесс аморфизации растянут по времени и неоднороден по глубине. Если кроме объемного максимума в распределении дефектов возникает приповерхностный максимум [15,16], то формируются две аморфные области, которые при определенной дозе сливаются, образуя единый аморфный слой. Прежде чем образуется аморфный слой (или слои), обычно возникают изолированные аморфные включения [3], и детальная картина аморфизации в общем случае требует трехмерного рассмотрения. Однако в тех случаях, когда интересует доза, при которой происходит сплошная аморфизация на определенной глубине, приемлемо приближенное одномерное рассмотрение (в направлении, перпендикулярном облучаемой поверхности).

В этой связи возникает вопрос об относительности понятия "дозы аморфизации". С одной стороны, имеющиеся в литературе экспериментальные данные [7,16–22] свидетельствуют об отсутствии систематических исследований влияния параметров процесса облучения на "дозу аморфизации"; с другой стороны, поскольку степень разупорядоченности решетки определялась разными методами, требуется тщательный анализ методики с точки зрения указанных выше особенностей процесса аморфизации.

В данной работе под Φ_{am} условно понимается доза, при которой суммарная относительная концентрации вакансий и дивакансий на данной глубине достигает заданной критической величины (C_{am}). При этом были заданы три значения C_{am} : 2, 5 и 10% от числа атомов кремния в единице объема (N_{Si}). Достижение значения 10% в точке максимума распределения C_{am} условно принято за дозу аморфизации облученного слоя, которое обычно приводится в экспериментальных исследованиях.

В соответствии с ДК моделью [11,12,23] рассчитывались усредненные в латеральном направлении концентрации дефектов (вакансий и дивакансий) как функции времени облучения и глубины. При этом не учитывалось формирование тонкого (< 10 нм) приповерхностного дефектного максимума, механизм образования которого требует отдельного рассмотрения [15,16]. При расчетах использовались те же значения параметров, что и в [12]. Здесь приведены результаты расчетов Φ_{am} с использованием условия отражающей границы (поверхности) для вакансий. По мнению авторов, это более соответствует реальности, чем условие поглощающей границы. В [12] расчеты концентраций дефектов были нами выполнены также и для случая поглощающей границы. Следует заметить, что выбор вида граничного условия для рассмотренных далее случаев существенным образом не повлиял на концентрацию дефектов на глубинах, близких к глубине расположения максимальной концентрации.

Одним из параметров в ДК модели является значение пороговой энергии смещения атомов кремния E_d . В литературе [2,24] чаще всего используются два типичных

i	<i>Т</i> ,К	B^+		N ⁺		Si ⁺		P+	
у, мкА/см ²		Е, кэВ							
		50	100	50	100	50	100	50	100
0.5	200 300 400	0.30 _ _	0.30 _ _	0.10 6.60 —	0.10 5.80 -	0.03 2.10 11.2 (21.6)	0.01 1.10 5.6 (12.1)	0.02 1.80 8.4 (18.1)	0.01 0.90 4.4 (9.4)
1	200 300 400	0.10 7.4 (16.8) -	0.10 7.6 (16.3) -	0.04 3.30 -	0.03 2.90 -	0.02 1.10 5.10	0.01 0.60 2.80	0.02 0.90 4.20	0.01 0.50 2.20
2	200 300 400	0.05 3.70 -	0.05 3.90 -	0.03 1.70 8.2 (17.6)	0.02 1.50 7.6 (16.3)	0.01 0.60 2.60	0.01 0.30 1.40	0.01 0.50 2.10	0.01 0.20 1.10
5	200 300 400	0.04 1.60 7.5 (16.1)	0.03 1.60 8.1 (17.1)	0.02 0.70 3.30	0.02 0.60 3.10	0.01 0.30 1.00	0.01 0.10 0.60	0.01 0.20 0.90	0.01 0.10 0.50
10	200 300 400	0.03 0.80 3.80	0.03 0.90 4.10	0.02 0.40 1.70	0.02 0.40 1.60	0.01 0.10 0.50	0.01 0.08 0.30	0.01 0.10 0.50	0.01 0.07 0.20

Таблица 1. Относительная концентрация имплантированных атомов $f = N_{\rm imp}/N_{\rm Si}$ (в %) на глубине максимума распределения при расчетных значениях $\Phi_{\rm am}$, полученных в рамках ДК модели

Примечание. Приведены значения относительных концентраций, рассчитанные при $E_d = 15$ эВ. Для оценки степени применимости модели для случаев, когда при $E_d = 15$ эВ относительные концентрации близки к 10%, в скобках приведены значения при $E_d = 22$ эВ для того же условия.

значения этой величины — 15 и 22 эВ. Эти значения и были использованы в расчетах.

Расчеты Ф_{ат} привели к вопросу о границах применимости ДК модели. Оказалось, что для некоторых режимов имплантации при расчетной дозе аморфизации концентрация внедряемых ионов оказывается столь большой, что она приближается к N_{Si}. Очевидно, что в этих случаях модель теряет силу хотя бы вследствие влияния примеси на используемые параметры, необходимости учета кластеризации примеси и пр. Очевидно, что ограничение должно быть тем жестче, чем выше химическая активность внедряемых ионов и различие атомных радиусов кремния и примеси. Вопрос о верхнем пределе доз, при котором данный фактор становится существенным, выходит за рамки модели ДК и в общем случае требует применения таких методов моделирования, как молекулярная динамика. В отсутствие точных критериев резонно в первом приближении принять в качестве верхнего предела применимости ДК модели ту дозу, при которой концентрация примеси в максимуме ее распределения (N_{imp}) мала по сравнению с $N_{\rm Si}$. В настоящей работе за критическое значение $N_{\rm imp}^{\rm max}$ принято значение, равное 0.1N_{Si} [25]. В связи с этим расчетные значения Φ_{am} , полученные для различных условий облучения, должны быть протестированы на выполнение данного условия, что было реализовано

Физика и техника полупроводников, 2020, том 54, вып. 8

нами с использованием распределениий примесей в объеме Si, полученных с помощью программы SRIM. Далее, в разд. 3, приведены сведения, позволяющие судить о выполнении указанного условия для конкретных значений *j* и *T*, при двух энергиях, 50 и 100 кэB, ионов B⁺, N⁺, Si⁺ и P⁺. Приведенные далее данные по $\Phi_{\rm am}$ отвечают критерию $N_{\rm imp}^{\rm max} < 0.1 N_{\rm Si}$.

3. Результаты

Использование описанного в [12] расчетного комплекса позволило достаточно эффективно определить границы применимости ДК модели и получить зависимости Φ_{am} в широком диапазоне параметров процесса облучения для указанного выше набора ионов.

В табл. 1 приведены значения $f = N_{\rm imp}/N_{\rm Si}$ — относительной концентрации имплантированных атомов в области максимума их распределения (в процентах от $N_{\rm Si}$), соответствующие расчетным значениям $\Phi_{\rm am}$ в выражении относительно $N_{\rm Si}$, в зависимости от условий облучения. Знак "минус" обозначает факт значительного превышения (более чем в 2 раза) критерия f < 10%.

На рис. 1 приведены расчетные значения Φ_{am} на глубине расположения максимума скорости генерации

Рис. 1. Зависимость дозы аморфизации в максимуме функции G(x) от плотности ионного тока при T = 300 К для ионов В⁺ (*I*), N⁺ (*2*), Si⁺ (*3*), P⁺ (*4*). E = 100 кэВ, $E_d = 15$ эВ, $C_{\text{am}} = 10\%$.

первичных дефектов G(x) при E = 100 кэВ и T = 300 К для нескольких (часто используемых) видов ионов в зависимости от *j* (ионы во всех случаях считались однозарядными). Параметры процессов вторичного дефектообразования, необходимые для расчетов концентраций вакансий и дивакансий по ДК модели, приведены в [12]. Видно, что как возрастание ј, так и увеличение массы иона (M_1) приводят к уменьшению Φ_{am} . Уменьшение дозы аморфизации с увеличением М1 при прочих равных условиях связано с увеличением числа дефектов, создаваемых одним ионом, и соответствующим ростом функции G(x). С ростом M_1 при одной и той же начальной энергии иона увеличивается ее доля, расходуемая на упругие столкновения, что вызывает возрастание функции генерации вакансий G(x) в соответствующих уравнениях [12]. Уменьшение же $\Phi_{\rm am}$ с ростом G(x)обусловлено тем, что вероятность связывания вакансий в дивакансии возрастает пропорционально квадрату их мгновенной концентрации, тогда как вероятность их захвата ловушками (приводящего, согласно ДК модели, к потере вакансий) пропорциональна первой степени этой величины.

С ростом дозы происходит расширение аморфизованного слоя как вглубь, так и в сторону поверхности. На рис. 2 приведены отношения расчетных доз аморфизации для глубины h = 10 нм, $\Phi_{am}(h = 10$ нм), и для глубины, где расположен максимум функции G(x), $\Phi_{am}(\max)$, в зависимости от M_1 при энергииях ионов 50 и 100 кэВ $(j = 1 \text{ мкА/см}^2)$. С увеличением M_1 отношение приближается к единице. Это обусловлено тем, что с ростом M_1 уменьшается острота максимума функции G(x) [2]. Интересно, что это отношение практически не зависит от плотности ионного тока в рассмотренном интервале j.

На рис. 3 приведены результаты расчета зависимости Φ_{am} на глубине расположения максимума суммарных

концентраций дефектов (вакансий и дивакансий) для ионов Si⁺ с E = 100 кэВ от температуры при трех значениях *j*. Величина Φ_{am} при высоких *T* растет с увеличением температуры, а при понижении температуры асимптотически стремится к постоянному значению. Последнее связано с тем, что при низких температурах потеря вакансий за счет их захвата на ловушки уменьшается из-за наличия энергетического барьера для захвата, так что в пределе низких температур вклад в разупорядочение вносят все генерированные при облучении вакансии.

Чтобы дать наглядное представление о чувствительности Φ_{am} к различным факторам, на рис. 4 в качестве типичного примера представлены зависимости Φ_{am} на глубине максимума функции G(x) для ионов Si⁺ с

Рис. 2. Зависимость отношения дозы аморфизации на глубине h = 10 нм к дозе аморфизации на глубине, соответствующей максимуму функции G(x), при энергиях 50 (1) и 100 кэВ (2) от массы иона M_1 при температуре 300 К.

Рис. 3. Зависимость дозы аморфизации на глубине, соответствующей максимуму функции G(x), от температуры для ионов Si⁺ (E = 100 кэВ) при j = 1 (I), 3 (2), и 10 мкА/см² (3) и $C_{\rm am} = 10\%$.

Физика и техника полупроводников, 2020, том 54, вып. 8

$E_d,$ эВ	<i>j</i> , мкА/см ²	C _{am} , %	<i>Т</i> ,К	<i>Е</i> , кэВ	Доза аморфизации, $10^{15}{ m cm}^{-2}$		
_					\mathbf{B}^+	N^+	\mathbf{P}^+
17	3	5	300	50 100	9.8 14	3.9 4.9	0.76 0.63
			400	50 100	49 71	19 25	3.4 2.9

Таблица 2. Зависимость дозы аморфизации от массы и энергии ионов для двух значений температуры облучения

E = 100 кэВ от температуры при различных значениях параметров j, $C_{\rm am}$ и E_d .

В табл. 2 приведены результаты расчета значений Φ_{am} на глубине максимума функции G(x) для B⁺, N⁺ и P⁺ при j = 3 мкА/см², T = 300 и 400 K, $C_{am} = 5\%$. При этом использовалось промежуточное (между 15 и 22 эВ) значение пороговой энергии смещения $E_d = 17$ эВ.

Сравним теперь результаты с литературными данными. В литературе опубликованы достаточно многочисленные данные по Φ_{am} . К сожалению, авторы не всегда указывают такой важный параметр, как плотность ионного тока. Не везде гарантируется и отсутствие существенного нагрева образцов ионным пучком. Кроме того, как уже говорилось, нужно иметь в виду, что именно понимается под "дозой аморфизации" в различных работах. В одних случаях (например, в методе ЭПР) для ионов средних энергий фиксируется переход в аморфное состояние практически всего имплантированного слоя, в другом (метод обратного резерфордовского рассеяния) определяется разупорядочение на разных глубинах; при этом доза, при которой происходит полная аморфизация на глубине расположения максимума профиля распределения степени разупорядочения, определяется с большой погрешностью вследствие замедления роста количества обратно рассеянных ионов с дозой по мере приближения этого количества к уровню, найденному для произвольно разупорядоченного образца. Просвечивающая электронная микроскопия поперечного среза позволяет четко определить наличие и границы аморфного слоя, но этот метод, ввиду его трудоемкости, чаще всего используется лишь для некоторой определенной совокупности параметров облучения Ф, ј и Т. При сравнении результатов с экспериментальными данными следует иметь в виду также то, что имеется определенная свобода в выборе используемых в расчетах по ДК модели параметров, входящих в уравнения [12].

Сравнение проведено для ионов B⁺, N⁺, Si⁺, P⁺ при двух значениях параметров E_d (15 и 22 эВ [2,24]) и двух значениях критической концентрации дефектов ($C_{am} = 5$ и 10%).

В табл. З приведены расчетные значения Φ_{am} при комнатной температуре облучения на глубине, соответствующей максимуму функции G(x). Там же приведены экспериментальные данные. С учетом указанных выше обстоятельств соответствие расчетных и экспериментальных данных в целом можно считать удовлетворительным.

Ион	<i>E</i> , <i>j</i> ² кэВ мкА/см ²	i'	Φ^{exp}_{am}	Метол	$\Phi_{ m am}^{ m calc}$, $10^{15}{ m cm}^{-2}$		
		$10^{15} \mathrm{cm}^{-2}$	определения	$E_d = 22 \mathfrak{B}$ $C_{\mathrm{am}} = 10\%$	$E_d = 15 \mathfrak{B}$ $C_{\rm am} = 5\%$		
B^+	50 50 50	3 10 2	30 [17] 10 [17] 20 [7]	RED ED	33 10 43.5	7.7 2.5 8.2	
N^+	40 50	7.6 2	1.5 [16] 4 [7]	RBS ED	4.9 17.2	1.2 3.2	
Si ⁺	50 230	$10 \sim 0.2$	2.0 [18] 0.5–0.8 [19]	ESR XRD, RBS	1.0 4.1	0.24 1.0	
P ⁺	50 50 100	10 2	2.0 [20] 0.4 [7]	RBS ED RS,	0.9 4.3	0.23 0.8 2.4	
	200	10	1.0 [22]	RBS RBS	0.8	0.21	

Таблица 3. Сравнение расчетных (Φ_{am}^{calc}) и экспериментальных (Φ_{am}^{exp}) значений доз аморфизации при комнатной температуре

Примечание. RBS — обратное резерфордовское рассеяние, RS — рамановская спектроскопия, ESR — электронный парамагнитный резонанс, XRD — рентгеновская дифракция, RED — электронография с последовательным удалением слоев, ED — электронография. Рассчитанные значения Φ_{am}^{calc} относятся к области максимума функции G(x).

Рис. 4. Доза аморфизации на глубине, соответствующей максимуму функции G(x), при облучении ионами Si⁺ (E = 100 кэB) для j = 3 (темные точки) и 10 мкА/см² (светлые точки). $E_d = 15$ (a) и 22 эВ (b).

Что касается основных предсказываемых закономерностей — зависимости дозы аморфизации от массы иона, плотности ионного тока и температуры облучения — качественно они также удовлетворительно согласуются с экспериментально установленными закономерностями.

4. Заключение

В работе показано, что ДК модель дает в первом приближении согласующиеся с экспериментальными данными результаты по дозам аморфизации кремния легкими ионами, наиболее часто используемыми в технологии ионной имплантации.

Уточнение результатов в рамках данной модели при использовании разработанного вычислительного комплекса (без привлечения больших компьютерных ресурсов) возможно по мере получения более достоверных сведений о кинетических и других параметрах, входящих в уравнения. С другой стороны, для более точного сравнения с результатами экспериментов в ряде случаев желательна постановка дополнительных опытов при строгой фиксации параметров облучения (j, T), сопровождающихся послойным анализом структурного качества, в частности в области критических доз.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] L. Pelaz, L.A. Marques, J. Barbolla. J. Appl. Phys., **96** (11), 5947 (2004).
- [2] J.F. Ziegler, M.D. Ziegler. J.P. Nucl. Instr. Meth. Phys. Res. B, 268 (11-12), 1818 (2010).
- [3] M.J. Caturla, T. Diaz de la Rubia, L.A. Marques, G.H. Gilmer. Phys. Rev. B, **54**, 16683 (1996).
- [4] K. Nordlund. Comput. Mater. Sci., 3, 448 (1995).
- [5] В.Л. Винецкий, Г.А. Холодарь. Радиационная физика полупроводников (Киев, Наук. думка, 1979).
- [6] А.И. Титов, А.Ю. Азаров, В.С. Беляков. ФТП, **37** (3), 358 (2003).
- [7] A.I. Gerasimov, E.I. Zorin, P.V. Pavlov, D.I. Tetelbaum. Phys. Status Solidi A, 12, 679 (1972).
- [8] K.R.C. Mok, M. Jaraiz, I. Martin-Bragado, J.E. Rubio, P. Castrillo, R. Pinacho, J. Barbolla, M.P. Srinivasan. J. Appl. Phys., 98, 046104 (2005).
- [9] K.R.C. Mok, F. Benistant, M. Jaraiz, J.E. Rubio, P. Castrillo, R. Pinacho, M.P. Srinivasan. J. Appl. Phys., 103, 014911 (2008).
- [10] P.D. Edmondson, D.J. Riley, R.C. Birtcher, S.E. Donnelly. J. Appl. Phys., 106, 043505 (2009).
- [11] Н.П. Морозов, Д.И. Тетельбаум, П.В. Павлов, Е.И. Зорин. ФТП, 9 (12), 2292 (1975).
- [12] Е.В. Окулич, В.И. Окулич, Д.И. Тетельбаум. ФТП, 52 (9), 967 (2018).
- [13] Р. Смолуховский. В сб.: Влияние ядерных излучений на материалы, под ред. Дж. Хэрвуда (Л., Судпромгиз, 1961) с. 168
- [14] П.В. Павлов, Д.И. Тетельбаум, Е.И. Зорин, Р.В. Кудрявцева. Кристаллография, **12** (1), 155 (1967).
- [15] Е.И. Зорин, П.В. Павлов, Д.И. Тетельбаум. Ионное легирование полупроводников (М., Энергия, 1975).
- [16] A.I. Titov, G. Carter. Nucl. Instr. Meth. Phys. Res. B, 119, 491 (1996).
- [17] Д.И. Тетельбаум. Автореф. докт. дис. (Горький, ГГУ, 1987).
- [18] J.G. de Walt, C.A.J. Ammerlau. 2nd Int. Conf. Ion Implantation (N.Y., Springer, 1971) p. 39.
- [19] G. Bai, M.A. Nicollet. J. Appl. Phys., 70, 649 (1991).
- [20] J.W. Mayer, L. Ericksson, J.A. Davies. Ion Implantation in Semiconductors, Silicon, and Germanium (N.Y., Academic Press, 1970).
- [21] T. Motooka, O.W. Holland. Appl. Phys. Lett., 61 (25), (1992).
- [22] P.P. Morehed, B.L. Crowder. Rad. Eff., 6, 27 (1970).
- [23] N.P. Morozov, D.I. Tetelbaum. Phys. Status Solidi A, 51 (2), 629 (1979).
- [24] E. Holmström, A. Kuronen, K. Nordlund. Phys. Rev. B, 78, 045202 (2008).
- [25] L.A. Christel, J.F. Gibbons, T.W. Sigmon. J. Appl.Phys., 52, 7143 (1981).

Редактор Л.В. Шаронова

Calculation of silicon amorphization doses at irradiation with light ions of medium energy

E.V. Okulich¹, V.I. Okulich², D.I. Tetelbaum¹

 ¹ Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
 ² Nizhny Novgorod Institute of Management-Branch of Russian Presidential Academy of National Economy and Public Administration, 603950 Nizhny Novgorod, Russia

Abstract Based on the previously proposed diffusion-coagulation model of defect formation under ion irradiation of silicon and numerically solving the corresponding kinetic equations, amorphization doses (Φ_{am}) for ions of medium energy with a mass of $M_1 \leq 31$ a.m.u. were calculated. It is assumed that amorphization at a given depth occurs at a dose at which a certain threshold value of the total concentration of vacancies and divacancies (C_{am}) is reached. Variable parameters in the calculations were: ion energy, ion current density, temperature, as well as the threshold atomic displacement energy of atom (E_d) and $C_{\rm am}$. Limits of the diffusion-coagulation model are determined. Comparison of the results of calculations carried out at these limits with published experimental data showed (taking into account the variation of the experimental data and a certain freedom of choice of the parameters E_d and C_{am}) a satisfactory agreement between the calculated and experimental values of Φ_{am} .