19

Синтез, структура и теплофизические свойства оксидов системы YVO₄—BiVO₄

© Л.Т. Денисова, Е.О. Голубева, Л.Г. Чумилина, В.М. Денисов

Институт цветных металлов и материаловедения Сибирского федерального университета, Красноярск, Россия

E-mail: antluba@mail.ru

Поступила в Редакцию 17 декабря 2019 г. В окончательной редакции 17 декабря 2019 г. Принята к публикации 18 декабря 2019 г.

Твердофазным синтезом из исходных оксидов Y_2O_3 , Bi_2O_3 и V_2O_5 обжигом на воздухе при температуре 1173 К в течение 200 h получены твердые растворы $Y_{0.4}Bi_{0.6}BiVO_4$ и $Y_{0.6}Bi_{0.4}VO_4$ (при $x_{Bi} = 0.95$, 0.90 и 0.80 образцы двухфазны). Методом дифференциальной сканирующей калориметрии измерена их высокотемпературная теплоемкость в области 350–1000 К. По этим данным рассчитаны термодинамические свойства твердых растворов.

Ключевые слова: твердофазный синтез, твердые растворы, структура, ванадаты иттрия и висмута, высокотемпературная теплоемкость, термодинамические свойства.

DOI: 10.21883/FTT.2020.04.49133.654

1. Введение

Уже длительное время исследователей и практиков привлекают внимание оксидные материалы на основе Ві₂О₃. Обусловлено это удачным сочетанием их физикохимических свойств, позволяющих использовать их в различных областях техники и медицины [1-4]. К подобным материалам относятся и соединения, образующиеся в системе Bi₂O₃-V₂O₅ [3-6]. Особый интерес вызывают ванадаты висмута типа $M_x \text{Bi}_{1-x} \text{VO}_4$ [4,7–9]. Так, например, замещение Ві на Се позволяет изменять диэлектрические свойства керамики (лучшие диэлектрические свойства получены для образцов состава Bi_{0.75}Ce_{0.25}VO₄ [4]). Изменение оптоэлектрических характеристик наблюдается при замещении Ві на Nd [9]. Тем не менее, свойства твердых растворов M_{1-x} Bi_x VO₄ исследованы мало. В первую очередь это касается их теплофизических свойств. Данные по теплоемкости имеются только для системы $Ce_{1-x}Bi_{x}VO_{4}$ [10].

Целью настоящей работы является исследование структуры и термодинамических свойств оксидов системы $Y_x Bi_{1-x} VO_4$.

2. Эксперимент

Ортованадаты $Y_x Bi_{1-x} VO_4$ (x = 0, 0.05, 0.10, 0.20, 0.40, 0.60, 1.0) готовили твердофазным методом из YVO₄ и BiVO₄, которые получены подобно [11] и [12] соответственно. Для этого YVO₄ и BiVO₄, взятые в определенных соотношениях, гомогенизировали в агатовой ступке. Затем прессовали таблетки, которые обжигали на воздухе в течение 200 h при температуре 1173 К. Для достижения полноты протекания твердофазной реакции таблетки через каждые 20 h перетирали и снова прессовали. Контроль фазового состава полеченных образцов осуществляли с использованием рентгенофазового анализа на дифрактометре X'Pert Pro MPD (PANalytical, Нидерланды, Cu K_{α} -излучение).

Измерения теплоемкости проводили на термоанализаторе STA 449 С Jupiter (NETZSCH, Германия) методом дифференциальной сканирующей калориметрии. Методика экспериментов описана ранее [13,14]. Погрешность измерений теплоемкости не превышала 2%.

3. Результаты и обсуждение

Рентгенограммы полученных однофазных твердых растворов $Y_{0.4}Bi_{0.6}VO_4$ и $Y_{0.6}Bi_{0.4}VO_4$ показаны на рис. 1. Параметры решеток полученных твердых растворов определены подобно в [10,11]. Полученные значения приведены в табл. 1. Сопоставить эти результаты с данными других авторов не представлялось возможным вследствие их отсутствия. Образцы со значением x = 0.05, 0.10 и 0.20 были двухфазные. Полученные

Таблица 1. Параметры элементарных ячеек твердых растворов $Y_{0.4}Bi_{0.6}VO_4$ и $Y_{0.6}Bi_{0.4}VO_4$

Параметры	Y _{0.4} Bi _{0.6} VO ₄	Y _{0.6} Bi _{0.4} VO ₄
Простр. группа	$I4_1/amd$	$I4_1/amd$
<i>a</i> , Å	7.2262(1)	7.1892(2)
<i>c</i> , Å	6.3898(1)	6.3543(2)
$V, Å^3$	333.66(1)	328.42(2)
Ζ	4	4
d, g/cm ³	5.29	4.91

Рис. 1. Экспериментальный (1), расчетный (2) и разностный (3) профили рентгенограммы $Y_{0.4}Bi_{0.6}VO_4$ (*a*) и $Y_{0.6}Bi_{0.4}VO_4$ (*b*) после уточнения методом минимизации производной разности; штрихи указывают расчетные положение рефлексов.

нами данные о структуре этих фаз при комнатной температуре приведены в табл. 2.

На основании полученных результатов, по-видимому, можно полагать, что растворимость YVO₄ в BiVO₄ менее 5 mol.%.

На рис. 2 показано влияние состава системы YVO_4 -BiVO₄ на параметры элементарной ячейки. При этом принимали во внимание, что если ячейки не кубические, то в законе Вегарда фигурируют межатомные расстояния [15]. Кроме наших результатов здесь же для системы YVO_4 -BiVO₄ приведены и данные авторов [16] (отметим, что для твердых растворов $Y_{0.5}Bi_{0.5}VO_4$ в [17] получены близкие значения параметров элементарной ячейки).

При построении графиков, приведенных на рис. 2, учитывали, что BiVO₄ может иметь в зависимости от условий получения различные структуры с пространственными группами *Pnca*, *I*112/*b*, *I*4₁/*amd* и *I*4₁/*a* [18,19]. Поскольку YVO₄ и твердые растворы $Y_{0.4}Bi_{0.6}VO_4$ и YO₆Bi_{0.4}VO₄ имели пространственную группу *I*4₁/*amd*, то для BiVO₄ на рис. 2 приведены данные [18] для этой же пространственной группы. Из рис. 2 видно, что значения a, c, V и d в зависимости от состава xизменяются линейно. Полученные данные могут быть описаны линейными уравнениями

 $a(\text{\AA}) = (7.1136 \pm 0.0031) + (0.0019 \pm 0.0006)x,$ (1)

$$c(A) = (6.2861 \pm 0.0025) + (0.0017 \pm 0.0001)x,$$
 (2)

$$V(\text{\AA}^3) = (318.15 \pm 0.39) + (0.25 \pm 0.008)x,$$
 (3)

L

$$d(g/cm^{3}) = (4.141 \pm 0.064) + (0.0181 \pm 0.001)x.$$
(4)

В уравнениях (1)-(4) *x* — mol.% BiVO₄. Коэффициенты корреляции для этих уравнений равны соответственно 0.9975, 0.9982, 0.9979 и 0.9967.

В то же время синтезированный нами BiVO₄ имел моноклинную структуру (пр. гр. I2/b, a = 5.1970(1) Å, b = 5.0925(1) Å, c = 11.7032(2) Å, $\gamma = 90.392(1)^{\circ}$, $V = 309.73(1) \text{ Å}^3$), что хорошо согласуется C [6,19–22]. Ha зависимости $c_p = f(T)$ данными отмечено наличие экстремума с максимумом при $T_{\text{max}} = 532 \text{ K}$ [14]. По имеющимся данным [18–20,23], этой области происходит фазовый переход в низкотемпературной моноклинной модификации BiVO₄

Рис. 2. Связь состава оксидов системы YVO₄-BiVO₄ с параметрами элементарной ячейки: *1, 3, 6, 9* — данные [18], *2, 4, 7, 10* — наши данные, *5, 8, 11* — данные [16].

Исходный состав	Фазы (mol.%)
$Y_{0.05}Bi_{0.95}VO_4$	96 BiVO ₄ ($a = 5.1791(1)$ Å, $b = 5.0946(1)$ Å, $c = 11.6714(2)$ Å, $\gamma = 90.296(2)^{\circ}$, $V = 307.95(1)$ Å ³ , np. rp. $I2/b$, $Z = 4$) 4 Y _x Bi _{1-x} VO ₄ ($a = b = 7.2618(3)$ Å, $c = 6.4205(2)$ Å, $V = 338.58(3)$ Å ³ , np. rp. $I4_1/amd$, $Z = 4$)
$Y_{0.1}Bi_{0.90}VO_4$	68 BiVO ₄ ($a = 5.1792(2)$ Å, $b = 5.0947(1)$ Å, $c = 11.6718(2)$ Å, $\gamma = 90.296(3)^{\circ}$, $V = 307.98(1)$ Å ³ , np.rp. $I2/b$, $Z = 4$) 32 Y _x Bi _{1-x} VO ₄ ($a = b = 7.2613(1)$ Å, $c = 6.4208(1)$ Å, $V = 338.55(3)$ Å ³ , np.rp. $I4_1/amd$, $Z = 4$)
$Y_{0.2}Bi_{0.80}VO_4$	14 BiVO ₄ ($a = 5.1781(1)$ Å, $b = 5.0954(1)$ Å, $c = 11.6710(6)$ Å, $\gamma = 90.282(8)^{\circ}$, $V = 307.92(2)$ Å ³ , np. rp. $I2/b$, $Z = 4$) 86 Y _x Bi _{1-x} VO ₄ ($a = b = 7.2609(3)$ Å, $c = 6.4204(1)$ Å, $V = 338.49(2)$ Å ³ , np. rp. $I4_1/amd$, $Z = 4$)

Таблица 2. Параметры структуры оксидов системы $Y_x Bi_{1-x} VO_4$ с низкими значениями x

Puc. 3. Влияние температуры на удельную теплоемкость оксидов $Y_x Bi_{1-x} VO_4$. (x = 1 (1), 0.60 (2), 0.40 (3), 0.20 (4), 0.10 (5), 0 (6)).

в структуру типа шеелита, кристаллизующуюся в тетрагональной сингонии (пр. гр. *I*41/*a*).

На рис. З показано влияние температуры на удельную теплоемкость оксидов $Y_x Bi_{1-x} VO_4$. Поскольку для $Y_{0.05}Bi_{0.95}VO_4$ и $Y_{0.1}Bi_{0.9}VO_4$ получены одинаковые значения c_p , то приведены данные только для $Y_{0.1}Bi_{0.9}VO_4$. Видно, что как и для BiVO₄ для него на зависимости $c_p = f(T)$ так же имеется экстремум, который смещен в сторону более низких температур. Подобное явление наблюдали ранее для купрата лантана La₂CuO₄ при замещении части La на Sr [24,25].

Из рис. З следует, что теплоемкость соединений $Y_x Bi_{1-x} VO_4$ (x = 0.05, 0.10 и 0.20) несмотря на то что они двухфазны, закономерно увеличивается с ростом температуры, и зависимости $c_p = f(T)$ имеют такой

же вид, как и для однофазных твердых растворов Y_{0.4}Bi_{0.6}VO₄, Y_{0.6}Bi_{0.4}VO₄ и соединения BiVO₄.

Теплоемкость гетерогенных систем описывают уравнением [26]

$$c_p = \sum m_i c_p^i + T\left(\sum m_i \left(\frac{dx_i}{dT}\right)^2\right),\tag{5}$$

где m_i , c_p^i — масса и теплоемкость *i*-фазы смеси, производная dx_i/dT показывает зависимость граничного состава *i*-фазы от температуры, второе слагаемое уравнения (5) описывает скачок теплоемкости Δc_p на границе раздела фаз. Из рис. 4 видно, что изменение структуры и состава твердых растворов не сопровождается резким изменением теплоемкости ($\Delta c_p \approx 0$). По мнению [27], это свидетельствует о слабой зависимости состава граничных твердых растворов от температуры.

Рис. 4. Влияние состава оксидов системы YVO_4 -BiVO₄ на значения удельной теплоемкости при T = 950 (1), 850 (2), 750 (3), 650 (4), 550 (5), 450 (6), 350 (7) K.

<i>Т</i> , К	C_p , J/(mol·K)	$H^{\circ}(T) - H^{\circ}(350 \mathrm{K}),$ kJ/mol	$S^{\circ}(T) - S^{\circ}(350 \mathrm{K}),$ J/(mol·K)	$\Phi^{\circ}(T)$, kJ/mol		
Y _{0.4} Bi _{0.6} VO ₄						
350	146.9	_	_	_		
400	147.3	7.35	19.64	1.25		
450	147.6	14.73	37.01	4.28		
500	148.0	22.12	52.58	8.35		
550	148.4	29.53	66.71	13.02		
600	148.7	36.96	79.63	18.04		
650	149.1	44.40	91.55	23.24		
700	149.5	51.87	102.62	28.52		
750	149.8	59.35	112.9	33.81		
800	150.2	66.85	122.6	39.06		
850	150.6	74.37	131.7	44.25		
900	150.9	81.91	140.4	49.35		
950	151.3	89.46	148.5	54.35		
1000	151.7	97.04	156.3	59.26		
Y _{0.6} Bi _{0.4} VO ₄						
350	124.4	_	_	_		
400	129.2	6.35	16.94	1.07		
450	132.6	12.89	32.36	3.71		
500	135.2	19.59	46.48	7.29		
550	137.4	26.41	59.47	11.45		
600	139.1	33.32	71.50	15.96		
650	140.6	40.32	82.69	20.67		
700	141.9	47.38	93.16	25.48		
750	143.0	54.50	103.0	30.32		
800	144.1	61.68	112.2	35.15		
850	145.0	68.91	121.0	39.95		
900	145.9	76.18	129.3	44.68		
950	146.8	83.50	137.2	49.35		
1000	147.6	90.86	144.8	53.94		

Таблица 3. Сглаженные значения теплоемкости и рассчитанные по ним термодинамические свойства $Y_{0.4}Bi_{0.6}VO_4$ и $Y_{0.6}Bi_{0.4}VO_4$

Зависимости молярной теплоемкости твердых растворов $Y_{0.4}Bi_{0.6}VO_4$, $Y_{0.6}Bi_{0.4}VO_4$ от температуры в области 350–1000 К хорошо описываются уравнением Майера–Келли, соответственно (J/(mol·K)

$$C_p = (144.4 \pm 0.8) + (7.330 \pm 0.008) \cdot 10^{-3}T$$
$$- (23.40 \pm 0.88) \cdot 10^5 T^{-2}, \tag{6}$$

$$C_p = (138.2 \pm 0.3) + (11.64 \pm 0.003) \cdot 10^{-3}T$$
$$- (21.81 \pm 0.29) \cdot 10^5 T^{-2}. \tag{7}$$

Коэффициенты корреляции для уравнений (6) и (7) равны 0.9960 и 0.9993 соответственно.

С использованием уравнений (6) и (7) по известным термодинамическим соотношениям рассчитаны термодинамические свойства твердых растворов $Y_{0.4}Bi_{0.6}VO_4$ и $Y_{0.6}Bi_{0.4}VO_4$. Эти результаты представлены в табл. 3.

4. Заключение

Твердофазным методом получены оксидные соединения системы YVO₄-BiVO₄. Установлено, что образуются ограниченные твердые растворы (составы $Y_x Bi_{1-x} VO_4$ со значением x = 0.05, 0.10 и 0.20 двухфазны). Исследовано влияние температуры на теплоемкость $Y_x Bi_{1-x} VO_4$ (x = 0, 0.05, 0.10, 0.20, 0.40, 0.60 и 1.0). Найдено, что для двухфазных и однофазных твердых растворов вид зависимости $c_p = f(T)$ в области температур 350–1000 К подобен. На зависимостях $c_p = f(T)$ для BiVO₄, $Y_{0.05}Bi_{0.95}$ и $Y_{0.1}Bi_{0.9}VO_4$ имеются экстремумы, связанные с изменением структуры. Для твердых растворов $Y_{0.4}Bi_{0.6}VO_4$ и $Y_{0.6}Bi_{0.4}VO_4$ рассчитаны термодинамические свойства.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Ю.Ф. Каргин, В.И. Бурков, А.А. Марьин, А.В. Егорышева. Кристаллы Bi₁₂M_xO_{20±δ} со структурой силленита. Синтез, строение, свойства. ИОНХ, М. (2004). 316 с.
- [2] Ю.М. Юхин, Ю.И. Михайлов. Химия висмутовых соединений и материалов. СО РАН, Новосибирск (2001). 360 с.
- [3] C.K. Lee, C.S. Ong. Solid State Ionics 117, 301 (1999).
- [4] D. Zhou, L.-X. Pang, J. Guo, Z.-M. Qi, T. Shao, Q.-P. Wang, H.-D. Xie, X. Yao, C.A. Randall. Inorg. Chem. 53, 1048 (2014).
- [5] N. Touboul, C. Vachon. Thermochim. Acta 133, 61 (1988).
- [6] S. Beg, S. Haneef, N.A.S. Al-Areqi. Phase Transition 83, 12, 1114 (2010).
- [7] Л.Т. Денисова, Н.В. Белоусова, Ю.Ф. Каргин, В.М. Денисов. Ортованадаты редкоземельных металлов. СФУ, Красноярск (2016). 128 с.
- [8] A. Watanabe. J. Solid State Chem. 153, 174 (2000).
- [9] M. Dragomir, I. Arčon, S. Gardonio, M. Valant. Acta Mater. 61, 1126 (2013).
- [10] Л.Т. Денисова, Л.Г. Чумилина, Н.В. Белоусова, В.М. Денисов. ФТТ 58, 9, 1867 (2016).
- [11] Л.Т. Денисова, Л.Г. Чумилина, В.М. Денисов. ФТТ 56, 12, 2305 (2014).
- [12] Л.Т. Денисова, А.Д. Изотов, Л.Г. Чумилина, Ю.Ф. Каргин, В.М. Денисов. ДАН 467, 1, 58 (2016).
- [13] В.М. Денисов, Л.Т. Денисова, Л.А. Иртюго, В.С. Биронт. ФТТ 52, 7, 1274 (2010).
- [14] Л.Т. Денисова, Л.А. Иртюго, Ю.Ф. Каргин, Л.Г. Чумилина, Н.В. Белоусова, В.М. Денисов, Н.А. Галиахметова. Неорган. материалы 53, 3, 289 (2017).
- [15] Б.Ф. Ормонт. Введение в физическую химию и кристаллохимию полупроводников. Высш. шк., М. (1973). 655 с.
- [16] H. Liu, J. Yuan, Z. Jiang, W. Shangguan, H. Einaga, Y. Teraoka. J. Mater. Chem. 21, 16535 (2011).
- [17] H. Liu, J. Yuan, Z. Jiang, W. Shangguan, H. Einaga, Y. Teraoka. J. Solid State Chem. 186, 70 (2012).
- [18] А.А. Фотиев, Б.Д. Слободин, М.Я. Ходос. Ванадаты. Состав, синтез, структура, свойства. Наука, М. (1988). 272 с.

- [19] T. Dordecić, Lj. Karanović. J. Solid State Chem. 220, 259 (2014).
- [20] W.I.F. David, A.M. Glazer, A.W. Hewat. Phase Transition 1, 155 (1979).
- [21] A.W. Sleght, H.-Y. Chen, A. Ferretti, D.E. Cox. Mater. Res. Bull. 14, 1571 (1979).
- [22] T.H. Yeom, S.H. Chon. J. Korean Phys. Soc. 33, 5, L529 (1998).
- [23] A.K. Bhattacharya, K.K. Mallick, A. Hartridge. Mater. Lett. 30, 7 (1997).
- [24] Л.А. Мурадян, Р.А. Тамазян, А.М. Кеворков, Х.С. Багдасаров, В.И. Симонов. Кристаллография **35**, *4*, 861 (1990).
- [25] K. Sun, J.H. Cho, F.C. Chou, W.C. Lee, L.L. Miller, D.C. Johnston. Phys. Rev. B 43, 1, 439 (1991).
- [26] В.К. Филиппов. Вестн. ЛГУ 22, 64 (1980).
- [27] А.Л. Емелина, М.А. Быков, М.А. Ковба, К.С. Гавричев. Неорган. материалы **46**, *9*, 1140 (2010).

Редактор Ю.Э. Китаев