Анализ эффективностей процессов захвата электронов ионами в ридберговские состояния и неупругих переходов $n \rightarrow n'$ в плазме смесей инертных газов

© К.С. Кислов, А.А. Нариц, В.С. Лебедев

Физический институт им. П.Н.Лебедева РАН, 119991 Москва, Россия e-mail: kislov93@mail.ru; narits@sci.lebedev.ru; vlebedev@sci.lebedev.ru

Поступила в редакцию 28.11.2019 г. В окончательной редакции 28.11.2019 г. Принята к публикации 23.12.2019 г.

Проведен сравнительный анализ эффективностей резонансного и нерезонансных механизмов захвата электронов ионами в ридберговские состояния атомов Xe(n) и неупругих переходов $n \to n'$ между высоковозбужденными уровнями в плазме смесей инертных газов Rg/Xe, содержащей атомарные, Xe⁺, и молекулярные, RgXe⁺ и Xe⁺₂, ионы (Rg=Ne, Ar и Kr, [Xe] \ll [Rg]). Расчеты констант скоростей резонансного захвата электронов ионами Xe⁺ в тройных столкновениях с атомами Rg(¹S₀) инертного газа и диссоциативной рекомбинации гетероядерных, RgXe⁺, и гомоядерных, Xe⁺₂, ионов выполнены на основе разработанного нами подхода в рамках теории неадиабатических переходов между электронными термами системы RgXe⁺ + e. Для альтернативного механизма трехчастичного захвата электронов ионами Xe⁺ в столкновениях с атомами Ne, Ar и Kr расчеты констант скоростей проведены в импульсном приближении с учетом короткодействующего и поляризационного электрон-атомного взаимодействий. Константы скорости трехчастичного захвата электронов ионами и переходов $n \to n'$ при столкновениях с электронами вычислены с использованием известных теоретических моделей. Установлены диапазоны степеней ионизации плазмы, ее электронных и газовых температур, а также главного квантового числа атома Xe, в которых резонансные свободно-связанные и связанные переходы электрона играют ключевую роль.

Ключевые слова: ридберговские атомы, трехчастичная и диссоциативная рекомбинации, переходы между высоковозбужденными уровнями, резонансные и нерезонансные процессы.

DOI: 10.21883/OS.2020.04.49195.319-19

1. Введение

Решение ряда актуальных фундаментальных и прикладных задач спектроскопии, диагностики и кинетики низкотемпературной плазмы требует детальной информации об элементарных столкновительных и радиационных процессах, происходящих с участием атомов в возбужденных и высоковозбужденных состояниях [1-4]. К ним, в частности, относятся разнообразные процессы электрон-ионной рекомбинации, включая диссоциативную рекомбинацию (ДР) молекулярных ионов с электронами [5] и трехчастичную рекомбинацию электронов с атомарными ионами при столкновениях со свободными электронами или нейтральными частицами плазмы [6]. В плазме смесей инертных газов, содержащей атомарные и молекулярные ионы, в образовании атомов в ридберговских состояниях важную роль могут играть как процессы диссоциативного захвата электронов:

$$BA^{+}(i, vJ) + e \to BA(f, nl) \to A(nl) + B, \quad (1)$$

так и резонансный захват электронов атомарными ионами в тройных столкновениях с атомами буферного газа:

$$A^{+} + e + B \rightarrow BA^{+}(i) + e \rightarrow BA(f, nl) \rightarrow A(nl) + B,$$
(2)

учтенный недавно в кинетической модели [7] наряду с другими рекомбинационными и релаксационными процессами при оценке результирующего коэффицента рекомбинации такой плазмы. Здесь n и l – главное и орбитальное квантовые числа ридберговского атома A(nl), v и J — колебательное и вращательное квантовые числа иона BA^+ в начальном электронном состоянии i.

При достаточно высоких степенях ионизации плазмы ключевую роль в заселении ридберговских состояний атома наряду с процессами (1) и (2) играет традиционный механизм трехчастичного захвата электронов атомарными ионами при столкновениях со свободными электронами и неупругие переходы $n \rightarrow n'$ между высоковозбужденными уровнями:

$$\mathbf{A}^{+} + e + e \to \mathbf{A}(nl) + e, \tag{3}$$

$$A(nl) + e \to A(n'l') + e.$$
(4)

В противоположность этому в плотной слабоионизованной плазме электрон-ионная рекомбинация происходит в результате захвата электрона в высоковозбужденные состояния и релаксации энергии электронного возбуждения по атомным уровням при столкновениях с нейтральными атомными частицами:

$$\mathbf{A}^{+} + e + \mathbf{B} \to \mathbf{A}(nl) + \mathbf{B},\tag{5}$$

$$\mathbf{A}(nl) + \mathbf{B} \to \mathbf{A}(n'l') + \mathbf{B}.$$
 (6)

Наиболее эффективное влияние на результирующие скорости рекомбинации оказывают неупругие переходы между ридберговскими уровнями атомов при столкновениях с нейтральными частицами в случае [7,8], когда реализуется канал резонансного девозбуждения энергии "рекомбинирующего" электрона:

$$A(nl) + B \to BA(i, nl) \to BA(f, n'l') \to A(n'l') + B.$$
(7)

Исследованиям рекомбинационных процессов в плазме чистых инертных газов и их смесей посвящено большое количество работ. Большинство из них было выполнено для процессов диссоциативной рекомбинации гомоядерных ионов инертных газов Xe₂⁺, Kr₂⁺, Ar₂⁺, Ne₂⁺ и He₂⁺ [9-14]. В ряде статей [15-18] проводилось сравнение эффективностей процессов диссоциативной и тройной рекомбинации при столкновениях со свободными электронами плазмы. В отличие от гомоядерных ионов надежных экспериментальных данных по константам скоростей рекомбинационных процессов с участием гетероядерных ионов инертных газов имеется крайне мало, а их теоретическое описание весьма фрагментарно. Детальные экспериментальные исследования выполнены здесь недавно [19-22] лишь для процесса ДР сильносвязанных ионов HeNe⁺. Имеются также оценки [23,24] констант скоростей диссоциативной рекомбинации (1) слабосвязанных, NeXe⁺, и умеренносвязанных, ArXe⁺, ионов, выполненные с использованием упрощенных теоретических подходов из работ [25,26]. В большинстве современных работ при анализе кинетики диссоциативной рекомбинации используются полуэмпирические формулы, полученные на основе простейших физических моделей [23,24,27,28]. Однако соответствующие результаты заметно отличаются от имеющихся экспериментальных данных в области высоких температур [12], не описывают заселение отдельных атомных уровней и дают лишь общее представление о характере процесса рекомбинации.

Актуальность исследования процессов (1)–(7) для смесей инертных газов связана с тем, что они играют важную роль при рекомбинационном заселении возбужденных уровней атомов в плазме послесвечения импульсных разрядов. В ряде работ отмечалось, что ДР ионов инертных газов (HeXe⁺ и NeXe⁺) вносит ключевой вклад в кинетику диэлектрических барьерных разрядов, используемых для создания эксимерных ламп и газовых лазеров [27–31]. Многочисленные исследования [24,32–38] указывают на то, что ДР молекулярных ионов инертных газов необходимо учитывать при анализе механизма формирования инверсной заселенности в активной среде мощного ксенонового лазера ИК диапазона, функционирующего на переходе

 $5d \rightarrow 6p$. Согласно результатам [24,37,38], заселение верхних состояний рабочих переходов происходит преимущественно не прямым способом, а в результате захватов электронов (1) на высокие уровни и серии столкновительных переходов (7), сопровождающихся девозбуждением атома ксенона. К этому следует добавить, что в соответствии с нашими расчетами [7] резонансный механизм захвата электронов атомарными ионами (2) и неупругих переходов $n \rightarrow n'$ (7) может существенно увеличивать скорости электрон-ионной рекомбинации в плазме смесей инертных газов.

Это указывает на необходимость проведения надежных расчетов констант скоростей процессов (1)-(7), происходящих с участием атомов инертных газов в возбужденных и высоковозбужденных состояниях. Наряду с разработкой кинетических моделей это позволит создать в перспективе целостную физическую картину рекомбинационных и релаксационных процессов в плазмах смесей инертных газов. Цель работы состоит в расчете констант скоростей процессов (1) и (2) резонансного захвата электронов гетероядерными молекулярными (E < 0) и квазимолекулярными (E > 0)ионами, RgXe⁺, на ридберговские уровни атома ксенона, а также неупругих переходов $n \rightarrow n'$ между ними (7). Будут сопоставлены эффективности резонансного и традиционного нерезонансного механизма переходов (2) и (7), обусловленного рассеянием квазисвободного электрона на атоме В. Для выяснения относительной роли столкновений с электронами и нейтральными частицами мы также проведем сравнение эффективностей процессов (2), (7) и (3), (4). Анализ будет проведен для систем $Kr+Xe^++e$, $Ar+Xe^++e$ и $Ne+Xe^++e$ в условиях, характерных для низкотемпературной плазмы инертных газов. Выбор систем обусловлен тем, что они обладают сильно различающимися значениями энергии диссоциации D_0 ионов RgXe⁺. Ионы NeXe⁺ являются чрезвычайно слабосвязанными системами с $D_0=33$ meV, ионы KrXe⁺ относятся к умеренно-сильно связанным системам (D_0 =400 meV), а ионы ArXe⁺ представляют собой промежуточный случай (D₀=171 meV). В подобных системах абсолютная и относительная эффективности процессов (1)-(7) будут кардинально различаться из-за разницы в вероятности образования ионов RgXe⁺. Выбор исследуемых систем обусловлен также их использованием при реализации ИК лазеров [24,32-36] и эксимерных ламп [27–30].

Еще одной целью работы является сравнительный анализ эффективности диссоциативного захвата электронов гомоядерными, Xe_2^+ , и гетероядерными, $RgXe^+$, ионами на высоковозбужденные уровни. Относительная роль этих процессов обсуждалась ранее в ряде работ, посвященных выяснению механизмов функционирования различных светоизлучающих устройств на смесях инертных газов [24,31–34,36]. Сравнение будет осуществлено в результате прямого численного расчета констант скоростей диссоциативного захвата электронов ионами Xe_2^+ и ArXe⁺ на ридберговские уровни и позволит оценить

абсолютную эффективность сравниваемых процессов при заданных концентрациях указанных ионов, значения которых определяются условиями экспериментов.

Нерезонансный захват электронов ионами и переходы n → n' при столкновениях с атомами инертного газа

Рассмотрим процесс нерезонансного захвата (5) электрона ионом A^+ в тройных столкновениях с атомом В в случае, когда он обусловлен рассеянием электрона на этой частице. В отличие от механизма резонансного захвата (2) в процессе нерезонансного захвата (5) кинетическая энергия электрона $\varepsilon = \hbar^2 k^2 / 2m_e$ вместе с энергией связи ридберговского электрона $|\varepsilon_{nl}| = Ry/n_*^2$ непосредственно передается в энергию относительного движения частиц A(nl) и В. Для описания этого процесса воспользуемся соотношением детального баланса:

$$\sigma_{\varepsilon \to nl}^{\text{cap}}(E) = 2\pi^2 \hbar (2l+1) \frac{(q')^2}{q^2 k^2} \frac{\mathrm{d}\sigma_{nl \to \varepsilon}^{\text{di}}(E')}{\mathrm{d}\varepsilon},$$
$$E' = E + \varepsilon + |\varepsilon_{nl}|, \qquad (8)$$

связывающего эффективное сечение, $\sigma_{\varepsilon \to nl}^{\rm cap}$ [cm⁴s], трехчастичного захвата (5) в процессе свободно-связанного перехода электрона $\varepsilon \to nl$ с дифференциальным сечением, $d\sigma_{nl\to\varepsilon}^{\rm di}(E')/d\varepsilon$ [cm² erg⁻¹], обратного процесса прямой ионизации атома A(nl) при столкновении с атомом В. Здесь $E = \hbar^2 q^2/2\mu$ и $E' = \hbar^2 (q')^2/2\mu$ — кинетические энергии относительного движения частиц A⁺ и В в начальном и конечном каналах реакции (5), μ — их приведенная масса, $\varepsilon_{nl} = -Ry/(n - \delta_l)^2$ — энергия ридберговского электрона, δ_l — квантовый дефект *nl*-уровня.

В рамках модели квазисвободного электрона и импульсного приближения [4] $d\sigma_{nl\to\varepsilon}^{di}(E')/d\varepsilon$ имеет вид [39]

$$\frac{d\sigma_{nl\to\varepsilon}^{\mathrm{di}}(E')}{d\varepsilon} = \frac{\pi v_0^2}{2Ry(V')^2} \int_{Q_1}^{Q_2} dQ$$
$$\times \int_{|\kappa_0(Q)|}^{\infty} \kappa d\kappa |g_{nl}(\kappa)|^2 [f_{\mathrm{eB}}(\kappa, Q)]^2, \qquad (9)$$

$$|\kappa_0(Q)| = \left|Q^2/2 - m_e(\varepsilon + |\varepsilon_{nl}|)/\hbar^2\right|/Q,$$
$$Q_{1,2}(E) = \sqrt{2\mu} \left|\sqrt{E + (\varepsilon + |\varepsilon_{nl}|)} \mp \sqrt{E}\right|/\hbar.$$
(10)

Здесь f_{eB} — амплитуда рассеяния ультрамедленного электрона на атоме В, $\hbar\kappa$ — импульс электрона, $\hbar Q$ — переданный импульс, $|g_{nl}(\kappa)|^2$ — функция распределения импульсов электрона в состоянии nl, $V'=\hbar q'/\mu$ — относительная скорость атомов A(nl) и В, v_0 — атомная

единица скорости. Таким образом, описание столкновения атома В с высоковозбужденным атомом A(nl) сводится к задаче о рассеянии квазисвободного электрона *е* на атоме В. При этом величина $|g_{nl}(\kappa)|^2$ определяется кулоновским полем ионного остова A^+ ридберговского атома A(nl).

Подстановка (9) в (8) дает выражение для сечения нерезонансного захвата на уровень nl. Сечение захвата на все водородоподобные lm-подуровни уровня n требует суммирования по l:

$$\sigma_{\varepsilon \to n}^{\operatorname{cap}}(E) = \sum_{l=0}^{n-1} \sigma_{\varepsilon \to nl}^{\operatorname{cap}}(E) = \frac{\mu}{m_e} \frac{\pi^3 n^2}{2\varepsilon E} \frac{\hbar^3 v_0^2}{2Ry} \int_{Q_1(E)}^{Q_2(E)} dQ$$
$$\times \int_{|\kappa_0(Q)|}^{\infty} \kappa d\kappa |g_n(\kappa)|^2 |f_{eB}(\kappa, Q)|^2, \int_{0}^{\infty} |g_n(\kappa)|^2 \kappa^2 d\kappa = 1.$$
(11)

Здесь функция распределения импульсов электрона $|g_n(\kappa)|^2$ определяется формулой Фока [4]:

$$|g_n(\kappa)|^2 = \sum_{l=0}^{n-1} \frac{2l+1}{n^2} |g_{nl}(\kappa)|^2 = \frac{2^5 (na_0)^3}{\pi \left[1 + (n\kappa a_0)^2\right]^4}, \quad (12)$$

где a_0 — боровский радиус. Расчеты сечений нерезонансного захвата электронов проводились для ридберговских состояний с $n\gg1$. Высоковозбужденные *n*-уровни произвольного атома с $l\gtrsim2$ практически вырождены. Вклад состояний $l\lesssim2$ обычно пренебрежимо мал для $n\gg1$. Для единого учета как водородоподобных состояний, так и состояний A(nl) с существенным квантовым дефектом, можно вместо (11) использовать формулу

$$\sigma_{\varepsilon \to n}^{\operatorname{cap}}(E) = \sum_{l} \xi_{l_0 n} \sigma_{\varepsilon \to nl}^{\operatorname{cap}}(E), \ \xi_{l_0 n} = 1 - l_0^2 / n^2, \qquad (13)$$

дающую хорошее приближение к точному результату. Здесь l_0 — минимальное значение орбитального квантового числа атома A(nl), для которого nl-состояния с $l \ge l_0$ можно считать вырожденными ($\delta_l \approx 0$). Фактор ξ_{l_0n} описывает долю неводородоподобных состояний с данным n и выражается через отношение статистических весов, $(g_n - g_0)/g_n$, а $g_0 = l_0^2$ — сумма статистических весов состояний с $l < l_0$. Для состояний с $n \gg 1$, представляющих основной интерес в случае нерезонансного механизма захвата, имеем $l_0 \ll n$, так что $\xi_{l_0n} \approx 1$.

Амплитуда упругого рассеяния электрона на атоме В и дифференциальное сечение, $d\sigma_{\rm eB}/d\Omega$, усредненное по возможным значениям, $S_+=s_{\rm B}+1/2$ и $S_-=|s_{\rm B}-1/2|$, полного спина, *S*, системы B+e, равны [40]:

$$\begin{split} f_{\mathrm{eB}}^{(S)}\left(\kappa,\theta\right) &= \sum_{\ell} \left(2\ell+1\right) f_{\ell}^{(S)}\left(\kappa\right) P_{\ell}\left(\cos\theta\right),\\ f_{\ell}^{(S)} &= \left[\kappa\cot\eta_{\ell}^{(S)}-i\kappa\right]^{-1}, \end{split}$$

Оптика и спектроскопия, 2020, том 128, вып. 4

$$\frac{d\sigma_{\rm eB}}{d\Omega} = \sum_{S} C\left(S\right) \left| f_{\rm eB}^{\left(S\right)}\left(\kappa,\theta\right) \right|^{2}.$$
(14)

Здесь $f_{\ell}^{(S)}(\kappa)$ и $\eta_{\ell}^{(S)}(\kappa)$ — амплитуда и сдвиг фазы парциальной волны с орбитальным моментом ℓ , θ угол рассеяния, $C(S)=(2S+1)/[2(2s_B+1)]$ — спиновый фактор, s_B — спин атома В. Для атомов инертного газа в основном состоянии $s_B=0$, так что имеется единственный член с $S=S_+=S_-=1/2$ и C(S)=1, тогда как для атомов щелочных металлов имеются триплетные ($S_+=1$, $C(S_+)=3/4$) и синглетные ($S_-=0$, $C(S_-)=1/4$) волны в рассеянии электрона.

При относительно невысокой поляризуемости *α* атомов В (как у инертных газов) применима модифицированная теория эффективного радиуса [41]

$$\kappa^{-1} \tan (\eta_0) = -L - \pi \alpha \kappa / (3a_0) - 4\alpha L \kappa^2 \ln (\kappa a_0) / (3a_0) + D_0 \kappa^2 + F_0 \kappa^3 + O(\kappa^4),$$
(15)
$$\kappa^{-1} \tan (\eta_\ell) = \pi \alpha \kappa \left[a_0 (2\ell + 3) (2\ell + 1) (2\ell - 1) \right]^{-1} + D_\ell \kappa^2 + O(\kappa^3), \ell \ge 1,$$
(16)

где L — длина рассеяния электрона на атоме В. Величины η_{ℓ} быстро падают с ростом ℓ .

Для расчета константы скорости $\beta_{nl}^{cap}(T_e, T)$ [cm⁶s⁻¹] нерезонансного захвата электронов (5) на все подуровни заданного ридберговского уровня *n* необходимо провести усреднение величины $v_e V_E \sigma_{e \to n}^{cap}(E)$ по распределениям скоростей электронов v_e и относительного движения ядер V_E при заданных температурах T_e и *T*:

$$\beta_{n}^{\operatorname{cap}}\left(T_{e},T\right) = \int_{0}^{\infty} d\varepsilon f_{T_{e}}\left(\varepsilon\right) \upsilon_{\varepsilon} \int_{0}^{\infty} dE f_{T}(E) V_{E} \sigma_{\varepsilon \to n}^{\operatorname{cap}}\left(E\right).$$
(17)

Наряду с процессами захвата электрона эффективности рекомбинационных процессов в плазме могут в значительной степени определяться различными механизмами неупругих переходов между высоковозбужденными состояниями атомов, вызванных столкновениями с атомами буферного газа. Рассмотрим нерезонансный механизм таких переходов (6). Согласно [42], сечение процесса (6) связано с выражением (9) соотношением

$$\sigma_{n \to n'} \to \frac{d\sigma_{n \to \varepsilon}^{\mathrm{di}}}{d\varepsilon} \left| \frac{d\varepsilon_{n'}}{dn'} \right| = \frac{d\sigma_{n \to \varepsilon}^{\mathrm{di}}}{d\varepsilon} \frac{2Ry}{(n')^3}, \qquad (18)$$

что позволяет рассчитать сечение нерезонансного перехода $n \rightarrow n'$ с помощью выражений (12) и (14)–(16):

$$\sigma_{n \to n'} = \frac{\pi v_0^2}{(n')^3 V^2} \int_{Q_1}^{Q_2} dQ \int_{|\kappa_0(Q)|}^{\infty} \kappa d\kappa |g_n(\kappa)|^2 [f_{eB}(\kappa, Q)]^2,$$
(19)

где $V = (2E/\mu)^{1/2}$ — относительная скорость атомов. Пределы интегрирования в (19) определяются выражениями (10), где величина $\Delta \varepsilon = \varepsilon + |\varepsilon_n|$ заменяется на $\Delta \varepsilon_{n'n} = \varepsilon_{n'} - \varepsilon_n \approx 2Ry \Delta n/n^3$. Константы скорости девозбуждения, $K_{n \to n'}$, и возбуждения, $K_{n' \to n}$ (переход $n' \to n$, n > n'), связаны соотношением детального баланса:

$$K_{n \to n'}(T) = \int_0^\infty dE f_T(E) V \sigma_{n \to n'}(E),$$

$$K_{n' \to n} = \frac{n^2}{(n')^2} K_{n \to n'} \exp\left(-\frac{|\Delta \varepsilon_{n'n}|}{k_{\rm B}T}\right).$$
(20)

3. Резонансный захват электронов ионами и девозбуждение ридберговских состояний

Для расчета эффективных сечений и констант скоростей резонансного захвата электронов ионами (1) и (2) нами развита теоретическая модель, опирающаяся на разработанный ранее в рамках квазиклассического приближения подход к описанию процессов прямой и ассоциативной ионизации ридберговских атомов ксенона [43] и переходов между его высоковозбужденными уровнями $nl \rightarrow n'l'$ [8] при столкновениях с атомами буферного инертного газа Не и Кr. Для случая симметричных столкновений аналогичное описание рекомбинации электронов с атомарными и молекулярными ионами водорода и гелия проводилось в [44,45], где изучалась роль этих процессов в звездных атмосферах $(T \sim 5000 - 10000 \text{ K})$. Обобщение подхода [43] было дано в [46] при квантовом рассмотрении неадиабатических переходов в задаче о фотодиссоциации молекулярных ионов и свободно-свободных фотопереходах в системе $H_{2}^{+}+\hbar\omega$. Процессы (1) и (2) обусловлены переходами между нижним и первым возбужденным электронными термами, $U_i(R)$ и $U_f(R)$, гетероядерного иона инертного газа RgXe⁺ и сопровождаются обменом энергии внешнего электрона системы $RgXe^++e$ с ее внутренними электронами (рис. 1). Переходы (1) и (2) происходят в окрестности точки R_w пересечения кривых потенциальной энергии, определяемой условием $\Delta U_{fi}(R_{\omega}) = \hbar \omega$, где $\hbar\omega = \varepsilon + |\varepsilon_{nl}|$. Описание процессов (1) и (2) отличается друг от друга лишь тем, что при ДР (1) ион RgXe⁺ находится в связанном колебательно-вращательном состоянии с энергией $E_{vJ} < 0$, а при трехчастичном захвате (2) — в непрерывном спектре с энергией E > 0.

Выражение для сечения $\sigma_{\varepsilon \to nl}^{\text{tr}}(E)$ [cm⁴s] резонансного захвата (2) электрона ионом A⁺ на уровень nl в тройных столкновениях с атомами выводится с помощью выражения для сечения обратного процесса прямой резонансной ионизации $\sigma_{nl\to\varepsilon}^{\text{di}}$ [cm²] из работы [43] и соотношения детального баланса:

$$\sigma_{\varepsilon \to nl}^{\mathrm{tr}}(E) = \tilde{g}_{\mathrm{tr}} \frac{8\pi^5 \hbar}{q^2 k^2} \sum_{J} (2J+1)$$
$$\times \sum_{l'm',m} \left| \left\langle \chi_{EJ}^{(i)}(R) \right| \mathsf{V}_{i,\varepsilon l'm'}^{f,nlm}(R) \left| \chi_{E'J}^{(f)}(R) \right\rangle \right|^2.$$
(21)

Puc. 1. Кривые потенциальной энергии $U_i(R)$, $U_f(R)$ и U'(R) двух нижних электронных термов $X|j_i=3/2, \Omega_i=1/2\rangle$, $A_1|j_f=3/2, \Omega_f=3/2\rangle$ гетероядерного иона инертного газа RgXe⁺ и не участвующего в исследуемых процессах (из-за большой величины энергии спин-орбитального расщепления $\Delta_{j=3/2,j'=1/2}=1.3 \text{ eV}$) терма $A_2|j'=1/2, \Omega'=1/2\rangle$ (штриховые линии). Сплошные линии — кривые потенциальной энергии квазимолекулы RgXe⁺ + *e* в начальном и конечном каналах реакций (1), (2) резонансного захвата электронов: $U_i(R) + \varepsilon$ и $U_f(R) - Ry/n_*^2$. (*a*) и неупругих переходов (7) между ридберговскими уровнями: $U_i(R) - Ry/n_*^2$ и $U_f(R) - Ry/n_*^2$. (*b*). Точка R_{ω} , в окрестности которой происходит неадиабатический переход, определяется условием $\Delta U_{fi}(R_{\omega}) = \hbar \omega$, ($\Delta U_{fi} = U_f - U_i$), а точка R_0 находится из уравнения $U_i(R_0) = 0$.

Здесь E и E' — кинетические энергии, а $\chi^{(i)}_{EJ}(R)$ и $\chi^{(f)}_{E'I}(R)$ — радиальные волновые функции относительного движения частиц А+ и В в начальном и конечном каналах реакции (2), $\hbar J$ — угловой момент иона BA⁺. Величина $\tilde{g}_{tr} = g_{tr}/\mathfrak{s}$ определяется отношением статистических весов $g_{BA^+(f)}/(g_{B(i)}g_{A^+(i)}) \equiv g_{tr}$ и фактором симметрии я, равным 2 для гомоядерных систем, когда U_i или U_f является Σ -термом, или 1 в противном случае; $\mathbf{V}_{i,\varepsilon l'm'}^{f,nlm}(\mathbf{R}) = \langle \psi_{\varepsilon l'm'} | \langle \phi_i | \mathbf{V}(\mathbf{r}_{\kappa}, \mathbf{R}) | \phi_f \rangle | \psi_{nlm} \rangle$ — электронный матричный элемент перехода, $\phi_i(\mathbf{r}_{\kappa}, \mathbf{R})$ и $\phi_f(\mathbf{r}_{\kappa}, \mathbf{R})$ — электронные волновые функции иона ВА⁺, соответствующие термам $U_i(R)$ и $U_f(R)$; $\psi_{nlm}(\mathbf{r})$ — волновая функция ридберговского атома, $\psi_{\varepsilon l'm'}(\mathbf{r}) = \mathscr{R}_{\varepsilon l'}(r) Y_{l'm'}(\mathbf{n_r}),$ а $\mathscr{R}_{\varepsilon l'}(r)$ нормирована на $\delta(\varepsilon - \varepsilon')$. Потенциал взаимодействия V (**r**_{κ}, **R**) определяется кулоновским взаимодействием внешнего электрона (**r**) со всеми внутренними электронами ($\mathbf{r}_{\kappa}, \kappa = 1, ..., N$) и ядрами молекулярного (квазимолекулярного) иона ВА+ (см. формулу (6) в [43]). Квадрат модуля матричного элемента взаимодействия рассчитывается в приближении линейного пересечения термов по формуле (90.22) из [46]. Подстановка этой формулы в (21) и замена суммирования по Ј на интегрирование [46] приводит к следующему выражению для сечения про-

цесса (2):

$$\sigma_{\varepsilon \to nl}^{\mathrm{tr}}(E) = \tilde{g}_{\mathrm{tr}}(2l+1) \frac{4\pi^{4}\Gamma_{nl \to \varepsilon}(R_{\omega})\sqrt{2\mu}}{q^{2}k^{2}\Delta F_{fi}(R_{\omega})}$$

$$\times \int_{0}^{\infty} d\left(J^{2}\right)\sqrt{\xi_{J}(R_{\omega})}\mathrm{Ai}^{2}\left[-\xi_{J}(R_{\omega})\left(E-U_{i}^{J}(R_{\omega})\right)\right],$$

$$(22)$$

$$\xi_{J}(R_{\omega}) = \left(\frac{2\mu}{\hbar^{2}}\right)^{1/3} \left|\frac{\Delta F_{fi}(R_{\omega})}{F_{f}^{J}(R_{\omega})F_{i}^{J}(R_{\omega})}\right|^{2/3},$$

$$\Gamma_{nl \to \varepsilon}(R_{\omega}) = \frac{2\pi}{2l+1}\sum_{m,m'l'}\left|\mathsf{V}_{i,\varepsilon l'm'}^{f,nlm}(R_{\omega})\right|^{2}.$$

$$(23)$$

Здесь Ai(x) — функция Эйри, $\Gamma_{nl\to\varepsilon}(R_{\omega})$ – ширина автоионизации квазимолекулы BA(f, nl) \to BA⁺(i) + e, $\Delta F_{fi}(R_{\omega})$ – разность наклонов и наклоны $F_i^J(R_{\omega})$ и $F_f^J(R_{\omega})$ кривых потенциальной энергии $U_i^J(R_{\omega})$ и $U_f^J(R_{\omega})$ иона BA⁺ в начальном и конечном состояниях с учетом центробежной энергии в точке их пересечения R_{ω} .

Константа скорости, $\beta_{nl}^{tr} = \langle v_{\varepsilon} \langle V_E \sigma_{\varepsilon \to nl}^{tr}(E) \rangle [cm^6 s^{-1}],$ резонансного трехчастичного захвата (2) рассчитывается путем усреднения величины $v_{\varepsilon} V_E \sigma_{\varepsilon \to nl}^{tr}(E)$ по функциям распределения скоростей электронов v_{ε} и ядер V_E при электронной температуре T_e и газовой T. Вычисление интегралов с максвелловскими функциями распределения $f_T(E)$ и $f_{T_e}(\varepsilon)$ приводит к следующему результату:

$$\beta_{nl}^{\text{tr}}(T_e, T) = (2l+1) \tilde{g}_{\text{tr}} \left(\frac{2\pi\hbar^2}{m_e k_{\text{B}} T_e}\right)^{3/2} \exp\left(\frac{|\varepsilon_{nl}|}{k_{\text{B}} T_e}\right)$$
$$\times \int_{0}^{R_{nl}} \frac{\Gamma_{nl \to \varepsilon}(R)}{\hbar} \exp\left(-\frac{\Delta U_{fi}}{k_{\text{B}} T_e} - \frac{U_i(R)}{k_{\text{B}} T}\right) \Theta_T^{\text{tr}}(R) 4\pi R^2 dR.$$
(24)

Здесь R_{nl} задается условием $\Delta U_{fi}(R_{nl}) = |\varepsilon_{nl}|$, а безразмерный фактор $\Theta_T^{\text{tr}}(R)$ определяется выражением

$$\Theta_{T}(R_{\omega}) = 2\sqrt{\pi} \int_{\epsilon_{\min}}^{\epsilon_{\max}} d\epsilon \exp(-\epsilon)$$
$$\times \int_{0}^{\nu_{\max}} d\nu \sqrt{\Lambda_{\nu}(R_{\omega})} \operatorname{Ai}^{2}\left[-\Lambda_{\nu}(R_{\omega})(\epsilon-\nu)\right], \quad (25)$$

где введены безразмерные переменные ν , ϵ и функция Λ_{ν} с помощью соотношений

$$\nu = \frac{\hbar^2 J^2}{2\mu R_{\omega}^2 k_{\rm B} T}, \quad \epsilon = \frac{E - U_i \left(R_{\omega} \right)}{k_{\rm B} T},$$
$$\Lambda_{\nu} = k_{\rm B} T \xi_{J(\nu)} \left(R_{\omega} \right), \tag{26}$$

а пределы интегрирования для процесса (2) имеют вид $\epsilon_{\min}^{tr} = -U_i(R_{\omega})/k_{\rm B}T$, $\epsilon_{\max}^{tr} = \infty$ и $\nu_{\max}^{tr} = \infty$. Формула для сечения $\sigma_{\varepsilon \to nl}^{cdr}(\upsilon J)$ [cm²] диссоциатив-

Формула для сечения $\sigma_{\varepsilon \to nl}^{(vJ)}(vJ)$ [cm²] диссоциативного захвата (1) электрона на уровень nl ионом BA⁺ выводится по аналогии с формулой (21) с помощью выражения [43] для сечения $\sigma_{nl \to \varepsilon}^{ai}(E'J)$ обратного процесса ассоциативной ионизации и соотношения детального баланса

$$\sigma_{\varepsilon \to nl}^{\mathrm{dr}}\left(\upsilon J\right) = g_{\mathrm{dr}} \frac{4\pi^{3}}{k^{2}} \sum_{l'm',m} \left| \left\langle \chi_{\upsilon J}^{(i)}\left(R\right) \middle| \mathsf{V}_{i,\varepsilon l'm'}^{f,nlm}\left(R\right) \middle| \chi_{E'J}^{(f)}\left(R\right) \right\rangle \right|^{2},$$
(27)

где $g_{dr} = g_{BA^+(f)}/g_{BA^+(i)}$. При больцмановском распределении по уровням vJ усредненное сечение $\sigma_{\varepsilon \to nl}^{dr}(T)$ при заданной газовой температуре *T* имеет вид

$$\sigma_{\varepsilon \to nl}^{\mathrm{dr}}(T) = (\mathfrak{s}Z_{\mathrm{vr}})^{-1} \exp(-D_0/k_{\mathrm{B}}T) \times \sum_{vJ} (2J+1) \sigma_{\varepsilon \to nl}^{\mathrm{dr}}(vJ) \exp(-E_{vJ}/k_{\mathrm{B}}T), \quad (28)$$

$$Z_{\rm vr} = \mathfrak{s}^{-1} \sum_{vJ} \left(2J + 1 \right) \exp\left(-\mathscr{E}_{vJ} / k_{\rm B} T \right),$$
$$\mathscr{E}_{vJ} = E_{vJ} + D_0. \tag{29}$$

Расчет матричного элемента $\langle \chi_{vJ}^{(i)}(R) | V_{i,\varepsilon l'm'}^{f,nlm}(R) | \chi_{E'J}^{(f)}(R) \rangle$ связанно-свободного перехода ядер в формуле (27) осуществляется аналогично (22) на основе квантовой

версии теории неадиабатических переходов [40], учитывая лишь иную нормировку волновой функции $\chi_{vJ}^{(i)}(R)$. Далее мы принимаем во внимание, что для рассматриваемых в работе систем при газовых температурах Т=300-1000 К вследствие выполнения соотношения $k_{\rm B}T \gtrsim \hbar\omega_e$ ($\hbar\omega_e$ — нижний колебательный $BA^+(i)$ оказывается квант иона одновременно возбуждено большое колебательноколичество вращательных уровней. Это позволяет заменить суммирование по v и J в (28) интегрированием по dv и dJ. При выполнении этого интегрирования используем теоретический подход [46], разработанный при вычислении интегрального вклада всех колебательновращательных уровней молекулярного иона ВА+ в усредненное по больцмановскому распределению сечение фотодиссоциации. Константа скорости $\alpha_{nl}^{\rm dr}(T_e, T) = \langle v_{\varepsilon} \sigma_{\varepsilon \to nl}^{\rm dr}(T) \rangle_{T_e} \quad [\rm cm^3 s^{-1}] \quad \text{процесса} \quad (1)$ ДР в двухтемпературной плазме, определяемая путем усреднения $v_{\varepsilon}\sigma^{\mathrm{dr}}_{\varepsilon \to nl}(T)$ по максвелловскому распределению скоростей электронов, приобретает вид:

$$\alpha_{nl}^{dr}(T_e, T) = (2l+1) \tilde{g}_{dr} \left(\frac{2\pi\hbar^2}{m_e k_B T_e}\right)^{3/2} \\ \times \frac{e^{-D_0/k_B T}}{Z_{vr}(T)} \left(\frac{\mu k_B T}{2\pi\hbar^2}\right)^{3/2} \exp\left(\frac{|\varepsilon_{nl}|}{k_B T_e}\right) \\ \times \int_{R_0}^{R_{nl}} \frac{\Gamma_{nl \to \varepsilon}(R)}{\hbar} \exp\left(-\frac{\Delta U_{fi}(R)}{k_B T_e}\right) \\ \times \exp\left(-\frac{U_i(R)}{k_B T}\right) \Theta_T^{dr}(R_\omega) 4\pi R^2 dR, \quad (30)$$

где R_{nl} и R_0 находятся из уравнений $\Delta U_{fi}(R_{nl}) = |\varepsilon_{nl}|$ и $U_i(R_0) = 0$ (рис. 1), а $\tilde{g}_{dr} = g_{dr}/\mathfrak{s}$. Для процесса (1) безразмерный фактор Θ_T^{dr} определяется той же формулой (25), что и в случае тройной рекомбинации (2), но с другими пределами интегрирования: $\epsilon_{\min}^{dr} = -U_f(R_\omega) / (k_BT)$, $\epsilon_{\max}^{dr} = -U_i(R_\omega) / (k_BT)$ $(U_f(R) > U_i(R))$, $v_{\max} = \hbar^2 J_{\max}^2 / [2\mu R_\omega^2 k_BT]$. Величина $J_{\max}(E)$ находится из условия $|U_i^J(R_e^J)| \ge |E|$, где R_e^J равновесное межъядерное расстояние в потенциальной яме U_i^J основного электронного терма иона с учетом центробежного члена.

Наибольший интерес для нас представляют здесь суммарные по всем значениям lm уровня n константы скоростей процессов резонансной рекомбинации (1) и (2):

$$\alpha_{n}^{\rm dr}(T_{e},T) = \sum_{l=0}^{n-1} \alpha_{nl}^{\rm dr}(T_{e},T),$$

$$\beta_{n}^{\rm tr}(T_{e},T) = \sum_{l=0}^{n-1} \beta_{nl}^{\rm tr}(T_{e},T)$$
(31)

и соответствующие числа актов рекомбинации, \mathfrak{W}_n [cm⁻³s⁻¹], в единице объема в единицу времени:

$$\mathfrak{W}_n^{\mathrm{dr}} = \alpha_n^{\mathrm{dr}} N_e N_{\mathrm{BA}^+}, \quad \mathfrak{W}_n^{\mathrm{tr}} = \beta_n^{\mathrm{tr}} N_e N_{\mathrm{A}^+} N_{\mathrm{B}}, \tag{32}$$

которые получаются домножением величин (31) на соответствующие концентрации свободных электронов N_e , ионов $N_{\rm A^+}$ и $N_{\rm BA^+}$ и нейтральных атомов $N_{\rm B}$. При вычислении констант скоростей $\alpha_n^{\rm dr}$ и $\beta_n^{\rm tr}$ следует заменить $(2l+1)\Gamma_{nl\to\varepsilon}$ в формулах (24) и (30) на эффективный параметр связи

$$\tilde{\Gamma}_{\varepsilon \to n} = \sum_{l=0}^{n-1} \left(2l+1 \right) \Gamma_{nl \to \varepsilon} \left(R_{\omega} \right) = 2\pi \sum_{ml,m'l'} \left| \mathsf{V}_{i,\varepsilon l'm'}^{f,nlm} \left(R_{\omega} \right) \right|^2,$$
(33)

который определяет суммарный вклад отдельных nlуровней в захват электронов во все nlm-состояния с заданным n. Для неводородоподобных состояний атомов значения R_{ω} для каждого члена суммы по l отличаются друг от друга из-за зависимости квантового дефекта δ_l от орбитального момента. Поэтому суммарные константы скорости захвата электрона (32) при фиксированном значении n должны вычисляться в результате суммирования вкладов от различных значений l.

Сечение резонансного девозбуждения $n \rightarrow n'$ (7) ридберговских уровней атомов Xe(n) в столкновениях с атомами буферного инертного газа, происходящего в результате неадиабатического перехода между термами квазимолекулярного иона, имеет вид [8]:

$$\sigma_{n \to n'} = \frac{\tilde{g}_{q} 4\pi^{3}}{n^{2} q^{2}} \sum_{J} (2J+1)$$

$$\times \sum_{ll'} \sum_{mm'} \left| \left\langle \chi_{EJ}^{(i)}(R) \left| \mathsf{V}_{i,nlm}^{f,n'l'm'}(R) \right| \chi_{E'J}^{(f)}(R) \right\rangle \right|^{2}, \quad (34)$$

где $\tilde{g}_q = \tilde{g}_{tr}$ – отношение статистических весов. Используя по аналогии с выводом формулы (22) подход, основанный на квантовой формуле для ядерного матричного элемента неадиабатического перехода, получаем

$$\sigma_{n \to n'} = \frac{\tilde{g}_{q} 2\pi^{2} \sqrt{2\mu}}{q^{2} \hbar \Delta F_{fi}(R_{\omega})} \sum_{ll'} \frac{2l+1}{n^{2}} \Gamma_{nl \to n'l'}(R_{\omega})$$
$$\times \int_{0}^{\infty} d\left(J^{2}\right) \sqrt{\xi_{J}(R_{\omega})} \operatorname{Ai}^{2}\left[-\xi_{J}(R_{\omega})\left(E-U_{i}^{J}(R_{\omega})\right)\right].$$
(35)

(35) Здесь R_{ω} определяется из условия $\Delta U_{fi}(R_{\omega}) = = \hbar\omega = Ry/(n'_*)^2 - Ry/(n_*)^2$ и зависит как от n и n', так и от l и l'; $\Gamma_{nl \to n'l'}(R_{\omega}) \equiv \frac{2\pi}{2l+1} \sum_{mm'} \left| \mathsf{V}_{i,nlm}^{f,n'l'm'} \right|^2 - эффективный параметр связи для перехода <math>nl \to n'l'$.

Константа скорости $K_{n\to n'} = \langle V \sigma_{n\to n'} \rangle_T$ неупругого перехода рассчитывается с помощью усреднения по максвелловскому распределению скоростей, приводящего к

$$K_{n \to n'} = \frac{\tilde{g}_{q}}{\hbar n^{2}} \sum_{ll'} \frac{(2l+1)4\pi R_{\omega}^{2}}{\Delta F_{fi}(R_{\omega})} \Gamma_{nl \to n'l'}(R_{\omega})$$
$$\times (2/\sqrt{\pi}) \exp\left[-U_{i}(R_{\omega})/(k_{\rm B}T)\right] \Theta_{T}^{q}(R_{\omega}), \qquad (36)$$

где безразмерный фактор $\Theta_T^q(R_\omega)$ имеет тот же вид, как и в случае трехчастичного резонансного захвата.

Для оценки эффективности процесса резонансного девозбуждения ридберговского *n*-уровня (7) в сравнении с альтернативным механизмом нерезонансного девозбуждения электронами мы проведем в разд. 4 сравнение соответствующих констант скоростей тушения, $K^{\mathbf{q}}_{n}(T) = \sum_{n' < n} K_{n \to n'}(T)$, заданного уровня *n*, просуммированных по всем уровням n' < n. Практический интерес представляет также сравнительный анализ скорости резонансного захвата электронов на уровень *n* атома Хе* из непрерывного спектра, $W_n^{\text{res}} = \beta_n^{\text{res}} N_{\text{B}} N_e$ [s⁻¹], и скорости $W_n^{\text{q}} = \sum_{n'>n} K_{n'\to n}^{\text{q}} N_{n'}$ [s⁻¹] заселения этого уровня n в результате неупругих переходов $n' \rightarrow n$, сопровождаемых девозбуждением энергии ридберговского электрона, где $N_{n'}$ — концентрация атомов Xe(n'). Поскольку указанные величины зависят от абсолютных концентраций реагентов, в разд. 5.3 будут сопоставлены константы скорости резонансного захвата, β_n^{res} , и эффективные константы скорости девозбуждения

$$\beta_n^{\rm q} = W_n^{\rm q} / (N_{\rm B} N_e) = \sum_{n' > n} K_{n' \to n}^{\rm q} N_{n'} / (N_{\rm B} N_e), \qquad (37)$$

имеющие размерность $[cm^6s^{-1}]$. Отношение концентраций $N_{n'}/N_{\rm B}N_e$ можно при этом определить по формуле Саха-Больцмана, если допустить, что квазиконтинуум высоковозбужденных уровней атома в рекомбинирующей плазме находится в равновесии с непрерывным спектром [2].

Отметим также, что для рассматриваемых в работе гетероядерных систем RgXe⁺ + *e* расчеты автоинизационных ширин $\Gamma_{nl \to \varepsilon}$, параметра связи $\tilde{\Gamma}_{\varepsilon \to n}$ и эффективного параметра взаимодействия $\Gamma_{nl \to n'l'}$ осуществлялись нами на основе вакансионной модели, предложенной в работах [8,43]. В первом приближении это дает

$$\Gamma_{nl \to \varepsilon} = \sum_{l'} \Gamma_{nl \to \varepsilon l'}, \quad \Gamma_{nl \to \varepsilon l'} = \frac{4\pi}{25(2l+1)} \frac{\gamma_{ll'}}{n_*^3},$$
$$\Gamma_{nl \to n'l'} = \frac{1}{(n_*')^3} \Gamma_{nl \to \varepsilon l'}.$$
(38)

Усовершенствование модели состояло в том, что волновые функции ридберговских состояний со значительным квантовым дефектом вычислялись здесь методом [47].

В случае гомоядерных систем $A_2^+ + e$ при вычислении электронных матричных элементов можно ограничиться дипольным членом в потенциале взаимодействия $V = -e\mathbf{r} \cdot \mathbf{d} (\mathbf{r}_{\kappa}, \mathbf{R}) / \mathbf{r}^3$ и применить формулу [48,49]

$$\sum_{l'm',m} \left| \mathsf{V}_{i,\varepsilon l'm'}^{f,nlm}(R) \right|^2 = \frac{m_e^2 \omega^4}{3e^2} \left| d_{fi}(R_\omega) \right|^2 \\ \times \left\{ l |\mathscr{R}_{n,l}^{\varepsilon,l-1}|^2 + (l+1) |\mathscr{R}_{n,l}^{\varepsilon,l+1}|^2 \right\}.$$
(39)

Здесь $\mathbf{d}_{fi}(\mathbf{R}) = \langle \phi_f^{\mathrm{BA}^+} | \mathbf{d}(\mathbf{r}_{\kappa}, \mathbf{R}) | \phi_i^{\mathrm{BA}^+} \rangle$ — дипольный матричный элемент электронного перехода $|i\rangle \rightarrow |f\rangle$

между термами молекулярного иона A_2^+ , а $\mathscr{R}_{n,l}^{\varepsilon,l\pm 1} = \langle \varepsilon, l \pm 1 | r | nl \rangle$ — матричный элемент перехода электронной координаты по кулоновским волновым функциям, имеющий в квазиклассическом приближении вид [50]

$$\mathcal{R}_{n,l}^{\varepsilon,l\pm 1} = -\frac{(l+1/2)^2}{\pi\sqrt{3m_e}n_*^{3/2}\omega} \left[K_{2/3}(u) \mp K_{1/3}(u)\right],$$
$$u = \frac{\hbar\omega(l+1/2)^3}{6R_y}, \quad \hbar\omega = \frac{Ry}{n_*^2} + \varepsilon.$$
(40)

где $K_{\nu}(z)$ — функции Макдональда. Подставляя выражение (40) в (23), имеем

$$\Gamma_{nl \to \varepsilon} (R_{\omega}) = \frac{\hbar \omega (l + 1/2)^4}{3\pi n_*^3} f_{fi} (R_{\omega}) \left[K_{2/3}^2 (u) + K_{1/3}^2 (u) \right],$$
$$f_{fi} (R_{\omega}) = \frac{2m_e \omega |d_{fi} (R_{\omega})|^2}{3\hbar e^2}, \qquad (41)$$

где $\mathbf{f}_{fi}(R_{\omega})$ — сила осциллятора перехода. В случае водородоподобных атомов, когда $n_* = n$ и R_{ω} не зависит от l, окончательное квазиклассическое выражение для $\tilde{\Gamma}_{\varepsilon \to n}(R_{\omega})$ приобретает вид

$$\tilde{\Gamma}_{\varepsilon \to n} \left(R_{\omega} \right) = \frac{8Ry \ G_{n \to \varepsilon}}{3\sqrt{3} n^3} \left| \frac{d_{fi} \left(R_{\omega} \right)}{e a_0} \right|^2.$$
(42)

Здесь $G_{n\to\varepsilon}$ — фактор Гаунта, определяющий отличие точного результата от квазиклассического приближения Крамерса $G_{n\to\varepsilon}^{Kr} = 1$ [4]. Использование выражения (42) оправдано при захвате на уровни с $n \gg 1$, когда вкладом членов $(2l + 1) \Gamma_{nl\to\varepsilon} (R_{\omega})$ с низкими l и большими квантовыми дефектами δ_l можно пренебречь. В остальных случаях необходимо провести прямое суммирование в (33) с помощью формул (39) и (40).

Захват электрона ионом и переходы *n* → *n*' в столкновениях с электронами

Для установления роли резонансного механизма захвата электронов в ридберговские состояния в плазме смесей инертных газов Rg/Xe ([Xe] \ll [Rg]) следует сравнить скорость W_n^{tr} трехчастичного процесса (2), обусловленного столкновениями с атомами Rg, со скоростью W_n^{ee} захвата электронов ионами при столкновениях с электронами (3). Скорость W_n^{tr} [s⁻¹] резонансного трехчастичного захвата электронов ионами в плазме с газовой, *T*, и электронной, *T*_e, температурами выражается через константу скорости β_n^{tr} [cm⁶s⁻¹] с помощью соотношения $W_n^{tr} = \beta_n^{tr}(T, T_e)N_eN_B$. Скорость захвата электронов ионами при столкновениях с электронами равна $W_n^{ee} = \beta_n^{ee}(T_e)N_e^2$, где β_n^{ee} [cm⁶s⁻¹] – константа скорости реакции (3). Тогда отношение скоростей

$$\frac{W_n^{ee}}{W_n^{tr}} = \varkappa \frac{\beta_n^{ee}(T_e)}{\beta_n^{tr}(T, T_e)} = \frac{\beta_n^{ee}(T_e)}{\beta_n^{tr}(T, T_e)},\tag{43}$$

Оптика и спектроскопия, 2020, том 128, вып. 4

т.е. относительная эффективность сравниваемых механизмов оказывается пропорциональной степени ионизации плазмы $\varkappa = N_e/N_B$. Далее при сравнении с константой скорости $\beta_n^{tr}(T, T_e)$ мы будем использовать величину $\tilde{\beta}_n^{ee} = \varkappa \beta_n^{ee}(T_e)$ при различных значениях \varkappa . Для оценки константы скорости β_n^{ee} процесса (3) можно использовать полученную на основе классического подхода Томсона формулу (см. (6.88) в [51]):

$$\beta_n^{ee} = 2^6 \pi^2 v_0 a_0^5 n^8 x_n^3 e^{x_n} \left[\frac{e^{-x_n}}{x_n} - E_1(x_n) \right] \longrightarrow$$
$$\longrightarrow \begin{cases} \propto n^4 / T_e^2, & x_n \sim 1, \\ \propto n^6 / T_e, & x_n \gg 1, \end{cases} \quad x_n = Ry / (n^2 k_{\rm B} T_e). \tag{44}$$

Здесь $E_1(x) = \int_x^\infty e^{-t} dt/t$. Ее применимость ограничена областью $n \gtrsim 15$. Более точное выражение для сечения трехчастичного захвата электрона $\sigma_{\varepsilon \to nl}^{ee}$ [cm⁴s⁻¹] следует из соотношения детального баланса:

$$\sigma_{\varepsilon \to nl}^{ee}\left(\varepsilon_{2}\right) = 2\pi^{2}\hbar^{3}(2l+1)\varepsilon_{2}'\left(2m_{e}\varepsilon_{2}\varepsilon\right)^{-1}\mathrm{d}\sigma_{nl\to\varepsilon}\left(\varepsilon_{2}'\right)/\mathrm{d}\varepsilon,\tag{45}$$

и результата [52] для дифференциального сечения обратного процесса ионизации атома электронным ударом:

$$d\sigma_{nl\to\varepsilon} \left(\varepsilon_{2}^{\prime}\right)/d\varepsilon = \pi e^{4} \left(\varepsilon_{2}^{\prime} + 3|\varepsilon_{nl}|\right)^{-1} \\ \times \left[\left(\varepsilon + |\varepsilon_{nl}|\right)^{-2} + 4|\varepsilon_{nl}|/\left(3(\varepsilon + |\varepsilon_{nl}|)^{3}\right)\right], \quad (46)$$

где ε_2 и ε'_2 – начальная и конечная энергии второго электрона. Константа скорости, β_n^{ee} , захвата электронов ионами в тройных столкновениях с электронами рассчитывается по формуле

$$eta_n^{ee}(T_e) = \sum_{l=0}^{n-1} \langle v_{arepsilon} \langle v_{arepsilon_2} \sigma_{arepsilon
ightarrow nl}^{ee}(arepsilon_2)
angle_{T_e}
angle_{T_e}.$$

Отношение эффективностей девозбуждения ридберговских *n*-уровней в результате неупругих переходов $n \rightarrow n'$ в столкновениях со свободными электронами (4) в сравнении с их резонансным тушением (7) зависит от \varkappa :

$$\frac{W_n^e}{W_n^B} = \varkappa \frac{K_n^e(T_e)}{K_n^B(T)} = \frac{K_n^e(T_e)}{K_n^B(T)},\tag{47}$$

где $\tilde{K}_n^e(T_e) = \varkappa K_n^e(T_e)$ — относительная константа скорости неупругого тушения (6). Для константы скорости, $K_{n\to n'}^e(T_e)$, перехода $n \to n'$ (n > n'), будем использовать квазиклассическую формулу (см. (8.30) в [4])

$$\begin{split} & K_{n \to n'}^{e}(T_{e}) = \langle v_{\varepsilon} \sigma_{n \to n'}^{e} \rangle = \langle v_{\varepsilon} \sigma_{n \to n'}^{\text{Born}} \rangle \, \mathbf{f}_{\vartheta}(\Delta n, n'), \, \langle v_{\varepsilon} \sigma_{n \to n'}^{\text{Born}} \rangle \\ &= \frac{16\pi a_{0}^{2} v_{0}}{n^{2} \sqrt{\pi}} \sqrt{\frac{Ry}{k_{\text{B}} T_{e}}} \left\{ \left(1 - \frac{0.25}{\Delta n} \right) \frac{|\varepsilon_{n} \varepsilon_{n'}|^{3/2} Ry}{(\Delta \varepsilon)^{4}} \varphi \left(\frac{|\varepsilon_{n'}|}{k_{\text{B}} T_{e}} \right) \right. \\ &+ \left(1 - \frac{0.6}{\Delta n} \right) \frac{|\varepsilon_{n}|^{3/2} \sqrt{Ry}}{(\Delta \varepsilon)^{2}} \left(\frac{4}{3\Delta n} + (n')^{2} \right) \\ &\times \left[1 - \frac{|\varepsilon_{n'}|}{k_{\text{B}} T_{e}} \varphi \left(\frac{|\varepsilon_{n'}|}{k_{\text{B}} T_{e}} \right) \right] \right\}, \end{split}$$

$$\tag{48}$$

записанную в виде борновского выражения, умноженного на фактор:

$$f_{\vartheta}(\Delta n, n) = \ln\left(1 + (n\sqrt{\vartheta}/\Delta n)/\left[1 + c/\left(\Delta n\sqrt{\vartheta}\right)\right]\right)/$$

/ ln $\left(1 + n\sqrt{\vartheta}/\Delta n\right)$.
цесь $\Delta \varepsilon = |\varepsilon_n - \varepsilon_{n'}|, \ \Delta n > 0, \ \varphi(x) = -e^x \operatorname{Ei}(-x), \ c = 2.5 \ \mathrm{H}$

Здесь $\Delta \varepsilon = |\varepsilon_n - \varepsilon_{n'}|, \Delta n > 0, \varphi(x) = -e^x \operatorname{Ei}(-x), c = 2.5$ $\vartheta = k_{\mathrm{B}} T_e / Ry.$

5. Результаты и обсуждение

5.1. Сравнение эффективностей механизмов трехчастичного захвата электронов

Зависимости констант скорости резонансного, $\beta_n^{\rm tr}(T, T_e)$, и нерезонансного, $\beta_n^{\rm cap}(T, T_e)$, захватов электронов в тройных столкновениях с атомами Rg от главного квантового числа *n* атома Хе в конечном канале приведены на рис. 2 для систем Ar+Xe⁺+e и Ne+Xe⁺+e. Расчеты константы скорости $\beta_n^{\text{tr}}(T, T_e)$ проводились на основе формул, представленных в разд. 3. Константа скорости $\beta_n^{cap}(T, T_e)$ вычислялась по формуле (17) с использованием выражений (11) (13) для эффективного сечения нерезонансного И захвата электрона и соотношений (12)-(16). Это позволяет учесть эффекты короткодействующего и поляризационного взаимодействий слабосвязанного электрона с атомами инертных газов, что особенно важно для неупругих переходов с достаточно большими передачами энергии [53,54]. Данные по фазам рассеяния ультрамедленных электронов на атомах Ar и Ne взяты из работ [55,56]. Интегрирование проводилось по максвелловским функциям распределения $f_{T_e}(\varepsilon)$ и $f_T(E)$. Электронная и газовая температуры полагались равными $T_e = 2000 \text{ K}$ и T = 300 K.

Из рис. 2, а, b видно, что у рассматриваемых систем близкие значения констант скоростей резонансного трехчастичного захвата на высоковозбужденные уровни n. Заселение таких уровней происходит при больших межьядерных расстояниях $R \gg R_e$ и потому слабо зависит от параметров ионов RgXe⁺ (R_e — их положение равновесия). Для обоих систем механизм резонансного трехчастичного захвата преобладает в заселении низколежащих ридберговских уровней и сравнивается по эффективности с нерезонансным механизмом при $n \sim 60$ (для T = 300 K). Поэтому при построении кинетики рекомбинации в плазмах, содержащих слабосвязанные молекулярные ионы, часто можно пренебречь влиянием нерезонансного захвата при столкновениях с атомами. Этот механизм может играть важную роль при достаточно больших значениях длины рассеяния электрона на возмущающем атоме, а также для ионов с очень низкими D_0 и малой приведенной массой (например, HeXe⁺).

На рис. 3 сравниваются эффективности резонансного трехчастичного захвата электронов на уровни *n* и захвата в тройных столкновениях со свободными электронами плазмы в случае систем Xe^++e+Kr , Xe^++e+Ar и Xe^++e+Ne . Расчеты проведены для температур T=300К и T_e=3000 К. Вклад этих процессов в заселение nуровня характеризуется величинами $\beta_n^{tr} N_B N_e$ и $\beta_n^{ee} N_e^2$. Согласно (43), их относительная эффективность зависит от степени ионизации плазмы к. Поэтому на рис. 3 вместе с константой скорости $\beta_n^{\rm tr}$ процесса (2) приведены результаты для относительной константы скорости $\beta_n^{ee} = \beta_n^{ee} \varkappa$ захвата на уровень *n* при столкновениях с электронами. Величина β_n^{ee} рассчитана по формулам (45) и (46). Видно, что в случае систем с существенной энергией диссоциации (KrXe⁺ и ArXe⁺) процесс (3) вносит доминирующий вклад в заселение п-уровней при достаточно больших степенях ионизации: $\varkappa \gtrsim 10^{-5}$ для KrXe⁺ и $\varkappa \gtrsim 10^{-6}$ для ArXe⁺. С уменьшением \varkappa начинается конкуренция представленных механизмов. При этом столкновения Хе+е+е вносят доминирующий вклад в заселение уровней с $n \gg 1$, тогда как резонансный механизм вносит вклад в заселение ограниченной области низколежащих уровней, определяемой параметрами ионов RgXe⁺. Границы этой области расширяются с уменьшением \varkappa , и при $\varkappa \lesssim 10^{-8}$ заселение уровней с $n \lesssim 15$ обусловлено резонансными процессами.

Сравнение рис. 3, а-с показывает, что скорости процесса (2) кардинально различаются для рассматриваемых систем. В случае ионов с высокими энергиями диссоциации (KrXe⁺, рис. 3, a) резонансный захват приводит к преимущественному заселению наиболее низких ридберговских уровней *n*≈8, играя значимую роль даже при степенях ионизации $\varkappa \sim 10^{-5} - 10^{-4}$. Для систем с умеренными энергиями диссоциации (ArX e^+ , рис. 3, *b*) также происходит преимущественное резонансное заселение низколежащих уровней (n <15), причем процесс (2) вносит существенный вклад даже при степенях ионизации $\varkappa \sim 10^{-5}$. Напротив, для систем с малыми D_0 (NeXe⁺, рис. 3, b) резонансный трехчастичный захват вносит существенный вклад лишь в заселение уровней с $n \gtrsim 15$. При малых D_0 величина β_n^{tr} мала по сравнению с $\tilde{\beta}_n^{ee}$, за исключением случаев низкой степени ионизации $\varkappa \lesssim 10^{-8}$. Большие различия в максимумах эффективностей резонансного трехчастичного захвата в системах Kr+Xe⁺+e, Ar+Xe⁺+e и Ne+Xe⁺+e определяются тем, что сечения захвата на уровни *n* растут с уменьшением п.

5.2. Диссоциативный захват электронов гетероядерными и гомоядерными ионами

Результаты расчетов констант скоростей диссоциативного захвата (1) ионами KrXe⁺, ArXe⁺, NeXe⁺ и Xe₂⁺ в ридберговские состояния представлены на рис. 4. Расчеты проведены с помощью формул разд. 3 при температурах T_e =1000 и 3000 K и T=300, 700 и 1000 K и учитывали сложную структуру уровней атома

Puc. 2. Константы скорости $β_n^{tr}$ и $β_n^{cap}$ трехчастичного резонансного (2), сплошная линия, и нерезонансного (5), штриховая линия, захвата электронов на все *lm*-подуровни уровня *n* атома Xe^{*} в столкновениях с атомами Ar (*a*) и Ne (*b*) при T_e =2000 K и T=300 K.

Puc. 3. Сравнение эффективностей трехчастичного захвата электронов на ридберговские уровни атома Xe(n) в резонансных реакциях (2): Xe⁺+e+Kr (a), Xe⁺+e+Ar (b) и Xe⁺+e+Ne (c), и в столкновениях с электронами (3) при различных степенях ионизации \varkappa (T=300 K, T_e=3000 K). Сплошные кривые — константы скорости β_n^{tr} процесса (2). Штриховые кривые — относительная эффективность $\tilde{\beta}_n^{ee} = \beta_n^{ee} \varkappa$ процесса (3).

Хе $[5p^5(^2P_j)nl[K]_{\mathscr{F}}]$, связанную с наличием квантовых дефектов при l < 3 (см. рис. 3 в [43]). Электронные матричные элементы перехода для гетероядерных ионов вычислялись методом [8] по формуле (38), а для иона Хе $_2^+$ с помощью формул (33), (39) и (40). Сравнение рис. 4, *a*-*d* указывает на существенные различия в поведении констант скоростей реакции (1) в рассматривае-мых системах в зависимости от *n*.

В случае иона Xe_2^+ из-за большой энергии диссоциации $D_0=0.97$ eV в процессе рекомбинации преобладает заселение низколежащих уровней атома Xe с $n \leq 8$ [10]. Наиболее точные расчеты констант скоростей захвата

на эти уровни следует проводить методами, описанными в [5]. Для ионов ArXe⁺ и KrXe⁺ наиболее существенная область диссоциативного захвата, приводящего к заселению ридберговских уровней, сдвинута в область $8 \le n \le 15$ и имеет максимум при $n \approx 12$ для ArXe⁺ и $n \approx 9$ для KrXe⁺ (рис. 4, *a* и 4, *d*). Константы скорости захвата, $\alpha_n^{\rm dr}$, превосходят соответствующие величины для иона Xe⁺₂ на 2–3 порядка при $T_e=1000$ K и на порядок величины при $T_e=3000$ K. Для иона NeXe⁺ основная область ДР сдвинута в область $n \sim 20$, ввиду малого значения D_0 , так что суммарная эффективность этого

Рис. 4. Константы скорости, $\alpha_n^{dr}(T, T_e)$, диссоциативного захвата электронов (1) на все *lm*-подуровни атома Xe(*n*) для систем ArXe⁺ + *e* (*a*), Xe⁺₂ + *e* (*b*), NeXe⁺ + *e* (*c*) и KrXe⁺ + *e* (*d*) при температурах электронов T_e =1000 (сплошные кривые) и 3000 K (штриховые кривые) и газа T=300 (*I*), 700 (*2*), и 1000 K (*3*).

процесса оказывается крайне малой в сравнении с ДР ионов $ArXe^+$, $KrXe^+$ и Xe_2^+ .

При заселении уровней вблизи максимумов в системах KrXe⁺+e и ArXe⁺+e эффективность ДР традиционно растет с уменьшением газовой, T, и электронной, T_e , температур. Как следует из рис. 4, b, в системе Xe⁺₂+e при заселении тех же уровней наблюдается обратная зависимость константы скорости $\alpha_n^{dr}(T_e, T)$ от температур – вероятность захвата падает при понижении T и T_e . Нетипичная зависимость от T обусловлена тем, что при заселении возбужденных уровней n наибольший вклад в переходы вносят колебательно-вращательные состояния ядер с энергией $E_{vJ} \approx U_i(R_\omega)$, а их населенность при низких T мала. Низкая эффективность диссоциативного захвата гомоядерных ионов на высокие уровни n при малых T_e указывает на пороговый характер процесса: энергия электронов должна быть достаточно высокой, чтобы скомпенсировать различие между дном потенциальной ямы основного терма и областью резонансных переходов, т.е. $k_{\rm B}T_e \sim D_0 - |U_i(R_\omega)|$. Таким образом, механизм ДР гетероядерных ионов гораздо эффективнее заселяет уровни атома Xe с $n \gtrsim 10$, чем в случае гомоядерного иона Xe₂⁺. При этом относительный вклад ионов RgXe⁺ резко возрастает при снижении T и T_e .

Поведение кривых на рис. 4, b вступает в кажущееся противоречие с экспериментальными данными, согласно которым коэффициент ДР ионов Xe_2^+ убывает с ростом T и T_e . Расхождение определяется тем, что

измеряемые коэффициенты $\alpha^{dr}(T_e, T)$ включают захват на все допустимые уровни *n* и могут быть приближенно описаны как $\alpha^{dr}(T_e, T) \approx \sum_n \alpha_n^{dr}(T_e, T)$. В случае Xe_2^+ наибольший вклад в сумму вносят низколежащие уровни атома Xe, которые нельзя точно описать в рамках нашего подхода, применимого при $n_* \gg 1$. Тем не менее качественные оценки с помощью нашей модели показывают, что константы скорости захвата на низкие уровни $\alpha_{low}^{dr}(T_e, T)$, а также $\sum_n \alpha_n^{dr}(T_e, T)$ убывают с ростом температур.

Рисунок 4 показывает, что для значительного влияния ДР гетероядерных ионов RgXe⁺ на кинетику рекомбинации плазмы смеси Rg/Xe необходимо, чтобы их концентрация [RgXe⁺] более, чем на порядок, превосходила концентрацию [Xe₂⁺]. При равновесном распределении молекулярных ионов в плазме смеси Rg/Xe такое условие практически недостижимо при $T = 300-500 \,\mathrm{K}$ изза большой величины D_0 иона Xe₂⁺. Однако в реальных экспериментах [8,24,28,31,32] при условии [Rg]»[Xe] вследствие того, что конверсия атомарных ионов Хе⁺ в ионы Xe₂⁺ протекает намного медленнее, чем в гетероядерные RgXe⁺, реализуются неравновесные условия. При этом влияние ДР ионов Xe⁺ на кинетику рекомбинации существенно снижается и роль резонансных процессов захвата электронов ионами RgXe⁺ может оказаться значительной даже при $T \approx 300-500$ K.

5.3. Роль столкновительного девозбуждения ридберговских уровней

Помимо процессов захвата электрона в рекомбинирующей плазме происходят процессы столкновительного и радиационного тушений ридберговских уровней, что требует включения этих процессов в самосогласованное решение задачи об электрон-ионной рекомбинации [2]. Ниже будет исследована роль различных механизмов девозбуждения в плазме смесей Rg/Xe. Изучение влияния таких процессов на эффективность рекомбинации требует решения кинетических уравнений. В упрощенном виде это было сделано в [7] при расчете коэффициента рекомбинации. Однако ряд важных выводов о роли различных механизмов столкновительного тушения можно сделать путем анализа поведения констант скоростей соответствующих реакций.

5.3.1. Сравнение эффективности резонансных механизмов девозбуждения и захвата на ридберговские уровни Рассмотрим, как соотносятся между собой резонансные процессы тушения (7) и захвата электрона (1), (2) при столкновениях с атомами буферного газа. Реакции (2) и (7) отличаются тем, что в первом случае электрон исходно находится в непрерывном спектре, а во-втором — в дискретном. Поэтому сечения этих реакций имеют разные размерности. На рис. 5, а представлены нормированные сечения $\sigma_{n\to n-\Delta n}^{\text{res}}/(\sigma_{n\to n-1}^{\text{res}})_{\text{max}}$ резонансных переходов $n \rightarrow n'$ между ридберговскими уровнями Xe(n) в столкновениях с атомами Ne при энергии относительного движения $E = k_{\rm B}T/2$, T = 300 К в зависимости от *n*. Нормированные сечения $\sigma^{\mathrm{tr}}_{\epsilon o n}/(\sigma^{\mathrm{tr}}_{\epsilon o n})_{\mathrm{max}}$ резонансного захвата в системе $Ne+Xe^++e$ для тех же значений *E* и различных значений $\varepsilon = k_{\rm B}T_e/2$ ($T_e = 500$, 1000 и 1500 K) приведены на рис. 5, *b*. Для каждого значения Δn сечение $\sigma_{n \to n - \Delta n}^{\text{res}}(E)$ имеет ярко выраженный максимум, при этом преобладают переходы $n \rightarrow n-1$ с $\Delta n=1$. Максимумы сечений значительно сдвинуты в сторону низких *n* по сравнению с $\sigma_{\varepsilon \to n}^{\mathrm{tr}}(E)$. Положения максимумов определяются условием, что переходы между термами происходят вблизи положения равновесия R_e , т.е. $\Delta U_{fi}(R_e) \approx \varepsilon + Ry/n^2$ и $\Delta U_{fi}(R_e) \approx 2Ry \Delta n/n^3$ для переходов $\varepsilon \rightarrow n$ и $n \rightarrow n-1$ соответственно. При заданном $\Delta U_{fi}(R_e)$ второе условие выполняется при меньших n, что приводит к смещению максимума. Заметим, что "рабочие" области процессов пересекаются. Это указывает на необходимость одновременного учета этих процессов при построении кинетики рекомбинации.

Сравним скорости резонансного захвата $\varepsilon \rightarrow n$ и резонансных переходов $n' \rightarrow n$ в образование ридберговского атома Хе(n). Они описываются величинами $W_n^{\text{res}} = \beta_n^{\text{res}} N_{\text{B}} N_e$ $[\mathbf{s}^{-1}]$ и $W_n^{\text{q}} = \sum_{n'>n} K_{n'\to n}^{\text{q}} N_{n'}$ $[\mathbf{s}^{-1}]$, где $K_{n'\to n}^{\text{q}} = \langle V \sigma_{n'\to n}^{\text{res}} \rangle_T$ $[\mathrm{cm}^3 \mathrm{c}^{-1}]$. При равновесном заселении высоковозбужденных уровней атома величина W_n^q может быть записана в виде $W_n^q = \beta_n^q N_B N_e$, где $\beta_n^{\rm q} = \sum_{n'>n} K_{n'\to n}^{\rm q} N_{n'} / (N_{\rm B} N_e)$ [cm⁶·s⁻¹], а отношение N_{n'}/(N_BN_e) рассчитано по формуле Саха. Это сводит анализ эффективности заселения уровня *n* за счет указанных процессов к сопоставлению величин β_n^{res} и β_n^{q} . Зависимости этих величин от *n* изображены на рис. 6 для систем $Kr + Xe^+ + e$, $Ar + Xe^+ + e$ и $Ne + Xe^+ + e$ при T = 300 и 500 К и $T_e = 2000$ К. Видно, что в системах с относительно высокими значениями энергии диссоциации молекулярных ионов (KrXe⁺) механизмы резонансного захвата (1), (2) доминируют во всей области п, что главным образом связано с высокой эффективностью процессов ДР (1) ввиду большой вероятности образования катионов ВА⁺. По той же причине резонансный захват гораздо эффективнее, чем механизм тушения (7), способствует заселению уровней n в случае ионов с умеренными значениями D_0 (ArXe⁺). С ростом газовой температуры T концентрация BA⁺ падает, и относительная эффективность резонансного захвата снижается. Иная ситуация наблюдается для систем с малыми значениями D₀ (NeXe⁺). Вследствие низкой вероятности формирования ионов ВА⁺ влияние канала ДР мало, и динамика заселения ридберговских уровней *п* преимущественно определяется резонансными столкновительными процессами с участием частиц В. Резонансное тушение доминирует по причине большего статистического веса связанных состояний атома А, а эффективность обоих процессов слабо зависит от Т.

Следует отметить, что приведенный выше анализ выполнен в предположении, что квазиконтинуум высоковозбужденных уровней атома Хе находится в равновесии с непрерывным спектром. В общем случае при учете

Рис. 5. (a) Нормированные сечения $\sigma_{n \to n-\Delta n}^{\text{res}}/(\sigma_{n \to n-1}^{\text{res}})_{\text{max}}$ резонансного тушения уровней Xe(n) атомами Ne при $\Delta n = 1-3$. (b) Нормированные сечения $\sigma_{\varepsilon \to n}^{\text{tr}}/(\sigma_{\varepsilon \to n}^{\text{tr}})_{\text{max}}$ резонансного захвата электронов в системе Ne+Xe⁺+e при энергии электронов $\varepsilon = k_{\text{B}}T_{e}/2$ ($T_{e}=500$, 1000, 1500 K). Энергия столкновения частиц Ne и Xe⁺ равна $E = k_{\text{B}}T/2$, T = 300 K.

Рис. 6. Константа скорости β_n^{res} резонансного захвата электрона на уровень n (штриховые кривые) и эффективная константа скорости (37) резонансного тушения $\beta_n^q = \sum_{n'>n} K_{n'\to n}^q N_{n'}/(N_{\text{B}}N_e)$ (сплошные кривые) для систем $\text{Kr}+\text{Xe}^++e$ (a), $\text{Ar}+\text{Xe}^++e$ (b) и $\text{Ne}+\text{Xe}^++e$ (c) при температурах T = 300 (I) и 500 K (2) и $T_e = 2000$ K.

Рис. 7. Сечения тушения ридберговских уровней атома Xe(n) при столкновениях ($E=k_BT/2$, T=300 K) с атомами Ar (a) и Ne (b). Сплошные и штриховые кривые — резонансный и нерезонансный механизмы переходов $n \rightarrow n-1$ соответственно.

различных механизмов захвата и дискретных переходов это предположение не всегда обосновано. Более точный анализ эффективности указанных резонансных процессов требует рассмотрения кинетики рекомбинации.

5.3.2. Сравнение эффективности резонансных и нерезонансных механизмов девозбуждения ридберговского атома Проанализируем эффективность процесса (7) резонансного девозбуждения $n \to n'$ в сравнении с процессами нерезонансного тушения, обусловленными рассеянием слабосвязанного электрона на атоме и на свободном электроне. На рис. 7 представлены зависимости от *n* сечений резонансных и нерезонансных переходов $n \rightarrow n'$ для систем Ar + Xe(n) и Ne + Xe(n) при энергии столкновения $E = k_{\rm B}T/2$, T = 300 K. Зависимости демонстрируют качественные различия. Вероятность нерезонансного тушения растет при уменьшении энергии перехода, и соответствующие сечения растут с увеличением п. Напротив, эффективность резонансного тушения ограничена областью низких уровней и быстро убывает с ростом n (рис. 5). Максимум сечения $\sigma_{n \to n-1}^{\text{res}}(E)$ сдвинут по *n* в сторону низких уровней и потому не изображен на рис. 7, а. Сечения процессов становятся близкими при п≈20. Для обеих систем Ar + Xe(n) и Ne+Xe(n) указанная область n далека от положения максимума $\sigma_{n\to n-1}^{\text{res}}(E)$, так что влиянием нерезонансного тушения (6) в рабочей области переходов $n \rightarrow n-1$ можно пренебречь за исключением слабосвязанных ионов с малой приведенной массой и существенной длиной рассеяния атома В.

Сравним эффективности процессов столкновительного девозбуждения состояний Xe(n) свободными электронами и процессов резонансного и нерезонансного тушения атомов ксенона при столкновениях с атомами буферного газа (B = Ne, Ar). Скорости соответствующих реакций $W_n^e = K_n^e N_e$ [s⁻¹] и $W_n^B = K_n^B N_B$ [s⁻¹]

определяются полными константами скорости тушения $K_n^{\rm B} = \sum_{n' < n} \langle V \sigma_{n \to n'}^{\rm B} \rangle_T$ и $K_n^{\rm e} = \sum_{n' < n} \langle v_e \sigma_{n \to n'}^e \rangle_{T_e}$ при столкновениях с нейтральными частицами и электронами, а также степенью ионизации плазмы *х*=*N_e*/*N*_B. Результаты расчетов величины K_n^B представлены на рис. 8. Кроме того, рис. 8 содержит относительные константы скорости $K_n^e = \varkappa \sum_{n' < n} \langle v_e \sigma_{n \to n'}^e \rangle$ тушения Xe(n) электронным ударом. Расчеты выполнены при T=300 К и $T_e=3000$ К. Резонансное тушение доминирует при низких *n* и для Ar + Xe(n), и для Ne + Xe(n). Следовательно, для самосогласованного описания кинетики рекомбинации в плазмах с низкой степенью ионизации ($\varkappa \leq 10^{-7}$) необходим корректный учет процессов резонансного тушения. При высоких *n* основной вклад в тушение дают процессы (4). Нерезонансное тушение (6) играет значительную роль лишь при больших *n* и $\varkappa \leq 10^{-8}$.

5.4. Сравнение результатов расчета с экспериментальными данными

В данном разделе осуществлен оценочный расчет интегрального коэффициента ДР $\widetilde{\alpha}^{dr}(T_e, T)$ гомоядерного иона Xe₂⁺ при T=300 К и $T_e=300-10000$ К. Важно отметить, что точный расчет величины $\widetilde{\alpha}^{dr}(T_e, T)$ в случае Хе⁺ ограничен критериями применимости разработанной модели. В широком диапазоне параметров плазмы определяющий вклад в коэффициент рекомбинации вносят захваты на низколежащие уровни квазимолекулы $Xe_2(n)$, в которых на динамику внешнего электрона оказывает значительное влияние электронная оболочка молекулярного иона. При этом используемый нами метод расчета автоионизационных ширин может приводить к значительным ошибкам. Выбор системы (Xe₂⁺) для сравнения определяется тем, что надежных экспериментальных данных для гетероядерных ионов RgXe⁺ в литературе мало. Для того, чтобы продемонстрировать

Рис. 8. Константы скорости тушения уровней Xe(n) атомами Ar (a) и Ne (b) и электронами в плазме с T=300 K, $T_e=300$ K и степенями ионизации $\varkappa=10^{-6}$, 10^{-7} , 10^{-8} . Сплошные кривые 1 — константы скорости $K_n^q(T)=\sum_{n'< n}K_{n\to n'}(T)$ резонансного тушения (7). Штриховые кривые 2 — константы скорости нерезонансного тушения (19). Пунктирные кривые 3 — относительные константы скорости $\widetilde{K}_n^e=\sum_{n'< n}K_{n\to n'}^e(T_e)\varkappa$ тушения в столкновениях с электронами (48).

Рис. 9. Сравнение результатов расчетов и экспериментальных данных по коэффициентам ДР иона Xe_2^+ при T=300 K и различных T_e . Сплошная линия — представленная теория + оценка вкладов малых n; штрихи — оценка вкладов малых n; квадраты — экспериментальные данные [57], круги — экспериментальные данные [58].

эффективность разработанного подхода в области его применимости, мы описывали величину $\tilde{\alpha}^{dr}(T_e, T)$ как сумму двух вкладов: $\tilde{\alpha}^{dr}(T_e, T) = \tilde{\alpha}^{dr}_{low}(T_e, T) + \alpha^{dr}_{Ry}(T_e, T)$, где $\alpha^{dr}_{Ry}(T_e, T) = \sum_{n \geq 8} \alpha^{dr}_n(T_e, T)$ описывает вклад захвата на ридберговские уровни и рассчитывается в рамках описанной в разд. 3 модели, а $\tilde{\alpha}^{dr}_{low}(T_e, T)$ характеризует захват на низколежащие уровни. Величина $\tilde{\alpha}^{dr}_{low}(T_e, T)$ вносит определяющий вклад в полный коэффициент ДР в области низких электронных температур T_e , так как эффективность диссоциативного захвата на высоковозбужденные уровни в этом случае крайне мала (рис. 4, b).

Величина $\tilde{\alpha}_{low}^{dr}(T_e, T)$ описывалась на оценочном уровне с помощью нашей модели как захват на эффективный низколежащий уровень, для которого эффективное главное квантовое число и автоионизационная ширина были получены с помощью интерполяции методом наименьших квадратов экспериментальных данных из работ [57,58] в области низких температур $T_e \leq 1000$ К. Данное приближение было успешно использовано в ряде известных работ (например, [25]).

На рис. 9 представлено сравнение результатов указанного расчета с экспериментальными данными из работ [57,58]. Из рис. 9 видно, что в области $T_e \leq 1000\,{\rm K}$ преобладает вклад $\widetilde{\alpha}_{low}^{dr}(T_e, T)$ (штриховая линия). При этом приближение захвата на эффективный уровень дает хорошее согласие с экспериментальными данными в полном соответствии с разработанными ранее моделями, согласно которым ДР обусловлена преимущественно резонансными переходами вблизи положения равновесия иона BA^+ . С ростом T_e становится существенным вклад резонансного захвата на ридберговские уровни, описываемый в рамках развитого подхода. Отметим, что теория хорошо описывает как область температур, при которых в соответствии с экспериментальными данными начинается заселение высоковозбужденных состояний, так и величину соответствующего вклада. Таким образом, разработанная нами модель дает физическое описание наблюдаемого в экспериментах нетипичного поведения кривых ДР иона Хе⁺ в области повышенных электронных температур. Согласно нашим расчетам, такое поведение кривой обусловлено тем фактом, что в указанной области определяющий вклад в ДР вносит захват на уровни с $n \gg 1$, который имеет явно выраженный пороговый характер.

6. Заключение

Проведено исследование резонансных и нерезонансных механизмов заселения и тушения ридберговских состояний в плазме смесей инертных газов. С использованием импульсного приближения развит способ расчета эффективного сечения и константы скорости нерезонансного захвата электрона в тройных столкновениях с атомами В. Интегральные вклады состояний непрерывного и дискретного спектров иона BA^+ в эффективные сечения и константы скоростей резонансного захвата (1) и (2) электронов в ридберговские состояния атомов и резонансных переходов $n \to n'$ в системе $B+A^++e$ рассчитаны в рамках оригинального теоретического подхода.

На примере систем $Kr+Xe^++e$, $Ar+Xe^++e$ и $Ne+Xe^++e$ с различными энергиями диссоциации молекулярных ионов при температурах Т и Т_е и степени ионизации х, характерных для плазмы послесвечения разрядов, найдены области доминирования резонансного механизма свободно-связанных (1), (2) и связанносвязанных (7) переходов электрона. Определены зависимости соответствующих сечений и констант скоростей переходов от главного квантового числа *n* атома Хе и температур T и T_e. Обнаружены большие количественные различия результатов для изучаемых систем. Установлено преобладание резонансного захвата электронов на уровни с $n \lesssim 15$ в системах с энергией диссоциации $D_0 \gtrsim 100 \text{ meV} (\text{KrXe}^+ \text{ и ArXe}^+)$, за исключением плазмы с большими $\varkappa \gtrsim 10^{-4}$. Захват электронов на высокие уровни с n 20 происходит вследствие тройных столкновений со свободными электронами (3). Влиянием нерезонансного захвата (5) в тройных столкновениях

с атомами буферного газа можно пренебречь при не слишком больших газовых температурах, $T \lesssim 1000$ К, и степенях ионизации $\varkappa \gtrsim 10^{-8}$. В системе с малой энергией диссоциации, $D_0 \lesssim 50$ meV (NeXe⁺), эффективность резонансного захвата снижается; он преобладает в захвате на уровни с $n \lesssim 15$ лишь при степенях ионизации $\varkappa \lesssim 10^{-8}$. При этом нерезонансный захват в столкновениях с электронами (3) следует учитывать при всех значениях *n*. В системах с малыми значениями D_0 при низких \varkappa и высоких температурах *T* принципиален учет нерезонансного процесса (5). В промежуточных случаях, когда скорости различных процессов захвата электронов сопоставимы, следует ожидать эффективного взаимовлияния рассмотренных механизмов в кинетике рекомбинации.

Проведены расчеты и сравнительный анализ поведения констант скоростей захвата электронов в ридберговские состояния атомов Xe слабосвязанными, NeXe⁺, умеренносвязанными, ArXe⁺, и сильносвязанными, KrXe⁺ и Xe⁺₂, молекулярными ионами. Полученные результаты имеют важное значение для работ по моделированию кинетики рекомбинационных и релаксационных процессов в неравновесной плазме смесей инертных газов и для выяснения механизма достижения инверсии заселенности мощного ксенонового лазера ИК диапазона.

Выполнен анализ эффективностей различных каналов (4), (6) и (7) столкновительного тушения состояний Xe(n) в изучаемых плазмах. Установлено, что резонансное девозбуждение происходит в основном при изменении *n* на единицу. Сечения и константы скорости этого процесса имеют ярко выраженный максимум по n как для систем с малой энергией диссоциации иона, так и в случае умеренных значений D_0 . Максимум смещен в сторону меньших n по отношению к максимуму сечений процессов (1), (2), что указывает на то, что резонансное тушение может ускорять электрон-ионную рекомбинацию. В системах с малыми значениями D₀ скорости резонансного тушения могут значительно превосходить скорости резонансного захвата электрона. Учет влияния резонансных переходов *n*→*n*′ принципиален для описания процессов заселения ридберговских уровней с *n* \lesssim 15. На заселение уровней с $n \gtrsim 20$, главным образом, влияют нерезонансные переходы $n \rightarrow n'$ при столкновениях со свободными электронами или нейтральными атомами. Соотношение между ними определяется величинами \varkappa , T_e и T.

Результаты работы расширяют традиционные представления о роли столкновений с нейтральными и заряженными частицами в процессах электрон-ионной рекомбинации и релаксации энергии по атомным уровням в плазме. Они создают основу для разработки эффективных кинетических моделей плазм смесей инертных газов, а также могут оказаться полезными при моделировании работы устройств, основанных на барьерном разряде, плазменных панелей, микроплазменных ячеек, источников ВУФ излучения и газовых лазеров.

Финансирование работы

Работа выполнена при финансовой поддержке РНФ (грант № 19-79-30086).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] *Griem H.R.* Principles of Plasma Spectroscopy. Cambridge: Cambridge University Press, 2011.
- [2] Биберман Л.М., Воробьев В.С., Якубов И.Т. Кинетика неравновесной низкотемпературной плазмы. М.: Наука, 1982; Biberman L.M., Vorob'ev V.S., Yakubov I.T. Kinetics of Nonequilibrium Low-Temperature Plasmas. New York: Consultants Bureau, 1987.
- [3] Смирнов Б.М. Возбужденные атомы. М.: Энергоиздат, 1982.
- [4] *Lebedev V.S., Beigman I.L.* Physics of Highly Excited Atoms and Ions. Berlin: Springer-Verlag, 1998.
- [5] Larsson M., Orel A.E. Dissociative Recombination of Molecular Ions. Cambridge: Cambridge University Press, 2008.
- [6] Flannery M.R. in: Springer Handbooks of At. Mol. Opt. Phys. Ed. G.W.F. Drake. N.Y.: Springer-Verlag, Part D, Chapter 54, P. 799, 2006.
- [7] Лебедев В.С., Кислов К.С., Нариц А.А. // Письма в ЖЭТФ.
 2018. Т. 108. № 9. С. 618. doi 10.1134/S0370274X18210038;
 Lebedev V.S., Kislov K.S., Narits А.А. // JETP Lett. 2018.
 V. 108. N 9. P. 582. doi 10.1134/S0021364018210087
- [8] Иванов В.А., Лебедев В.С., Марченко В.С. // ЖЭТФ. 1988. Т. 94. № 11. С. 86; Ivanov V.A., Lebedev V.S., Marchenko V.S. // Sov. Phys. JETP. 1988. V. 67. N 11. P. 2225.
- [9] Bates D.R. // J. Phys. B. 1991. V. 24. N 3. P. 703. doi 10.1088/0953-4075/24/3/025
- [10] Иванов В.А. // УФН 1992. Т. 162. № 1. С. 35. doi 10.3367/UFNr.0162.199201b.0035; Ivanov V.A. // Sov. Phys. Usp. 1992. V. 35. N 1. P. 17. doi 10.1070/PU1992v035n01ABEH002192
- [11] Dissociative Recombination of Molecular Ions with Electrons. Ed. by Guberman S.L., N.Y.: Springer, 2013.
- [12] Lukáč P., Mikuš O., Morva I., Zábudlá Z., Trnovec J., Morvová M., Hensel K. // Plasma Sources Sci. Technol. 2012.
 V. 21. N 6. P. 065002. doi 10.1088/0963-0252/21/6/065002
- [13] Lukáč P., Mikuš O., Morva I., Zábudlá Z., Trnovec J., Morvová M. // Contrib. Plasma Phys. 2011. V. 51. N 7. P. 672. doi 10.1002/ctpp.201000084
- [14] Orel A.E., Ngassam V., Roos J.B., Royal J., Larson Å. // J. Phys.: Conf. Ser. 2009. V. 192. P. 012006. doi 10.1088/1742-6596/192/1/012006
- [15] Yan X., Lin Y., Huang R., Hang W. Harrison W.W. // J. Anal. At. Spectrom. 2010. V. 25. N 4. P. 534. doi 10.1039/B912558B
- [16] Rubovič P., Kotrík T., Dohnal P., Roučka Š., Opanasiuk S., Plašil R., Glosík J. // 39th EPS Conference and 16th Int. Congress on Plasma Physics. 2012. P. 4.167.
- [17] Khandelwal N., Pal U.N., Prakash R., Choyal Y. // J. Phys.: Conf. Ser. 2016. V. 755. N 1. P. 012052. doi 10.1088/1742-6596/755/1/012052

- [18] Podolsky V., Khomenko A., Macheret S. // Plasma Sources Sci. Technol. 2018. V. 27. N 10. P. 10LT02. doi 10.1088/1361-6595/aae35e
- [19] Иванов В.А., Петровская А.С., Скобло Ю.Э. // Опт. и спектр. 2013. Т. 114. № 5. С. 750.
 doi 10.7868/S0030403413040090; *Ivanov V.A., Petrovskaya A.S., Skoblo Y.E.* // Opt. Spectrosc. 2013. V. 114. N 5. P. 688. doi 10.1134/S0030400X13040097
- [20] Иванов В.А., Петровская А.С., Скобло Ю.Э. // Опт. и спектр. 2014. Т. 117. № 6. С. 896. doi 10.7868/S0030403414120101; *Ivanov V.A., Petrov-skaya A.S., Skoblo Y.E.* // Opt. Spectrosc. 2014. V. 117. N 6. P. 869. doi 10.1134/S0030400X14120108
- [21] Иванов В.А., Петровская А.С., Скобло Ю.Э. // Опт. и спектр. 2017. Т. 123. № 5. С. 689. doi 10.7868/S0030403417110101; Ivanov V.A., Petrovskaya A.S., Skoblo Y.E. // Opt. Spectrosc. 2017. V. 123. N 5. P. 692. doi 10.1134/S0030400X17110091
- [22] Иванов В.А., Петровская А.С., Скобло Ю.Э. // ЖЭТФ.
 2019. Т. 155. № 5. С. 901. doi 10.1134/S0044451019050146;
 Ivanov V.A., Petrovskaya A.S., Skoblo Y.E. // JETP. 2019.
 V. 128. N 5. Р. 767. doi 10.1134/S1063776119030051
- [23] Levin L., Moody S., Klosterman E., Center R., Ewing J. // IEEE J. Quantum Electron. 1981. V. 17. N 12. P. 2282. doi 10.1109/JQE.1981.1070708
- [24] Ohwa M., Moratz T.J., Kushner M.J. // J. Appl. Phys. 1989.
 V. 66. N 11. P. 5131. doi 10.1063/1.343747
- [25] O'Malley T.F. // J. Chem. Phys. 1969. V. 51. N 1. P. 330. doi 10.1063/1.1671726
- [26] Bardsley J.N. // Phys. Rev. A 1970. V. 2. N 4. P. 1359. doi 10.1103/PhysRevA.2.1359
- [27] Автаева С.В., Кулумбаев Э.Б. // Физика плазмы. 2009.
 Т. 35. № 4. С. 366; Avtaeva S.V., Kulumbaev E.B. // Plasma Phys. Rep. 2009. V. 35. N 4. Р. 329. doi 10.1134/S1063780X09040060
- [28] Belasri A., Harrache Z. // Plasma Chem. Plasma Process. 2011. V. 31. P. 787. doi 10.1007/s11090-011-9305-4
- [29] Belasri A., Harrache Z., Baba-Hamed T. // Physics of Plasmas 2003. V. 10. N 12. P. 4874. doi 10.1063/1.1625374
- [30] Bendella S., Belasri A. // Plasma Devices Oper. 2007. V. 15.
 N 2. P. 77. doi 10.1080/10519990601109049
- [31] Postel O.B., Cappelli M.A. // Appl. Phys. Lett. 2000. V. 76.
 N 5. P. 544. doi 10.1063/1.125813
- [32] Apruzese J.P., Giuliani J.L., Wolford M.F., Sethian J.D., Petrov G.M., Hinshelwood D.D., Myers M.C., Ponce D.M. // Appl. Phys. Lett. 2006. V. 88. N 11. P. 121120. doi 10.1063/1.2188038
- [33] Alford W.J., Hays G.N., Ohwa M., Kushner M.J. // J. Appl. Phys. 1991. V. 69. N 4. P. 1843. doi 10.1063/1.348752
- [34] Dasgupta A., Apruzese J.P., Zatsarinny O., Bartschat K., Fischer C.F. // Phys. Rev. A. 2006. V. 74. N 1. P. 012509. doi 10.1103/PhysRevA.74.012509
- [35] Apruzese J.P., Giuliani J.L., Wolford M.F., Sethian J.D., Petrov G.M., Hinshelwood D.D., Myers M.C., Dasgupta A., Hegeler F., Petrova Ts. // J. Appl. Phys. 2008. V. 104. N 1. P. 013101. doi 10.1063/1.2948934
- [36] Минеев А.П., Дроздов А.П., Нефедов С.М., Пашинин П.П., Гончаров П.А., Киселев В.В. // Квантовая электроника. 2012. Т. 42. № 7. С. 575; Mineev А.Р., Drozdov A.P., Nefedov S.M., Pashinin P.P., Goncharov P.A., Kiselev V.V. // Quantum Electron. 2012. V. 42. N 7. P. 575. doi 10.1070/QE2012v042n07ABEH014841

[37] Карелин А.В., Синянский А.А., Яковленко С.И. // Квант. электрон. 1997. Т. 24. № 5. С. 387; Karelin A.V., Sinyanskii A.A., Yakovlenko S.I. // Quantum Electron. 1997. V. 27. N 5. P. 377.

doi 10.1070/QE1997v027n05ABEH000952

- [38] Минеев А.П., Нефедов С.М., Пашинин П.П., Гончаров П.А., Киселев В.В. // Вестник Воздушно-Космической Обороны. 2018. № 1(17). С. 78.
- [39] Lebedev V.S. // J. Phys. B. 1991. V. 24. N 8. P. 1977. doi 10.1088/0953-4075/24/8/015
- [40] Ландау ЛД., Лифшиц Е.М. Квантовая механика. Нерелятивистская теория. М.: Физматлит, 2004. 800 с.; Landau L.D., Lifshitz E.M. Quantum Mechanics: Non-Relativistic Theory. Elsevier, 2013. 688 p.
- [41] O'Malley T.F. // Phys. Rev. A. 1963. V. 130. N 3. P. 1020. doi 10.1103/PhysRev.130.1020
- [42] Beigman I.L., Lebedev V.S. // Phys. Rep. 1995. V. 250. N 3-5.
 P. 95. doi 10.1016/0370-1573(95)00074-Q
- [43] Lebedev V.S. // J. Phys. B. 1991. V. 24. N 8. P. 1993. doi 10.1088/0953-4075/24/8/016
- [44] Mihajlov A.A., Ignjatović L.M., Vasilijević M.M., Dimitrijević M.S. // Astron. Astrophys. 1997. V. 324. P. 1206.
- [45] Mihajlov A.A., Ignjatović Lj.M., Dimitrijević M.S., Djurić Z. // Astrophys. J. Suppl. Ser. 2003. V. 147. N 2. P. 369. doi 10.1086/375621
- [46] Lebedev V.S., Presnyakov L.P. // J. Phys. B. 2002. V. 35, N 21.
 P. 4347. doi 10.1088/0953-4075/35/21/303
- [47] Seaton M.J. // Comput. Phys. Commun. 2002. V. 146. N 2.
 P. 225. doi 10.1016/S0010-4655(02)00275-8
- [48] Жданов В.П., Чибисов М.И. // ЖЭТФ. 1978. Т. 74. N 1.
 С. 75; Zhdanov V.P., Chibisov M.I. // Sov. Phys. JETP. 1978.
 V. 47. N 1. P. 38.
- [49] Лебедев В.С., Марченко В.С. // ЖЭТФ. 1983. Т. 84. № 5.
 P. 1623; Lebedev V.S., Marchenko V.S. // Sov. Phys. JETP. 1983. V. 57. N 5. P. 946.
- [50] Гореславский С.П., Крайнов В.П. // ЖЭТФ. 1982. Т. 82. № 6. С. 1789; Goreslavskii S.P., Krainov V.P. // Sov. Phys. JETP. 1982. V. 55. N 6. P. 1032.
- [51] Зельдович Я.Б., Райзер Ю.П. Физика ударных волн и высокотемпературных гидродинамических явлений. М: Наука, 1966. 688 с.; Zel'dovich Ya.B., Raizer Yu.P. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. New York: Dover Publications, 2012.
- [52] Percival I.C., Richards D. // Adv. At. Mol. Phys. 1976. V. 11.
 P. 1. doi 10.1016/S0065-2199(08)60028-7
- [53] Lebedev V.S., Fabrikant I.I. // Phys. Rev. A. 1996. V. 54, N 4.
 P. 2888. doi 10.1103/PhysRevA.54.2888
- [54] Lebedev V.S., Fabrikant I.I. // J. Phys. B. 1997. V. 30. N 11.
 P. 2649. doi 10.1088/0953-4075/30/11/016
- [55] Weyhreter M., Barzick B., Mann A., Linder F. // Z. Phys. D. 1988. V. 7. P. 333. doi 10.1007/BF01439803
- [56] Gulley R.J., Alle D.T., Brennan M.J., Brunger M.J., Buckman S.J. // J. Phys. B. 1994. V. 27. N 12. P. 2593. doi 10.1088/0953-4075/27/12/018
- [57] Shiu Y.J., Biondi M.A., Sipler D.P. // Phys. Rev. A. 1977. V. 15.
 P. 494
- [58] Ivanov V.A., Prikhodjko A.S. // J. Phys. B. 1991. V. 24 N 18. P. L459.