01 Исследование кинетических параметров схемы лазерной фотоионизации лютеция

© А.Б. Дьячков, А.А. Горкунов, А.В. Лабозин, С.М. Миронов, В.Я. Панченко, В.А. Фирсов, Г.О. Цветков

Национальный исследовательский центр "Курчатовский институт", 123182 Москва, Россия

e-mail: Tsvetkov_GO@nrcki.ru

Поступила в редакцию 26.09.2019 г. В окончательной редакции 26.09.2019 г. Принята к публикации 29.11.2019 г.

Разработка лазерного фотоионизационного метода получения радионуклида ¹⁷⁷Lu для применения в медицине требует знания интенсивностей светового насыщения по каждой ступени схемы фотоионизации лютеция ($5d6s^{2} {}^{2}D_{3/2} - 5d6s6p {}^{4}F_{5/2}^{\circ} - 5d6s7s {}^{4}D_{3/2} - (53375 \,\mathrm{cm}^{-1})_{1/2}^{\circ}$) с учетом используемых компонент сверхтонкой структуры переходов. В работе экспериментально определены эффективные сечения возбуждения различных сверхтонких компонент переходов для изотопов ¹⁷⁵Lu, ¹⁷⁶Lu, ¹⁷⁷Lu и ^{177m}Lu излучением импульсных перестраиваемых по длине волны лазеров на красителях, накачиваемых лазерами на парах меди.

Ключевые слова: лазерная фотоионизация, сверхтонкая структура, ¹⁷⁷Lu, лазерное разделение изотопов.

DOI: 10.21883/OS.2020.03.49055.277-19

Введение

В настоящее время считается, что радиоизотоп ¹⁷⁷Lu имеет все шансы стать наиболее применяемым в медицине к 2020 г. благодаря удачному сочетанию невысокой энергии бета-излучения, периода полураспада 6.64 суток и спектра сопутствующего гамма-излучения. Получение ¹⁷⁷Lu основано на нейтронном облучении предварительно обогащенных изотопов ¹⁷⁶Lu или ¹⁷⁶Yb. В первом случае образуется значительное количество долгоживущего изомера ¹⁷⁷mLu, который является источником радиоактивных отходов. Недостатком второго метода является низкое сечение поглощения нейтронов. Использование лазерного фотоионизационного метода предоставляет возможность модифицировать изотопный состав природного лютеция, облученного в реакторе, осуществляя очистку от изомера при выделении ¹⁷⁷Lu и/или выделение изомера ¹⁷⁷mLu для дальнейшего использования в независимом генераторе ¹⁷⁷Lu [1]. Указанные возможности непосредственно вытекают из свойств трехступенчатой схемы фотоионизации лютеция: 5d6s² ²D_{3/2}--5d6s6p ${}^{4}F^{\circ}_{5/2}$ $-5d6s7s^{4}D_{3/2}$ $-(53375 \mathrm{cm}^{-1})^{\circ}_{1/2}$, спектроскопия которой для различных изотопов детально исследована в работах [2,3]. Особенностью схемы является то, что все уровни имеют сверхтонкую структуру (СТС), что приводит к появлению большого числа (44) возможных каналов фотоионизации конкретного изотопа лютеция, отличающихся не только длинами волн, но и вероятностями переходов. При этом каналы различных изотопов могут накладываться друг на друга, что приводит к тому, что селективность фотоионизации по различным каналам сильно отличается [4]. При осуществлении селективной фотоионизации важен не

только выбор канала, но и правильный выбор интенсивностей лазеров всех трех ступеней с тем, чтобы добиться максимальной селективности и эффективности фотоионизации.

Настоящая работа посвящена исследованию процессов насыщения переходов трехступенчатой схемы фотоионизации с целью определения эффективных сечений возбуждения различных компонент СТС для изотопов ¹⁷⁵Lu, ¹⁷⁶Lu, ¹⁷⁷Lu и ¹⁷⁷mLu.

Сечение перехода между сверхтонкой компонентой F уровня 1 и компонентой \acute{F} уровня 2 можно записать как

$$\sigma_{F\dot{F}} = C(F, J, \dot{F}, \dot{J}, I)\tilde{\sigma}_{1/2}, \qquad (1)$$

где $\tilde{\sigma}_{1/2}$ — полное сечение перехода 1-2, C(F, J, F, J, I) — коэффициент, зависящий от угловых моментов, участвующих в переходе: F, J, I — полный угловой момент атома, электронный момент атома и спин ядра соответственно. Формулы для сечений с угловыми коэффициентами в явном виде приведены в работе [5] (см. приложение).

Экспериментальная установка

Исследования проводились на установке, предназначенной для экспериментов по лазерной фотоионизационной спектроскопии в узких коллимированных атомных пучках с возможностью определения изотопного состава фотоионов. Установка состоит из вакуумной камеры с системой откачки, испарителем и квадрупольным масс-спектрометром MC-7302. Атомный пучок, формируемый испарителем, попадает в источник ионов масс-спектрометра. Для резонансного возбуждения и ионизации атомов используется излучение трех импульсных одномодовых лазеров на красителях (ЛК) со спектральной шириной линии генерации 100–150 MHz (FWHM), накачиваемых лазерами на парах меди. Лазерный луч пересекает атомный пучок непосредственно в ионизационной камере источника ионов. Направления атомного, лазерного пучков и ионно-оптической оси масс-спектрометра взаимно ортогональны. Регистрация ионов в масс-спектрометре производится вторичноэлектронным умножителем (ВЭУ). Для контроля длины волны генерации ЛК используются прецизионные измерители длины волны.

302

Управление установкой и регистрация данных осуществляется в режиме on-line. Программное обеспечение, реализованное в среде LabView (National Instruments), выполняет необходимые действия: принимает данные от измерителей длин волн, сигналы с ВЭУ и с помощью блока сопряжения изменяет управляющее напряжение, перестраивая либо стабилизируя каждый ЛК по длине волны генерации. Технические параметры и особенности экспериментальной установки детально изложены в работе [6].

ЛК первой и второй ступеней схемы фотоионизации состояли только из задающих генераторов ЛК с выходной средней мощностью ~ 300 mW. В лазере третьей ступени был использован один усилитель ЛК с подъемом выходной средней мощности до 4–5 W.

Лучи первых двух ступеней телескопировались до поперечного размера $\emptyset = 10 \text{ mm}$ и коллимировались. Из-за близости длин волн (540 и 535 nm) данные лучи пространственно сводились на полупрозрачном зеркале. Сведение с лучом третьей ступени (618 nm) производилось на зеркале с дихроичным диэлектрическим покрытием. Система поворотных зеркал направляла единый трехцветный луч в масс-спектрометрическую камеру. Для уверенного насыщения линий ступени фотоионизации луч третьей ступени фокусировался в зону испарения с расстояния 20 m в поперечный размер $\emptyset \sim 5 \text{ mm}$. Для временной синхронизации импульсов ЛК (задержка импульсов друг относительно друга) в трактах лучей использовались соответствующие пространственные линии задержки.

В масс-спектрометрической камере луч проходил через диафрагму с диаметром отверстия $\emptyset = 2 \text{ mm}$, которая была установлена непосредственно перед зоной испарения. Диафрагма вырезала наиболее однородную центральную часть лазерного луча. Плотность средней мощности ЛК в зоне взаимодействия света и пара рассчитывалась по средней мощности прошедшего диафрагму излучения на выходе из камеры.

Методика экспериментов по определению сечений переходов состояла в том, что длины волн всех трех ступеней настраивались на определенные компоненты и стабилизировались. Масс-спектрометр настраивался на регистрацию фотоионов выделенного изотопа, а сигнал с ВЭУ оцифровывался и записывался в файл. В ходе

Рис. 1. Схема трехступенчатой лазерной фотоионизации LuI.

эксперимента интенсивность лазерного излучения выделенного перехода изменялась ступенчато по заранее определенному графику.

Для изменения лазерной мощности использовался набор ослабителей (плоскопараллельных кварцевых окон, Ø = 50 mm, с широкополосным диэлектрическим покрытием и коэффициентами пропускания ~ 0.1, 0.2, ... 1). Окна (10 шт) устанавливались на вращающемся диске. На пути одного из лучей ЛК устанавливалось два диска-ослабителя, что позволяло оперативно регулировать уровень средней мощности ЛК в диапазоне 0.01-1W. Высокая параллельность входных и выходных поверхностей окон исключала смещение прошедшего луча. Качественное просветляющее диэлектрическое покрытие на выходной поверхности окон предельно снижало модуляцию профиля интенсивности луча за счет интерференции (в особенности для окон с низким пропусканием) и соответственно исключало ошибку при расчете плотности мощности. Каждый ослабитель был предварительно откалиброван по пропусканию на длинах волн каждой ступени.

В экспериментах исследовалась зависимость фотоионного тока от интенсивности ЛК, настроенного на СТС-линию одного из переходов схемы фотоионизации лютеция $5d6s^{22}D_{3/2}-5d6s6p^4F_{5/2}^\circ-5d6s7s^4D_{3/2} -(53375 \text{ cm}^{-1})_{1/2}^\circ$ (рис. 1).

Рис. 2. Запись фотоионного сигнала в канале ионизации ¹⁷⁶Lu $F: 8.5 \rightarrow 7.5 \rightarrow 8.5 \rightarrow 7.5$ при последовательном внесении в луч лазера 1 ступени калиброванных ослабителей. Провалы до нуля соответствуют перекрытию луча в момент смены окон ослабителя.

Рис. 3. Зависимость фотоионного сигнала от средней плотности мощности лазерного излучения первого перехода ¹⁷⁶Lu $F = 8.5 \rightarrow F = 7.5$: экспериментальные точки и аппроксимирующая кривая с эффективным сечением первого перехода $\sigma_{8.5-7.5} \approx 3.2 \cdot 10^{-14} \text{ cm}^2$.

Измерения мощности в луче ЛК проводилось off-line в положении максимального пропускания ослабителей. В ходе записи сигнала фотоионизации производилось пошаговое снижение мощности ЛК сменой ослабителей в заранее определенном порядке (вращением дисков). Длительность выдержки постоянного значения интенсивности составляла приблизительно 2 s. В среднем в экспериментах использовалось от 11 до 13 комбинаций пропускания. После достижения минимального пропускания процедура повторялась в обратном порядке (рис. 2), и производилось повторное измерение средней мощности ЛК.

Обработка экспериментальных результатов

Эффективное сечение возбуждения переходов определялось методом аппроксимации экспериментальной зависимости теоретической кривой.

Исследование переходов первой и второй ступеней осуществлялось последовательными лазерными импульсами, не пересекавшимися во времени, с тем чтобы избежать влияния многофотонных процессов. В этих условиях внутри каждого импульса атомная система может рассматриваться как двухуровневая, и теоретическая зависимость может быть получена из решения системы двух кинетических уравнений

$$\frac{dN_i}{dt} = -N_i w_{ik} + N_k w_{ki}, \qquad (2)$$

$$\frac{dN_k}{dt} = N_i w_{ik} - N_k (w_{ki} + a), \qquad (3)$$

где N_i и N_k — число частиц в нижнем и верхнем состояниях соответственно, w_{ik} — частота лазерноиндуцированных переходов из состояния і в состояние k $(w_{ik} = \frac{I_{ik}}{hv_{ik}})$, где I — интенсивность лазерного излучения (W/cm²), σ_{ik} — сечение перехода (cm²), v — частота перехода *ik*); а — частота распадов из состояния k в метастабильные состояния (при k = 2 частота a = 1/472 ns = 2.1 МГц, при k = 3 частота a = 1/11.5 нс = 87 МHz). В данной записи мы пренебрегли спонтанными распадами, обратными вынужденным лазерно-индуцированным переходам, а также распадом нижнего уровня i, поскольку при i = 1распад основного состояния отсутствует, а при i = 2время жизни первого возбужденного состояния (472 ns) существенно превышает длительность лазерного импульса 20 ns. Решение этой системы для N_k в условиях прямоугольного лазерного импульса длительностью τ $(I = \text{const} \text{ при } 0 < t < \tau)$ и начальных условиях (при t = 0) $N_k = 0$, $dN_k/dt = N_0 w_{ik}$ имеет вид

$$N_{k}(\tau) = \frac{N_{0}w_{ik}}{A} \left[\exp\left(\frac{-B+A}{2}\tau\right) - \exp\left(\frac{-B-A}{2}\tau\right) \right],$$
(4)
$$A = \left(\frac{g_{i}+g_{k}}{g_{k}}w_{ik}+a\right),$$
(5)

$$B = \sqrt{\left(\frac{g_i + g_k}{g_k}w_{ik} + a\right)^2 - 4aw_{ik}},\tag{6}$$

где g_i и g_k — статистические веса состояний i и k соответственно.

Интенсивность $I(W/cm^2)$ лазерного излучения определялась по формуле

$$I = \frac{P}{f\tau},\tag{7}$$

где $P(W/cm^2)$ — средняя плотность мощности лазерного излучения, измеряемая в эксперименте, f —

303

304

Рис. 4. Эффективные сечения компонент переходов трехступенчатой схемы $5d6s^{22}D_{3/2} - 5d6s6p^4F_{5/2}^{\circ} - 5d6s7s^4D_{3/2} - (53375 \text{ cm}^{-1})_{1/2}^{\circ}$ изотопа ¹⁷⁶Lu. Сплошная ломаная линия соединяет расчетные значения с полным сечением $\tilde{\sigma}_{I\,176} = 5.1 \cdot 10^{-13} \text{ cm}^2$, $\tilde{\sigma}_{II\,176} = 3.5 \cdot 10^{-12} \text{ cm}^2$, $\tilde{\sigma}_{III\,176} = 1.2 \cdot 10^{-14} \text{ cm}^2$ первого, второго и третьего переходов соответственно.

Рис. 5. Фотоионный ток ¹⁷⁵Lu в канале 2-1-2-3 при разных интенсивностях ЛК второй ступени. $1 - 0.3 \text{ мBt/cm}^2$, $2 - 3 \text{ мBt/cm}^2$, $3 - 8 \text{ мBt/cm}^2$, $4 - 16 \text{ мBt/cm}^2$, $5 - 29 \text{ мBt/cm}^2$.

Рис. 6. Зависимость величины расщепления первого перехода ¹⁷⁵Lu (компонента 2–1) от интенсивности лазерного излучения второго перехода (компонента 1–2). Сплошная линия — расчет при формуле (10) с коэффициентом Эйнштейна второго перехода $A_{2-1} = 8(1) \cdot 10^5$ 1/s и отстройкой частоты второго перехода $\Delta \lambda_{23} = 45(5)$ MHz.

частота следования лазерных импульсов (10 kHz) и τ — длительность импульса (20 ns).

На рис. З представлена экспериментальная зависимость для первого перехода ¹⁷⁶Lu $F: 8.5 \rightarrow 7.5$ с аппроксимированной зависимостью по формуле (4) с эффективным сечением первого перехода $\sigma_{8.5-7.5} \approx$ $\approx 3.2 \cdot 10^{-14}$ cm².

Исследование третьего перехода проводилось в совмещенных во времени импульсах, поскольку многофотонные процессы не оказывают влияние на точность измерений сечения фотоионизации вследствие его малости по сравнению с сечениями первого и второго переходов. Экспериментальная зависимость аппроксими-

Изотоп	$\tilde{\sigma}_I, \ \mathrm{cm}^2$	$\tilde{\sigma}_{II}, \ \mathrm{cm}^2$	$\tilde{\sigma}_{III}, \ \mathrm{cm}^2$
¹⁷⁵ Lu, ¹⁷⁷ Lu	$4.5(1) \cdot 10^{-13}$	$1.6(3)\cdot 10^{-12}$	$1.2(2)\cdot 10^{-14}$
¹⁷⁶ Lu	$5(1) \cdot 10^{-13}$	$3.5(5)\cdot 10^{-12}$	$1.5(3)\cdot 10^{-14}$
^{177m} Lu	$5(1) \cdot 10^{-13}$	$2.3(3)\cdot 10^{-12}$	$2.1(3)\cdot 10^{-14}$

ровалась функцией [7]

$$\frac{N_i}{N_0} = \frac{w_{34}}{(w_{34} + a_{3M})} \left[1 - \exp\left(-\frac{g_3(w_{34} + a_{3M})}{(g_1 + g_2 + g_3)}\tau\right) \right].$$
(8)

Здесь g_1, g_2 и g_3 — статистические веса начального, первого и второго возбужденных состояний соответственно, w_{34} — частота лазерно-индуцированных переходов из второго возбужденного состояния в автоионизационное состояние ($w_{34} = \frac{I\sigma_{34}}{hv_{34}}$, где I — интенсивность лазерного излучения третьей ступени (W/cm²), σ_{34} сечение третьего перехода (cm²), v_{34} — частота третьего перехода); a_{3M} — частота распадов из второго возбужденного состояния в метастабильные состояния (87 MHz).

Результаты и обсуждение

Следует отметить, что сечения не всех линий СТС первого перехода могли быть измерены по описанной выше методике. Для некоторых линий на расстоянии 150–400 МНz находятся линии возбуждения с других нижних подуровней [3]. Возбуждение и ионизация с данных подуровней при увеличении интенсивности оказывали заметное влияние на ход зависимости фотоионного тока и делали невозможным определение индивидуальных сечений. К таким линиям относятся пары 2–3, 4–3 и 3–4, 4–4 для изотопов ¹⁷⁵Lu и ¹⁷⁷Lu, 5.5–6.5, 7.5–6.5 и 5.5–5.5, 6.5–5.5 для ¹⁷⁶Lu, 10–11, 12–11 и 11–12, 12–12 для ^{177m}Lu.

На рис. 4 представлены результаты определения эффективных сечений для компонент переходов изотопа ¹⁷⁶Lu. Сплошная ломаная линия соединяет значения, рассчитанные по формуле (1) с полными се-чениями $\tilde{\sigma}_{I\,176} = 5.1 \cdot 10^{-13} \,\mathrm{cm}^2$, $\tilde{\sigma}_{II\,176} = 3.5 \cdot 10^{-12} \,\mathrm{cm}^2$ и $\tilde{\sigma}_{III\,176} = 1.2 \cdot 10^{-14} \, \mathrm{cm}^2$ первого, второго и третьего переходов, которые соответствуют минимальной сумме квадратов отклонений от экспериментальных результатов. Из приведенных результатов видно, что экспериментальные соотношения сечений компонент находятся в хорошем согласии с расчетом. Аналогичным образом были найдены эффективные сечения компонент, а затем и полные эффективные сечения для всех ступеней схемы фотоионизации для изотопов ¹⁷⁵Lu, ¹⁷⁷Lu и ¹⁷⁷mLu (таблица). Значения сечений ¹⁷⁷Lu не отличались от соответствующих значений для ¹⁷⁵Lu в пределах экспериментальных погрешностей, что можно объяснить подобием СТС-данных изотопов с одинаковыми спинами ядер (I = 7/2) и близкими (в пределах 3%) значениями магнитных дипольных моментов [8,9]: $\mu^{177} = 2.2384(14) \mu_N$ [8], $\mu^{175} = 2.2323(11) \mu_N$ [9].

306

Следует отметить, что в результате экспериментов получены эффективные сечения, которые являются характеристиками не только атомной системы, но и той лазерной системы, которая использовалась для возбуждения переходов (спектральная ширина генерации ЛК в отдельном импульсе, временная форма импульса). В связи с этим для того чтобы исключить влияние особенностей лазерной системы и связать эффективные сечения с параметрами атомной системы, были проведены эксперименты по определению частоты Раби [10] осцилляции населенностей уровней схемы фотоионизации, которая связана с коэффициентом Эйнштейна выражением

$$F_{Rik} = 1.24 \cdot 10^8 \sqrt{\lambda^3 \,[\text{\AA}] I_{ik} [\text{W/cm}^2] g_i A_{ik} \,[1/\text{s}])}, \qquad (9)$$

где λ — длина волны в ангстремах, I — интенсивность лазерного излучения на переходе ik, g_i — статистический вес нижнего состояния перехода и A — коэффициент Эйнштейна перехода, на котором измеряется частота Раби. Теоретические исследования показывают, что при одновременном воздействии на трехуровневую атомную систему лазерного излучения с частотами v_{12} и v_{23} , соответствующими первому и второму переходу, населенности уровней испытывают колебания с характерными частотами F_{R12} и F_{R23} . При $F_{R12} \ll F_{R23}$ происходит расщепление первого перехода, и при сканировании v_{12} наблюдаются два пика амплитуды заселенности второго возбужденного состояния 3 при

$$\nu_{12} = \sqrt{\left(\Delta \nu_{23}^2 + 4F_{R23}^2\right)},\tag{10}$$

где Δv_{23} — отстройка лазерного излучения от центра второго перехода (MHz), F_{R23} — частота Раби второго перехода (MHz) [11,12].

На рис. 5 представлены результаты сканирования длины волны первого перехода ¹⁷⁵Lu на компоненте 2–1 при различной интенсивности лазерного излучения второй ступени на компоненте 1–2. Амплитуда заселенности второго возбужденного состояния определялась по фотоионному току в результате фотоионизации импульсом третьей ступени (компонента 2–3), задержанным относительно импульсов первой и второй ступеней на величину длительности импульса. Зависимость измеренного расщепления от интенсивности представлена на рис. 6. Экспериментальные данные хорошо согласуются с кривой (10) при значении коэффициента Эйнштейна второго перехода для компоненты 2–1 $A_{2-1} = 8(1) \cdot 10^5$ s и отстройки частоты второго перехода $\Delta\lambda_{23} = 45(5)$ MHz.

Заключение

Экспериментальные исследования показывают, что компоненты переходов трехступенчатой схемы фотоионизации существенно неоднородны по интенсивности, и сечения поглощения отличаются более чем на порядок. Это необходимо учитывать при оценке эффективности и селективности различных каналов фотоионизации. Отношения величин сечений компонент хорошо согласуются с классическими формулами, что позволило найти полные сечения всех переходов схемы фотоионизации для изотопов ¹⁷⁵Lu, ¹⁷⁶Lu, ¹⁷⁷Lu и ¹⁷⁷mLu.

Эксперименты по исследованию расщепления переходов при сильно отличающихся частотах Раби позволили осуществить измерение частоты Раби и определить связь между измеренными эффективными сечениями поглощения и коэффициентом Эйнштейна. Таким образом, сечение поглощения второго перехода 175 Lu $1.6(3)\cdot 10^{-12}\,\rm cm^2$ соответствует коэффициенту Эйнштейна $8(1)\cdot 10^5\,1/s.$

Финансирование работы

Исследование выполнено за счет гранта Российского научного фонда (проект № 17-13-01180).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Приложение

Значения коэффициентов $C(F, J, \dot{F}, \dot{J}, I)$ из (1) рассчитываются по формулам для первого перехода $\dot{J} = J + 1$ ($\dot{J} = 5/2, J = 3/2$).

для случая
$$F = F - 1$$

 $C(F, J, \dot{F}, \dot{J}, I) = (F + I - J - 1)(F + I - J)$

$$\times (I + J - F + 1) \frac{(I + J - F + 2)}{2 \cdot 2F(2F + 1)(J + 1)(2J + 3)}$$

Для случая $\dot{F} = F$

$$C(F, J, \dot{F}, \dot{J}, I) = (F - I + J)(F + I - J + 1)$$
$$\times (I + J + F + 1) \frac{(I + J - F)}{2F(2F + 2)J(2J - 1)}.$$

Для случая $\dot{F} = F + 1$

$$C(F, J, \dot{F}, \dot{J}, I) = (F + I - J + 1)(I + J - F)$$
$$\times (F + I - J + 2) \frac{(I + J - F - 1)}{2(2F + 1)(2F + 2)J(2J - 1)}$$

Для второго и третьего перехода $\dot{J} = J - 1(\dot{J} = 3/2, J = 5/2), (\dot{J} = 1/2, J = 3/2).$

Для случая $\dot{F} = F - 1$

$$C(F, J, \dot{F}, \dot{J}, I) = (F - I + J - 1)(F - I + J)$$
$$\times (F + I + J + 1) \frac{(F + I + J)}{2 \cdot 2F(2F + 1)J(2J - 1)}.$$

Для случая $\dot{F} = F$

$$C(F, J, \dot{F}, \dot{J}, I) = (F - I + J)(F + I - J + 1)$$

$$\times (I + J + F + 1) \frac{(I + J - F)}{2F(2F + 2)J(2J - 1)}$$

Для случая $\dot{F} = F + 1$

$$C(F, J, \dot{F}, \dot{J}, I) = (F + I - J + 1)(I + J - F)$$
$$\times (F + I - J + 2) \frac{(I + J - F - 1)}{2(2F + 1)(2F + 2)J(2J - 1)}$$

Значения коэффициентов $C(F, J, \dot{F}, \dot{J}, I)$ для изотопов лютеция.

175 Lu, 177 Lu, $I = 7/2$.			
Первый	Первый переход $\dot{J} = J + 1 \ (\dot{J} = 5/2, J = 3/2)$		
F	È	$C(F, J, \dot{F}, \dot{J}, I)$	
2	1 2 3	0.4 0.4 0.2	
3	2 3 4	0.19 0.417 0.393	
4	3 4 5	0.083 0.33 0.587	
5	4 5 6	0.025 0.187 0.788	

Второй переход $\dot{J} = J - 1 (\dot{J} = 3/2, J = 5/2)$		
F	È	$C(F, J, \dot{F}, \dot{J}, I)$
1	2	1
2	2	0.6
	3	0.4
3	2	0.214
	3	0.625
	4	0.161
4	3	0.458
	4	0.495
	5	0.047
5	4	0.72
	5	0.28
6	5	1

Третий переход $\dot{J} = J - 1 (\dot{J} = 1/2, J = 3/2)$		
F	È	$C(F, J, \dot{F}, \dot{J}, I)$
2	3	1
3	3	0.75
	4	0.25
4	3	0.417
	4	0.583
5	4	1

 176 Lu, I = 7.

Первый переход $\dot{J} = J + 1 \ (\dot{J} = 5/2, J = 3/2)$		
F	È	$C(F, J, \dot{F}, \dot{J}, I)$
5.5	4.5	0.556
	5.5	0.328
	6.5	0.116
6.5	5.5	0.29
	6.5	0.418
	7.5	0.291
7.5	6.5	0.13
	7.5	0.367
	8.5	0.503
8.5	7.5	0.04
	8.5	0.22
	9.5	0.741

Второй переход $\vec{J} = J - 1$ ($\vec{J} = 3/2, J = 5/2$), $I = 7$		
F	È	$C(F, J, \dot{F}, \dot{J}, I)$
4.5	5.5	1
5.5	5.5	0.492
	6.5	0.507
6.5	5.5	0.149
	6.5	0.627
	7.5	0.551
7.5	6.5	0.383
	7.5	0.551
	8.5	0.067
8.5	7.5	0.671
	8.5	0.329
9.5	8.5	1

Третий переход $\vec{J} = J - 1$ ($\vec{J} = 1/2, J = 3/2$), $I = 7$		
F	È	$C(F, J, \dot{F}, \dot{J}, I)$
5.5	6.5	1
6.5	6.5	0.711
	7.5	0.289
7.5	6.5	0.378
	7.5	0.622
8.5	7.5	1

Первый	Первый переход $\dot{J} = J + 1 (\dot{J} = 5/2, J = 3/2)$		
F	È	$C(F, J, \dot{F}, \dot{J}, I)$	
10	9	0.603	
	10	0.303	
	11	0.094	
11	10	0.332	
	11	0.414	
	12	0.254	
12	11	0.154	
	12	3.367	
	13	0.465	
13	12	0.048	
	13	0.236	
	14	0.716	

 177m Lu, I = 23/2

308

Второй переход $\dot{J} = J - 1 \ (\dot{J} = 3/2, J = 5/2)$		
F	È	$C(F, J, \dot{F}, \dot{J}, I)$
9	10	1
10	10	0.455
	11	0.545
11	10	0.128
	11	0.62
	12	0.251
12	11	0.351
	12	0.571
	13	0.078
13	12	0.646
	13	0.354
14	13	1

Третий переход $\vec{J} = J - 1$ $(\vec{J} = 1/2, J = 3/2)$		
F	È	$C(F, J, \dot{F}, \dot{J}, I)$
10	11	1
11	11	0.694
	12	0.306
12	11	0.361
	12	0.639
13	12	1

Список литературы

- Bhardwaj R., VanDerMeer A., Das S.K., DeBruin M., Gascon J., Wolterbeek H.T., Denkova A.G., Serra-Crespo P. // Sci. Rep. 2017. V. 7. P. 44242. doi 10.1038/srep44242
- [2] D'yachkov A.B., Firsov V.A., Gorkunov A.A., Labozin A.V., Mironov S.M., Panchenko V.Y., Semenov A.N., Shatalova G.G., *Tsvetkov G.O.* // Appl. Phys. B. 2015. V. 121. N 4. P. 425. doi 10.1007/s00340-015-6248-0
- D'yachkov A.B., Gorkunov A.A., Labozin A.V., Mironov S.M., Tsvetkov G.O., Panchenko V.Y., Firsov V.A. // Opt. Spectrosc. 2018. V. 125. N 6. P. 839. doi 10.1134/S0030400X19020127

- [4] Ageeva I.V., D'yachkov A.B., Gorkunov A.A., Labozin A.V., Mironov S.M., Panchenko V.Y., Firsov V.A., Tsvetkov G.O., Tsvetkova E.G. // Quant. Electron. 2019. V. 49. N 9. P. 832. doi 10.1070/QEL17049
- [5] Axner O., Gustavson J., Omenetto N., Winefordner J. // Spectrochim. Acta. B. 2004. V. 59. N 1. P. 1. doi 10.1016/j.sab.2003.10.002
- [6] D'yachkov A.B., Gorkunov A.A., Labozin A.V., Mironov S.M., Panchenko V.Y., Firsov V.A., Tsvetkov G.O. // Instrum. Exp. Tech. 2018. V. 61. N 4. P. 548. doi 10.1134/S0020441218040048
- [7] Dyachkov A.B., Gorkunov A.A., Labozin A.V., Mironov S.M., Panchenko V.Y., Firsov V.A., Tsvetkov G.O. // Quant. Electron. 2018. V. 48. N 11. P. 1043. doi 10.1070/QEL16793
- [8] Petersen F.R., Shugart H.A. // Phys. Rev. 1962. V. 126.
 N 1. P. 252. doi 10.1103/PhysRev.126.252
- Brenner T., Büttgenbach S., Rupprecht W., Träber F. // Nucl. Phys. A. 1985. V. 440. N 3. P. 407. doi 10.1016/0375-9474(85)90237-4
- Shore B.W., Ackerhalt J.R. // Phys. Rev. A. 1977. V. 15. N 4.
 P. 1640. doi 10.1103/PhysRevA.15.1640
- [11] Ackerhalt J.R., Eberly J.H., Shore B.W. // Phys. Rev. A. 1979.
 V. 19. N 1. P. 248. doi 10.1103/PhysRevA.19.248
- [12] Ackerhalt J.R., Eberly J.H. // Phys. Rev. A. 1976. V. 14. N 5.
 P. 1705. doi 10.1103/PhysRevA.14.1705