01,07 Твердофазные взаимодействия в системе Bi-Au

© В.И. Рождествина

Институт геологии и природопользования ДВО РАН, Благовещенск, Россия E-mail: veronikapts@yandex.ru

Поступила в Редакцию 25 сентября 2019 г. В окончательной редакции 31 октября 2019 г. Принята к публикации 5 ноября 2019 г.

Изучены процессы контактных твердофазных взаимодействий под нагрузкой в бинарной системе Bi-Au, элементы которой имеют существенно различные реологические свойства. Установлено, что активация скоростных процессов массопереноса в нагруженной системе связана с подвижностью мезоструктурных элементов, контактирующих веществ. Основная роль в масштабном массопереносе принадлежит эффекту Хедвалла — повышение реакционной способности в процессе или результате трансформации кристаллической структуры.

Ключевые слова: твердофазные взаимодействия, золото, висмут, эффект Хедвалла.

DOI: 10.21883/FTT.2020.03.48996.562

1. Введение

Твердофазные контактные реакции имеют большое практическое значение и играют важную роль в различных областях, вызывая особый интерес в физике конденсированного состояния, химии и науках о Земле. Исследования контактных реакций в бинарных системах (металл-металл, металл-полупроводник) важны для развития теории твердофазных взаимодействий, управления контактным фазообразованием, а также прогноза изменений свойств в условиях эксплуатации, когда процессы превращения могут привести к разрушению материала.

Большинство исследований контактных взаимодействий металл-металл, проводится на системах, находящихся в сильно возбужденном состоянии, вызванном деформационными воздействиями термоактивированной природы. В результате процессы идут с большими скоростями, вызывая эффект контактного плавления. Между контактирующими поверхностями разнородных металлов образуется прослойка, состав которой соответствует интервалу гомогенности жидкой фазы стабильной диаграммы состояния. С понижением температуры метастабильная фаза претерпевает распад, образуя поликомпонентные смеси интерметаллидов и твердых растворов солидусного состава, ограниченного ликвидусными концентрациями.

Достаточно часто одним из компонентов в контактирующих бинарных системах является золото, которое входит в состав соединительных проводников, металлизирующих слоев [1], припоев [2] и прочее. Однако большинство исследований контактных реакций проведено на низкоразмерных системах [3–7], где процессы взаимодействия и свойства регулируются размерным эффектом [8]. Так на границе раздела тонкопленочных систем твердофазные реакции могут протекать при относительно низких температурах (0.1–0.5 T_{melt} . составляющих

элементов) [7–9]. Данных по объемной растворимости и коэффициентах диффузии для бинарных систем крайне мало.

При изучении контактных процессов основное внимание уделяется теории массообмена, структурнофазовому составу образующегося промежуточного слоя, влиянию различных факторов (деформационные, электрические и магнитные поля, примеси, дефекты) на его характеристики. Кинетика процессов, происходящих при плотном контакте металлических материалов с существенно различными реологическими свойствами, практически не изучена.

Цель работы — изучение контактных твердофазных взаимодействий между кристаллическими веществами с существенно различающимися реологическими свойствами в условиях длительного эксперимента под нагрузкой.

2. Материалы и методы исследования

Для модельных исследований твердофазных процессов, происходящих при плотном контакте в бинарных системах, выбраны вещества с существенно различными реологическими свойствами: изотропное пластичное золото и анизотропный хрупкий висмут (таблица).

Золото легко деформируемое, высоко пластичное, имеет гомодесмическую структуру, высокую теплопроводность и сопротивляемость к усталости при изгибе. В процессе пластической деформации оно упрочняется очень слабо из-за склонности к рекристаллизации в процессе деформирования [10]. С ростом температуры плотность и твердость золота уменьшаются, а коэффициент термического расширения в интервале температур 295–442 К линейно возрастает до 14.7 · 10⁻⁶ K⁻¹ [11].

Висмут имеет гетеродесмическую структуру. Структура состоит из сдвоенных слоев. Внутрислоевые связи

Свойство	Bi	Au
Тип вещества	анизотропный	изотропное
Тип структуры по характеру химической связи	гетеродесмическая	гомодесмическая
Кристаллическая структура, пр. гр.	ромбоэдрическая, R3m	кубическая, Fm3m
Атомный радиус, Å	1.82	1.44
Энергия связи атомов, eV/at	2.15	3.5
Плотность, g/cm ³	9.8	19.3
Твердость по Бринеллю, kg/mm ²	9.6	18
Коэффициент термического расширения для поликристаллов ($T = 280 \mathrm{K}$), K^{-1}	13.4 · 10 ⁻ 6	$14.0 \cdot 10^{-6}$
Характеристическая температура Дебая, К	114	165
Среднеквадратичное смещение атомов при тепловых колебаниях, Å	$0.111 \\ c_{\perp} = 0.122(5), \\ c_{\parallel} = 0.08(1)$	0.159
Температура плавления, К	544	1336
Коэффициент усадки при затвердевании, %	+3.3	-5.2
Модуль упругости ($T = 293$ K), GPa	34	77.5
Модуль сдвига, GPa	12.4	27
Сжимаемость, Ра ⁻¹	$2.86 \cdot 10^{-11}$	$0.617\cdot 10^{-11}$

Физические свойства контактирующих материалов [10-13]

ковалентные, достаточно прочные, а межслоевые валентные связи — слабые, ван-дер-ваальсовые, с некоторой долей металлических. Это обуславливает ярко выраженную спайность кристаллов по плоскости (111) [14]. Анизотропия теплового расширения для монокристаллов относительно главной оси $\alpha_{\perp}/\alpha_{\parallel}$ составляет 1.5 (T = 280 K). В интервале 295–442 K α_{\perp} изменяется от $11.6 \cdot 10^{-6}$ до $11.9 \cdot 10^{-6}$ K⁻¹, а α_{\parallel} от $17.2 \cdot 10^{-6}$ до $17.45 \cdot 10^{-6}$ K⁻¹ [11]. По мере повышения температуры плотность твердого висмута возрастает, доходя до максимума 10.07 kg/mm² вблизи точки плавления. При комнатной температуре висмут хрупкий металл, а в интервале температур 423–523 К проявляет пластические свойства. Он является одним из худших проводников тепла среди металлов.

Диаграмма состояния системы Au-Bi предполагает наличие химического соединения Au₂Bi, кристаллизующегося по перитектической реакции при 646 K [2,15]. Со стороны висмута наблюдается эвтектическое взаимодействие при 514 K и содержании 81.1 at.% Bi и 18.9 at.% Au. Вследствие этого, для соединения: Au₂Bi лимитирующим элементом является Au. Теплота образования соединения Au₂Bi из твердого золота и жидкого висмута при 623 K равна $\Delta H = 1.22$ kcal/mole. Образование интерметаллического соединения Au₂Bi установлено при изучении диффузионных процессов между Au-Bi при температуре 503 K [3]. Нанесенные на поликристаллические пленки висмута наночастицы золота в результате термического отжига поглощаются висмутом и образуют твердые растворы, а позднее двухфазную систему Bi-Au₂Bi, стабильную при температуре выше 389 К [4,5]. Растворимость Ві в Аи не превышает 0.04 at.%, растворимость Au в Bi также мала. Данных об объемных коэффициентах диффузии Аи в Ві нет. Присутствие Ві в Аи обуславливает чрезвычайную хрупкость и низкие прочностные свойства, что связывают с его выделением по границам зерен при затвердевании этих сплавов. Сплавы Ві-Аи обладают сверхпроводимостью, объясняемой присутствием в структуре химического соединения Au₂Bi [16]. Для Ві и Аи в природе характерно самородное состояние, нередко они встречаются в гидротермальных рудах совместно, а также в виде минерала мальдонит (Au₂Bi) [17].

Таким образом, структурная организация и существенные различия реологических свойств изотропного золота и анизотропного висмута, а также вариабельность отклика разноориентированных зерен висмута на приложенную нагрузку, позволяют ожидать проявления некоторых особенностей в контактных реакциях между ними.

Для систематических наблюдений процессов преобразования в контактной системе и анализа исходных материалов использовалась приборная база аналитического центра минералого-геохимических исследований ИГиП ДВО РАН: растровый электронный микроскоп LEO-1420

Рис. 1. Разнообразие структурной организации кристаллических локально деформированных зерен висмута (мезоструктурные элементы, проявленные химическим травлением): *a*) вытянутые зерна висмута с разноориентированной укладкой спикулоподобных элементов, *b*) и *c*) детали строения отдельных зерен, образованных спикулоподобными элементами; *d*) зерна висмута, преимущественно ориентированные плоскостью (111) перпендикулярно плоскости наблюдения, имеющие тонко слоистое строение, *e*) структурно не плотная укладка слоев зерна.

(Carl Zeiss), растровый электронный микроскоп SIGMA (Carl Zeiss) с аналитической системой рентгеноспектрального микроанализа X-Max INCA Energy (Oxford Instrument) и дисперсионный конфокальный микроскоп комбинационного рассеяния модели DXR Smart Raman Microscope (Thermo Fischer Scientific). Спектры комбинационного рассеяния получены при комнатной температуре с помощью конфокального микроскопа комбинационного рассеяния с ССД-детектором с Пельтье охлаждением и использованием лазера 780 nm со спектральным диапазоном от 40 до 3425 сm⁻¹. Примерный размер пятна (области генерации) 1.6 µm, разрешение 2.4-4.4 cm⁻¹. Спектральные манипуляции состояли из корректировки базовой линии и подбора пиков (функция Войта). Рентгенографические исследования проведены на рентгеновском дифрактометре XRD-7000 MAXima.X (Shimadzu) с рентгеновской трубка Си-анод с длинным тонким фокусом (PW2273/20, 2.2 kW (Philips, Cu), Cu Target, Long Fine Focus (LFF) Type, 2.2 kW) и монохроматором дифрагированного пучка СМ-3121 и приставкой для анализа микрообъектов MDA-1101 (With Microscope unit), с областью локальности 2.00 mm. Параметры решетки уточняли методом наименьших квадратов, используя все доступные для измерения рефлексы.

3. Результаты и их обсуждение

3.1. Структурные особенности исходных материалов

Исходными веществами в работе служили фольга золотая (Au-фольга) промышленного производства толщиной $\sim 20\,\mu m$ и поликристаллические пластины висмута марки Ви-000 толщиной $\sim 2\,mm$, полученные горячим прессованием.

В результате проведенных исследований установлено, что Аи-фольга поликристаллична, все дифракционные пики могут быть проиндексированы в кубической гранецентрированной решетке Au (JCPDS № 04-0784), с параметрами ячейки a = 4.0781(5) Å, V = 67.82(2) Å³. Дифракционная картина от Au-фольги характеризуется уширением симметричных пиков для всех кристаллографических направлений. Это свидетельствует о микроискажениях на межблочных границах и коррелированном ансамбле дефектов. Дублет (333, 511) не расщеплен. Из сопоставления интегральной интенсивности дифракционных максимумов Au-фольги и эталона из JCPDS № 04-0784 (Au) определена выраженная преимущественная ориентация кристаллитов (текстура) в направлениях [311] [18], соответствующая обычно наблюдае-

Рис. 2. Спектры комбинационного рассеяния: a) висмута; b) на поле Au-фольги, на разных этапах преобразования: 1 -спектр золота после первичного акта температурно-динамического воздействия; 2, 3, 4 -появление в структуре золота пиков, характерных для висмута, в порядке удаления от границы контакта к центру фольги на III этапе эксперимента; c) фаз интерметаллида: 1 -стехиометрического состава Au₂Bi; 2 -с повышенным содержанием Au; 3, 4, 5, 6 -с постепенным увеличением содержания Bi относительно стехиометрического состава.

мой текстуре проката. Размеры областей когерентного рассеяния в среднем по всем направлениям составляют $\sim 50-100 \,\mathrm{nm}$ [18]. Электронно-микроскопическими исследованиями Au-фольги, подвергнутой химическому травлению в течение 20 s в парах царской водки, установлено, что фольга сформирована из разноразмерных зерен, обладающих различной субструктурой с элементами полигонизации. Одна часть зерен имеет субструктуру, характеризующуюся столбчатым ростом с различной направленностью в сопряженных зернах, другая субструктуру агрегатов микрокристаллов октаэдрического габитуса. Аи-фольга обладает многокомпонентной аксиальной текстурой. Размеры кристаллов октаэдрического габитуса колеблются в пределах 40-350 nm с преимущественным размером 60-100 nm. Структура является многоуровневой с выраженными субструктурными компонентами: наноразмерные кристаллы; агрегатызерна; более крупные образования, формирующие текстурные фрагменты.

Дифракционная картина от поликристаллических пластин висмута, используемых в эксперименте, без особенностей. Все дифракционные пики могут быть проиндексированы для ромбоэдрического Bi (JCPDS № 85-1331). Рентгенограммы описаны в гексагональных координатах с параметрами решетки a = 4.5475(2) Å, c = 11.861(4) Å в пределах ошибки совпадают с JCPDS № 44-1246 (Ві). Границы зерен в висмуте выявлены химическим травлением составом 50%HNO₃ + + 50%С2Н5ОН комнатной температуры в течение 20 s. Размеры зерен в основном до $\sim 20\,\mu{
m m}$ с отдельными более крупными вкраплениями. Зерна в локальнодеформированных зонах имеют различную кристаллографическую ориентацию и хорошо проявленные мезоструктурные компоненты в виде упорядоченных тонко столбчатых (игольчатых) частиц и пластин, поперечный размер которых 100–150 nm и менее (рис. 1).

Так как процессы, происходящие в системе при контактных взаимодействиях, осуществляются в локальных микроскопических зонах, для оценки структурных изменений использовалась микрорамановская спектроскопия. Этот метод чувствителен к переходным изменениям в кристаллической структуре через изменения в спонтанном колебательном отклике комбинационного рассеяния.

Используемые вещества относятся к металлам, а их спектры комбинационного рассеяния характеризуются только фундаментальными решетчатыми колебаниями. Однако висмут, кристаллизующийся в структуре мышьяка, с точки зрения комбинационного рассеяния представляет особый интерес. Его структуру можно описать как искаженную простую кубическую структуру, где плоскости атомов (111) имеют переменное смещение вдоль направления [111]. Полное представление колебательных мод структуры висмута

$$\Gamma_{\rm tot} = A_{1g} + A_{1u} + E_g + E_u,$$

где моды A_{1g} и E_g являются рамановскими активными, а A_{1u} и E_u — акустическими модами [19]. Тензор комбинационного рассеяния для моды A_{1g} имеет только диагональные компоненты, а тензор E_g имеет как диагональные, так и внедиагональные компоненты, что делает моды с этой симметрией активными в различной ориентации кристаллических зерен. Фонон A_{1g} соответствует смещению атомов вдоль оси z, перпендикулярной плоскостям (111), в результате чего возникает режим их взаимного смещения, с увеличением и уменьшением межплоскостного расстояния ("дыхание"). Мода E_g соответствует сдвиговым колебаниям плоскостей относительно друг друга. На рис. 2, *а* показан характерный спектр комбинационного рассеяния висмута, полученный от зерен, удаленных от золотой фольги более чем на 100 μ m. В спектре активны обе моды A_{1g} на частоте 99.7 сm⁻¹ и E_g на 72.6 сm⁻¹. Кроме того, проявлена еще серия колебательных мод, обнаруженных на частотах 62.6, 187.7, 374.7 сm⁻¹, которые могут быть связаны с наличием поверхностного или объемного беспорядка в кристаллических зернах висмута.

3.2. Контактные твердофазные взаимодействия в системе Bi-Au-Bi

В основе эксперимента лежат модельные исследования кинетики и механизмов твердофазного взаимодействия на плоской границе раздела двух разнородных кристаллических материалов в условиях одноосного сжатия.

Аи-фольга помещалась между двумя пластинами висмута, контактирующие поверхности которых предварительно подвергались очистке и полировке. Для приведения в плотный контакт фольги с пластинами вся система Ві-Аи-Ві закреплялась в специально изготовленное приспособление одноосного сжатия для наблюдения в растровом электронном микроскопе. Поверхность для наблюдения, после приведения в контакт пластин, полировалась алмазными пастами до зеркального блеска. Для вытеснения воздушной прослойки на границах раздела и приведения в более плотный контакт пластин, систему Bi-Au-Bi подвергали вакуумнотермической обработке в вакуумном сушильном шкафу. Образец, закрепленный в устройстве, нагревали до температуры $0.7T_E = 442 \, (\pm 1) \, \mathrm{K}$ (где T_E — наименьшая точка эвтектического плавления, для системы Bi-Au: $T_E = 514 \,\mathrm{K}$ [15]) и выдерживали в течение 60 min с последующим остыванием до комнатной температуры в вакууме. Приспособление в специальном держателе устанавливали в колонне растрового электронного микроскопа для наблюдения отклика системы на воздействия.

Анализ состояния системы после термическивакуумной обработки показал, что границы Аu-фольги четкие, реакционных взаимодействий не выявлено, поверхность наблюдения осталась полированной с незначительным проявлением границ зерен висмута и на отдельных из них элементов субструктуры. Анализ концентрационных профилей интенсивности рентгеновского излучения Bi $M_{\alpha 1}$ и Au $M_{\alpha 1}$ вдоль линий сканирования, перпендикулярных плоскости фольги, не показал видимых проявлений диффузных процессов. Спектры комбинационного рассеяния золота, полученные на расстояниях 2, 5 и 10 μ m от границы с висмутом идентичны между собой, без особенностей (рис. 2, *b*, спектр 1).

Далее проведена серия из 6 последовательных этапов, каждый из которых включал: 1) увеличение нагрузки одноосного сжатия перпендикулярно плоской границе контакта (поворотом винта приспособления на 90°), непосредственно после увеличения нагрузки дополнительных видимых изменений в системе не наблюдалось; 2) релаксация нагруженной системы в вакууме в течение 30 суток; 3) аналитические исследования и анализ изменений, произошедших в системе за этот период. После первого акта увеличения нагрузки и релаксации в вакууме на пластинах висмута проявился микрорельеф с удалением наклепа, вызванного полировкой поверхности. Хорошо обозначились межзерновые границы, локальные скопления пор, на разноориентированных зернах штриховка, вызванная началом процесса скольжения по кристаллографическим плоскостям (рис. 3(I)). В соответствии с данными [20] величина напряжения, обуславливающего начало скольжения в кристаллах висмута, составляет 2.17 Ра. Со стороны Аи-фольги видимых изменений на данном этапе не установлено. Спектр комбинационного рассеяния Аи-фольги идентичен исходному состоянию (рис. 2, *b*, спектр 1). Видимых изменений по контактной границе не выявлено.

Изменения в системе на следующем этапе в первую очередь определялись структурно-чувствительной реакцией кристаллов висмута на деформирующую нагрузку. В напряженном состоянии кристаллическая структура висмута трансформируется без разрушения, включая механизмы коллективного перехода атомов в другие положения устойчивого равновесия с большой скоростью во многих кристаллографических плоскостях одновременно (двойникование, скольжение) [21]. Первые двойники в монокристаллах висмута образуются при напряжении 0.4 MPa [22]. Двойниковые прослойки появились в основном на зернах, ориентированных плоскостью (111) параллельно оси приложения нагрузки. Вдоль линии соприкосновения с фольгой на отдельных зернах наблюдались серии параллельных двойников (рис. 3(II)).

На картине распределения интенсивности рентгеновского излучения Au $M_{\alpha 1}$ вдоль линии перпендикулярной плоскости фольги произошло увеличение ширины профиля по сравнению с исходным состоянием с заходом за контактные границы Au-Bi на $\sim 1.5 \,\mu$ m с обеих сторон при неизменном распределении интенсивности рентгеновского излучения Bi $M_{\alpha 1}$. Границы и поперечные размеры Au-фольги не изменились. Характер распределения интенсивностей рентгеновского излучения Bi $M_{\alpha 1}$ и Au $M_{\alpha 1}$ по профилю сканирования свидетельствует о проникновении Au в Bi. Вероятно, золото, как достаточно пластичный материал, под давлением внедряется в мезоструктурные элементы висмута, описанные выше.

Поглощение золота висмутом имеет место при контактных термо-активированных реакциях в низкоразмерных системах, когда наночастицы золота, контактируя с пленками висмута, образуют с ним метастабильные твердые растворы [5]. Различия в энергии связи атомов Аи и Ві (таблица) указывают на то, что кинетика погружения частиц Аи в Ві является благоприятной.

На следующем этапе на зернах висмута продолжились трансформации кристаллической структуры в виде расширения двойникованных прослоек, появления новых двойников, полос скольжения. То есть имеет место нестабильность свойств и структуры сформированных и образующихся границ двойников с увеличением нагрузки из-за интенсивных процессов перемещения дислокаций в поле ориентированных и резко спадающих напряжений в объемах кристаллических зерен. На контакте

Рис. 3. Отклик системы на деформирующую нагрузку и период релаксации: *a*) проявление мезоструктурных компонентов на поликристаллических пластинах висмута после I этапа: границы зерен, разнонаправленная штриховка, поры; *b*) появление двойниковых прослоек в висмуте на границе с Au-фольгой (в центре) после II этапа; *c*) структуры пластической деформации на висмуте и рекристаллизация золота с разделением на зерна после IV этапа.

с Аи-фольгой в ряде зерен висмута появились структуры пластической деформации в виде полос смятия. Положение пиков комбинационного рассеяния висмута деформированных зон осталось исходным, наблюдается уменьшение их интенсивности в связи с искажениями кристаллической структуры. На картах распределения рентгеновского излучения по линии Ві $M_{\alpha 1}$ на поле Аифольги проявились субмикронные диффузные обособления (рис. 4(III)). Содержание Ві на поле Аи-фольги колеблется в пределах 0.0–0.57 mass.%. В спектрах комбинационного рассеяния золотой фольги, появились малоинтенсивные пики, характерные для висмута с ча-

Рис. 4. Проникновения Ві в Аи-фольгу на III (*a*) и V (*b*) этапах эксперимента (справа — карты распределения рентгеновского излучения Ві *M*_{α1} (светлые диффузные пятна) по площади сканирования, отображенной на электронном снимке слева).

стотой 72 и 99 сm⁻¹ (рис. 2, *b*, спектры 2–4). Полученные данные свидетельствуют о том, что деформационная нагрузка достигла величины, при которой висмут начал проникать в структуру Аu-фольги. При этом структурно он не изменился, то есть на данном этапе на поле Auфольги формируется тонкая смесь золота и висмута.

Следующий акт увеличения нагрузки и релаксации привел к тому, что на поле фольги появились зоны рекристаллизации с разделением золота на отдельные субзерна размерами менее $1 \mu m$ (рис. 3(IV)). Проявление микрозерен на Аи-фольге, связано с процессами его диспергирования и активизации проникновения висмута в межзерновое пространство золота. Приложенная нагрузка вызвала подвижность мезоструктурных элементов золотой фольги — зерен. Скольжение в субмикроскопических зонах контактирующих поверхностей способствовало микропластическому течению (атермическое плавление) и концентрированию тепловой энергии в локальных зонах. Вероятно, энергетической насыщенности системы на данном этапе оказалось достаточно для перевода контактирующего висмута в жидкоподобную квазиаморфную структуру. Висмут проник по межзерновым пространствам, постепенно расширяя область своего влияния. Эффект диспергирования золота в контактных реакциях наблюдался в системе Au-Pb [18]. В следствии пластического течения золота имеет место незначительная деформация границ фольги (продавливание между контактирующими зернами висмута).

На следующем этапе рельеф, проявленный за счет рекристаллизации с выделением отдельных зерен на поле Au-фольги, сгладился. Зоны распространения висмута в золоте существенно расширились (рис. 4(V)). Неравномерность и локальность в распределении Biсодержащих фаз на поле Au-фольги, а также наличие характерных пиков висмута в спектрах комбинационного рассеяния, полученных на поле фольги, свидетельствуют о том, что массоперенос в системе осуществляется не за счет механизмов объемной диффузии атомов Bi и Au с образованием промежуточного слоя твердых растворов на границе контактирующих поверхностей, а по каналам перколяции, образующимся в результате активизации подвижности мезоструктурных элементов золота и специфики свойств межзерновых взаимодействий.

Низкоразмерные контактные реакции активируют процессы более тонкого взаимодействия между Au и Bi, формируя зоны флуктуации Au-Bi состава (рис. 5). Взаимные содержания Au и Bi на поле фольги изменялись в широких пределах (mass.%) Au 89.53–98.88, Bi 1.12–10.47. Так как растворимость этих элементов друг в друге крайне мала, сформированная неоднород-

Рис. 5. Флуктуация состава на поле фольги в процессе активизации проникновения Ві в Au (V этап эксперимента): *a*) электронный снимок в отраженных электронах с линией сканирования и *b*) распределение интенсивности рентгеновского излучения Ві $M_{\alpha 1}$ и Au $M_{\alpha 1}$ по этой линии.

ность представляет собой не твердые растворы, а тонко организованную структуру взаимного проникновения компонентов друг в друга (рис. 6).

Следующий этап увеличения нагрузки на насыщенную энергией деформации систему, находящуюся в метастабильном критически неустойчивом состоянии, и последующий за этим период релаксации активизировали в ней скоростные процессы масштабного массопереноса. Преодолев точку бифуркации, система перешла на новый дифференцированный уровень упорядоченности (рис. 7).

В кристаллических зернах висмута, в следствии анизотропии реологических свойств, реакция на нагрузку проявляется индивидуально, вызывая термодинамическую и структурную нестабильность в расположении элементов. Этот процесс по данным [23] сопровождается существенным увеличением плотности дислокаций, в окрестностях двойниковых границ наблюдается неравномерность распределения локальных механических напряжений, образуются очаги перенапряжений, инициирующие дальнейшее развитие двойникования, сопутствующего скольжения или локального разрушения материала.

Картина скольжения по кристаллографическим плоскостям в зернах висмута зависит от локальной ситуации, и с повышением напряжения по некоторым из них происходит более существенный сдвиг, приводящий к слоевому расщеплению. Ультратонкое расслоение по плоскостям спайности происходит с выделением тепла, разрыв ван-дер-ваальсовых межслоевых связей вскрывает реакционно активированные параллельно-ориентированные поверхности, располагающиеся на достаточно малом расстоянии друг к другу. В результате формируется разветвленная сеть каналов перколяции, активируя масштабный массоперенос в системе.

На поле Аu-фольги вследствие встраивания одной системы в другую с ультратонким взаимным проникновением металлов (рис. 6) и постепенным увеличением содержания доминантного компонента Bi, инициируется экзотермическая реакция образования интерметаллида и твердых растворов на его основе. Переход в упорядоченное состояние с новым взаимным расположением частиц вызывает образование легкоплавкого метастабильного эвтектоида Bi + Au₂Bi, обладающего вязкотекучими свойствами.

На данном этапе висмут начинает играть доминирующую роль на поле Аи-фольги. Висмут в эвтектоидной смеси при кристаллизации увеличивается в объе-

Рис. 6. Аи-Ві-фазы переменного состава в виде тонко организованной структуры взаимного проникновения компонентов друг в друга на границе с висмутом (*a*) и золотом (*b*).

Рис. 7. Активизация процесса фазообразовавния и массопереноса на VI этапе эксперимента: *a*) участок с частичным слиянием границ между пластинами и фольгой; *b*) участок с хорошо проявленными границами раздела и наличием зон с непрореагировавшим золотом (электронные снимки в отраженных электронах (сверху) и карты распределения рентгеновского излучения Au $M_{\alpha 1}$ (в середине) и Bi $M_{\alpha 1}$ (снизу) по площади снимков (светлое поле)).

ме (таблица) и вытесняет интерметаллид в раскрытые перколяционные каналы, прилегающих к фольге зерен висмута, образуя полосчатые структуры чередования слоев висмут — интерметаллид (рис. 7). На поле фольги золото замещается висмутом (рис. 7, 8, 9, a), структурная организация (рис. 9, b) которого, имеет существенное сходство с описанными выше мезоструктурными компонентами исходного локально-деформированного висмута (рис. 1). Это структурно не плотно упакованные полигонизированные тонко столбчатые (игольчатые) частицы и пластины с поперечными размерами менее 100 nm. В Ві присутствует примесь Au 0.34–0.98 mass.%. Возможно, присутствие Au в Bi обусловлено остаточным интерметаллидом, локализованным в мезоструктурных пустотах висмута.

На поле фольги остались отдельные участки золота, не подвергнутого контактным реакциям (рис. 8). Участки не прореагировавшего золота имеют переходную зону шириной до $20\,\mu$ m интерметаллида на контакте с висмутом на поле фольги, но на границе контакта с исходным висмутом переходный слой отсутствует (рис. 8). Вероятно, наличие таких участков связано с

Рис. 8. Взаимоотношение фаз исходного и вновь образованного состава: остаточные локальные зоны непрореагировавшего золота (Au), граничной фазы интерметаллида (Au₂Bi) и висмут (Bi) исходный и заместивший золото на поле фольги.

Рис. 9. Структурные особенности фаз, оставшихся на поле фольги после замещения золота висмутом: интерметаллид Au₂Bi, локализованный на границе (a) и каплевидные обособления твердых растворов на основе Au₂Bi (b); мезоструктурные элементы висмута: двойниковый рост (c), спикулоподобная структура (d); губчатая структурная организация каплевидных обособлений твердых растворов (e) и неоднородность в их структурной организации (рыхлые зоны флокулярного строения) (f).

Рис. 10. Структуры эвтектической смеси $Bi + Au_2Bi$ (a, b), образованные в результате массопереноса интерметаллида по внутренним каналам зерен висмута с выходом на поверхность наблюдения на зернах, непросредственно неконтактирующих с фольгой, направленность в распределении полос интерметаллида в разно-ориентированных зернах (c), морфологическое разнообразие зон обособления интерметаллида и твердых растворов на его основе (d) и энергодисперсионный спектр доминантного интерметаллида Au_2Bi (e), локализующегося в межслоевых пространствах висмута (вкладка).

кристаллографической ориентацией контактирующих с ними зерен висмута. Плоскости структурных слоев в них параллельны плоскости контакта и перпендикулярны оси приложения нагрузки. Такая ориентация способствует существенному уплотнению зерен, вскрытие каналов стока не происходит. В ходе эксперимента образование структурно-необусловленных трещин непосредственно на кристаллических зернах висмута не зафиксировано. Образование трещин в монокристаллах висмута происходит при нагрузке более 150 MPa [22].

Остаточный интерметаллид неравномерно распределен по полю фольги в виде обособлений различной конфигурации (рис. 9, a). Его химический состав не постоянен. Присутствуют фазы стехиометрического состава Au₂Bi, соответствующая мальдониту, и целая серия твердых растворов Au и Bi на его основе, которые

можно описать общей формулой $Au_{2\pm x}Bi_{1\pm x}$ (x = 0.1). Также установлены фазы эквиатомного состава AuBi и фазы со стехиометрией Au₃Bi₂. Структурная организация интерметаллида имеет губчатое строение, с выделением мезоструктурных компонентов округлых флоккул с размерами ~ 20 nm (рис. 9, *c*).

Спектр комбинационного рассеяния от интерметаллида стехиометрического состава Au2Bi представлен на рис. 2, с (спектр 1). При повышенном содержании Аи в спектре появляется уширенный пик в области $60 \,\mathrm{cm}^{-1}$ (рис. 2, *c*, спектр 2), присутствующий в спектре золота (рис. 2, b, спектр 1), с повышением содержания Ві проявляются колебательные моды с частотой 72 и 99 cm⁻¹, характерные для висмута (рис. 2, a). Появление колебательных мод, характерных для золота и висмута, и структурная организация интерметаллида Au2Bi дают основание предположить, что избыточные элементы не входят в его структуру, образуя твердые растворы, а формируют ультратонкие смеси двух фаз. Рентгенофазовые исследования системы на данном этапе показали, что висмут сохраняет ромбоэдрическую структуру, деформационные и температурные воздействия не вызвали полиморфных превращений.

Следует отметить, что внешне границы фольги незначительно изменились по отношению к исходному состоянию. Эффект слияния на границе наблюдается только в локальных зонах. Образование промежуточного слоя на границе, наблюдаемого в условиях контактного плавления и в низко-размерных экспериментах [3,5], не обнаружено.

В связи с тем, что система перешла к новой упорядоченности слагающих ее компонентов, дополнительной нагрузке она больше не подвергалась. Через семь суток на серии зерен висмута, не имеющих непосредственного контакта с фольгой и располагающихся от нее на более чем $50\,\mu$ m проявились структуры полосчатого эвтектоида Bi + Au₂Bi (рис. 10). Вероятно, интерметаллид, перемещаясь по внутренним каналам, различно ориентированных зерен висмута, был вытеснен на поверхность зерен, непосредственно не контактирующих с фольгой. Последующая серия наблюдений показала, что система без дополнительных воздействий сохраняет свое текущее состояние.

Висмут и соединение Au₂Bi образовали сложную поликомпонентную систему, представляющую собой структуру типа эвтектоидной смеси, морфологические характеристики которой определяются структурными особенностями висмута. Процессы разделения вещества и массопереноса осуществляются по структурнообусловленным перколяционным каналам доминантного компонента.

Таким образом, кинетика и механизмы твердофазных взаимодействий в бинарной системе Bi-Au, компоненты которой имеют существенно различные реологические свойства, главным образом определяются повышением реакционной способности твердых тел в процессе или результате перестройки кристаллической структуры висмута (эффект Хедвалла) и увеличением подвижности мезоструктурных элементов золота под нагрузкой.

В соответствии с представлениями неравновесной термодинамики [24], воздействия различной природы на твердое тело вызывают сложные процессы возбуждения и релаксации, которые могут протекать, последовательно сменяя друг друга или одновременно, в результате одна часть системы подвергается воздействию со стороны другой. При больших отклонениях от равновесия система неустойчива и переходит в новое состояние с абсолютным минимумом термодинамического потенциала, которое устойчиво по отношению к конечным отклонениям значений физических параметров от равновесных.

Металлические материалы являются диссипативными системами, способными рассеивать вносимую в них энергию. Механизмы диссипации заложены в их структурной организации. Замедление проявлений отклика системы на воздействие связано с процессом перераспределения энергии. Энергия деформации, приводит систему в неустойчивое состояние, что объясняется особенностями реологических свойств контактирующих материалов.

Контактно-деформационные взаимодействия сформировали метастабильно-связанную систему, которая в результате диссипативных процессов самоорганизации пришла к новому состоянию. Пройдя точку бифуркации, система стабилизировалась по отношению к новым условиям, и дальнейшая выдержка системы под давлением без увеличения нагрузки не вызвала каких-либо явных изменений. После снятия нагрузки в связи с отсутствием на большей части контактирующей поверхности слияния (сплавления) вещества наблюдается отделение пластин и фольги, с относительно хорошей сохранностью геометрии исходных форм.

Таким образом, в рассеянии вещества контактные механохимические процессы, протекающие с достаточно большими скоростями, вероятно, играют одну из основных ролей. Поступление энергии любой природы (термические и барические воздействия, энергетические всплески, связанные с сейсмической активностью и пр.) приводят к диспергированию зерен пластичных металлов, их обособлению и расширению каналов, по которым легко осуществляются процессы перколяции. Контактные взаимодействия на мезоуровне организации структуры с тонким взаимным проникновением металлов друг в друга активизируют реакции образования интерметаллидов. Динамические воздействия на хрупкие материалы способствуют их тонкому структурно-обусловленному растрескиванию, вызывая тем самым выделение значительного количества энергии и вскрытию реакционно активных поверхностей. По образующимся каналам происходит высокоскоростной массоперенос, создавая новый порядок ассоциативного взаимодействия. Такие процессы могут повторяться неоднократно, вызывая рассеяние и перераспределение вещества.

4. Заключение

Таким образом, механизмы и скорость твердофазных реакций в бинарной системе Bi-Au, управляющим фактором в которых является деформационная нагрузка атермической природы, в значительной степени зависят от реологических свойств компонентов, контролируемых их структурной организацией.

Кинетика и механизмы твердофазных взаимодействий в бинарной системе Bi-Au под нагрузкой главным образом определяются увеличением подвижности мезоструктурных элементов золота и повышением реакционной способности висмута в процессе или результате трансформации его кристаллической структуры (эффект Хедвалла). В результате приложения нагрузки происходит динамическое активирование структуры контактирующих твердых тел, вызывая термодинамическую и структурную нестабильность. Активное состояние и повышенная способность к твердофазным реакциям наступает вследствие подвижности структурных составляющих компонентов системы под нагрузкой, обеспечивающей увеличение поверхности взаимодействия в следствии диспергации зерен золота и трансформации структуры кристаллов висмута. Реакции существенно активизируются благодаря нестабильности кристаллической решетки Ві в нагруженном состоянии, со сбросом энергии деформации в процессе двойникования и скольжения. Слоевое расщепление вносит дополнительную энергию в систему, образует перколяционные каналы с реакционно-активной развитой поверхностью.

В твердофазных реакциях, протекающих на плоской границе раздела поликристаллической фольги золота и пластин висмута, состоящих из разно-ориентированных кристаллических зерен, в условиях медленного нагружения при комнатной температуре, образования реакционного промежуточного слоя на границе раздела контактирующих компонентов не происходит. Нарушение границ контакта фольги и пластин в течении всего эксперимента незначительное, носит локальный характер.

Но, несмотря на отсутствие выраженной реакционной активности непосредственно на контактной границе, массоперенос в системе происходит с большой скоростью. В результате на поле фольги золото преимущественно замещается висмутом, остаются лишь отдельные участки не прореагировавшего золота и локальные обособления интерметаллида и твердых растворов на его основе. Основная часть золота в виде интерметаллида Au₂Bi перераспределилась в межслоевое пространство кристаллических зерен висмута. Контактнодеформационные взаимодействия сформировали метастабильно связанную систему, которая в результате диссипативных процессов самоорганизации пришла к новому состоянию.

Список литературы

- [1] J.A. Jones. ESA SP. 411 (1997).
- [2] C. Servant, E. Zoro, B. Legendre. Calphad. 30, 443 (2006).
- [3] A. Paul, A.A. Kodentsov, G. de With, F.J.J. van Loo. Intermetallics 11, 1195 (2003).
- [4] P. Swaminathan, J.S. Palmer, J.H. Weaver. Phys. Rev. B 78, 115416-1 (2008).
- [5] P. Swaminathan, S. Sivaramakrishnan, J.S. Palmer, J.H. Weaver. Phys. Rev. B 79, 144113-1 (2009).
- [6] D.E. Eakins, D.F. Bahr, M.G. Norton. J. Mater. Sci. 39, 165 (2004).
- [7] G. Majni, C. Nobili. J. Appl. Phys. 52, 4047 (1981).
- [8] Ю.И. Петров. Физика малых частиц. Наука. М. (1982) 359 с.
- [9] Дж. Поут, К. Ту, Дж. Мейер, Р. Розенберг, М. Салливан, Дж. Говард, Дж. Филлипс, Дж. Мак-Калдин, Т. Мак-Гилл, С. Лау, Д. Гупта, Д. Кэмпбелл, П. Хо, Ф. Д'Эрл, Дж. Бэглин, А. Синха, В. Ван дер Вег, Э. Николлиан, С. Майерс. Тонкие пленки. Взаимная диффузия и реакции / Пер. с англ. Мир, М. (1982) 576 с.
- [10] Свойства элементов / Под ред. М.Е. Дрица. Металлургия. М. (1985) 682 с.
- [11] С.И. Новикова. Тепловое расширение твердых тел. Наука. М. (1974) 294 с.
- [12] Свойства элементов / Под ред. Г.В. Самсонова Металлургия, М. (1976). Ч. 1. 600 с.
- [13] P. Fisher. J. Phys. C 11, 1043 (1978).
- [14] У. Пирсон. Кристаллохимия и физика металлов и сплавов /Пер. с англ. С.Н. Горина. Мир, М. (1997). Ч. 1. 419 с.; Ч. 2. 471 с.
- [15] Диаграммы состояния двойных металлических систем / Под ред. Н.П. Лякишева. Машиностроение. М. (1996). Т. 1. 992 с.
- [16] А.Е. Вол. Строение и свойства двойных металлических систем. Наука. М. (1962). Т. 2. 982 с.
- [17] Н.В. Петровская. Самородное золото. Наука, М. (1973). 347 с.
- [18] В.И. Рождествина, Е.А. Мудровский, Ю.Т. Левицкий. Неорган. материалы **43**, 917 (2007).
- [19] D. Fausti. https://www.rug.nl/research/portal/files/2715943/05c5.pdf (2008).
- [20] М.В. Классен-Неклюдова. Механическое двойникование кристаллов. Изд-во АН СССР, М. (1960). 262 с.
- [21] В.И. Башмаков, Т.С. Чикова. Пластификация и упрочнение металлических кристаллов при механическом двойниковании. УП "Технопринт", Минск (2001). 218 с.
- [22] Ю.Т. Левицкий, Н.В. Левицкая. Явления переноса в двойникованных полуметаллах. Дальнаука, Владивосток (1997). 224 с.
- [23] В.М. Финкель. Физика разрушения. Металлургия, М. (1970) 376 с.
- [24] И. Пригожин, Д. Кондепуди. Современная термодинамика. От тепловых двигателей до диссипативных структур / Пер. с англ. Ю.А. Данилова и В.В. Белого. Мир, М. (2002). 461 с.

Редактор Т.Н. Василевская

Конфликт интересов

Автор заявляет, что у него нет конфликта интересов.