02 Характеристики апконверсионной люминесценции порошков CaF₂: Er при возбуждении лазерным излучением с длиной волны 1.5 µm

© А.А. Ляпин¹, П.А. Рябочкина¹, С.В. Гущин¹, М.Н. Жарков¹, А.С. Ермаков¹, В.М. Кяшкин¹, С.В. Прытков¹, А.В. Атанова²

 ¹ Национальный исследовательский Мордовский государственный университет имени Н. П. Огарёва, 430005 Саранск, Россия
 ² ФНИЦ "Кристаллография и фотоника" РАН, 119333 Москва, Россия

e-mail: andrei_lyapin@mail.ru

Поступила в редакцию 24.04.2019 г. В окончательной редакции 24.10.2019 г. Принята к публикации 05.11.2019 г.

Исследованы характеристики апконверсионной люминесценции кристаллических порошков CaF₂: Ег при возбуждении ионов Er³⁺ на уровень ${}^{4}I_{13/2}$ лазерным излучением с длиной волны 1531.8 nm. Определены значения энергетического выхода апконверсионной люминесценции для спектральных интервалов 380–780 и 380–1100 nm. Выявлено, что излучение апконверсионной люминесценции для порошков CaF₂: Ег с концентрациями ионов Er³⁺, равными 0.5, 2, 4, 6, 8, 10, 11, 13, 15 и 17%, характеризуется коррелированными цветовыми температурами 5100, 2142, 1726, 1738, 1773, 1757, 1762, 1765, 1735 и 1714 К соответственно.

Ключевые слова: апконверсионная люминесценция, фторидные люминофоры, ионы Er³⁺, инфракрасный лазер.

DOI: 10.21883/OS.2020.02.48961.152-19

Введение

Исследования апконверсионной люминесценции, возникающей в различных материалах, активированных редкоземельными ионами (RE), активно проводятся, начиная с 60-х годов прошлого столетия. Актуальность этих исследований сохраняется и в настоящее время в связи с практическим применением явления апконверсионной люминесценции в фотонике, биологии, медицине и других областях науки и техники [1–5].

В соединениях, легированных ионами Er^{3+} , может возникать эффективная апконверсионная люминесценция при возбуждении на энергетические уровни ${}^{4}I_{13/2}$, ${}^{4}I_{11/2}$ и ${}^{4}I_{9/2}$ этих ионов лазерным излучением в областях длин волн около 1.5, 1 и 0.8 μ m соответственно [4–7]. Благодаря эффективному преобразованию данного инфракрасного излучения в люминесценцию видимого спектрального диапазона эти порошки, легированные ионами Er^{3+} , нашли широкое применение в качестве визуализаторов лазерного излучения. Наряду с этим в последнее время в научной литературе имеются сообщения о практическом применении этих материалов для увеличения эффективности солнечных батарей [8].

Интенсивная апконверсионная люминесценция характерна для фторидных материалов со структурой флюорита MF₂: RE (M = Ca, Sr, Ba) [7,9–24]. Это обусловлено тем, что данные материалы характеризуются низкой энергией фонона ($\sim 466 \text{ cm}^{-1}$, CaF₂ [25]) и склонностью ионов активаторов к образованию кластеров даже при их малых концентрациях [26–29].

В настоящее время разработке методов синтеза фторидных материалов со структурой флюорита, легированных ионами Er³⁺, а также исследованию в них процессов апконверсионной люминесценции посвящено значительное количество научных работ [7,12-21]. Ранее нами была исследована апконверсионная люминесценция в порошках SrF₂: Er и SrF₂: Er, Yb (~ 366 cm⁻¹, SrF₂ [25]) при возбуждении лазерным излучением с длиной волны 1531.8 nm [19,21]. Как показывают проведённые исследования [30], даже небольшое отличие в энергии фононов между $SrF_2~(\sim 366\,cm^{-1})$ и $CaF_2~(\sim 466\,cm^{-1})$ приводит к различному распределению энергии возбуждения по верхним энергетическим уровням ионов Er³⁺ и, как следствие этого, к различным соотношениям интенсивностей между спектральными линиями. При этом достаточные исследования апконверсионной люминесценции порошков CaF₂: Er с различными концентрациями ионов Er^{3+} при возбуждении на уровень ${}^{4}I_{13/2}$ к настоящему времени не проводились.

В соответствии с этим целью настоящей работы являлось исследование процесса апконверсионной люминесценции ионов Er^{3+} для концентрационного ряда кристаллических порошков $\mathrm{CaF_2:Er}$ при возбуждении лазерным излучением с длиной волны 1531.8 nm на уровень ${}^4I_{13/2}$ этих ионов.

Характеристика объектов и методов исследования

Кристаллические порошки $Ca_{1-x}Er_xF_{2+x}$ (x = 0.005, 0.02, 0.04, 0.06, 0.08, 0.10, 0.11, 0.13, 0.15, 0.17%) были

Рис. 1. ПЭМ-изображения порошков CaF₂ (*a*), CaF₂: Er (2%) (*b*) и CaF₂: Er (17%) (*c*).

получены методом соосаждения из водных растворов хлоридов кальция и эрбия избытком фторида аммония в атмосфере азота. При интенсивном перемешивании на магнитной мешалке к водному раствору NH₄F (100 mL, 0.35 M) медленно, по каплям добавлялся водный раствор CaCl₂ и ErCl₃ (35 mL, 0.9 M). Образующаяся суспензия частиц перемешивалась в течение 2 h при комнатной температуре, а затем частицы центрифугировались при 7000 RPM в течение 10 min и промывались деионизованной водой и этанолом несколько раз. Отмытые и осаждённые частицы подвергались воздействию ультразвука и затем высупивались при 70°C в течение 24 h в вакуумном шкафу. После этого полученные порошки CaF₂: Ег отжигались при 600°C в течение 1 h.

Рентгенофазовый анализ (РФА) синтезированных порошков CaF₂: Ег проводили на дифрактометре Empyrean, PANalitical B.V. (Cu K_{α} -излучение, $\lambda = 1.5418$ Å) в режиме программируемой щели расходимости первичного пучка. Анализ фазового состава проводился с использованием пакета HighScorePlus и базы данных ICDD PDF-2 2012. Расчет параметров решетки для соответствующих кристаллических фаз проводился с использованием метода Ритвельда.

Морфология полученных частиц CaF_2 и CaF_2 : Ег была исследована с помощью просвечивающей электронной микроскопии (ПЭМ) (микроскоп FEI TecnaiOsiris с рабочим напряжением 200 kV, США).

Для регистрации спектров отражения ионов Er³⁺ в исследуемых люминофорах использовался сканирующий двулучевой спектрофотометр с двойным монохроматором Perkin Elmer Lambda 950 с приставкой в виде интегрирующей сферы 150 mm.

Люминесцентные свойства порошков CaF₂: Er, активированных ионами Er³⁺, исследовались с использованием спектрометра Horiba FHR 1000. Для возбуждения апконверсионной люминесценции ионов Er³⁺ на уровень ⁴ $I_{13/2}$ использовался непрерывный волоконный лазер с $\lambda_{ex} \sim 1531.8$ nm. Плотность мощности лазерного излучения, падающего на образец, составила 709 W/cm²

(диаметр падающего пучка $212\,\mu$ m, падающая мощность $250\,\mathrm{mW}$).

Для расчета координат цветности и коррелированных цветовых температур использовалась стандартная колориметрическая система МКО 1931 (*X*, *Y*) [31,32].

Энергетический выход апконверсионной люминесценции определялся по формуле [33,34]

$$B_{\rm en} = \frac{P_{\rm lum}}{P_{\rm abs}},\tag{1}$$

где P_{lum} — мощность апконверсионной люминесценции в определённом спектральном диапазоне, P_{abs} поглощенная образцом мощность падающего лазерного излучения с длиной волны 1531.8 nm, измеряемая как разность мощности рассеянного лазерного излучения от референсного непоглощающего образца P_{ref} и исследуемого образца P_{sample} . В качестве референсного непоглощающего образца использовался порошок CaF₂. Так как характер рассеянного излучения значительным образом зависит от морфологии порошков, то осуществлялся контроль морфологии референсного порошка и исследуемых составов.

Для определения P_{lum} и P_{abs} была собрана установка, состоящая из интегрирующей сферы OL IS-670-LED, спектрорадиометра OL-770 VIS/NIR и спектрометра M833 (Solar LS).

Методика определения энергетического выхода представлена в работах [33,34] и заключалась в следующем. Излучение непрерывного лазера фокусировалось на образец, расположенный внутри интегрирующей сферы. Апконверсионная люминесценция и рассеянное лазерное излучение собирались оптическим волокном. Далее регистрировалась их спектральная мощность с помощью спектрорадиометра OL-770 VIS/NIR и спектрометра M833 (Solar LS). Мощность падающего на образец лазерного излучения измерялась с помощью измерителя мощности UP19K-110F-H9-D0. Погрешность определения энергетического выхода составила 5%. Все измерения были проведены при комнатной температуре.

206

Рис. 2. Дифрактограммы порошков CaF_2 : Ег после отжига при 600°С.

Рис. 3. Зависимость параметра решетки a флюорита CaF_2 : Ег от концентрации ионов Er^{3+} .

Экспериментальные результаты и их обсуждение

На рис. 1 приведены типичные ПЭМ-изображения частиц флюорита CaF₂, CaF₂:Er (2%) и CaF₂:Er (17%). Из рис. 1 следует, что все образцы являются достаточно монодисперсными с формой частиц, близкой к сферической. При этом оценочный средний размер частиц порошков CaF₂, CaF₂:Er (2%) и CaF₂:Er (17%) равен 72 ± 24 , 103 ± 34 и 124 ± 24 nm соответственно.

На рис. 2 представлены рентгенограммы кристаллических порошков CaF_2 : Ег, из которых видно, что все образцы являются однофазными и имеют кубическую решётку флюорита CaF_2 (ICDD 01-075-0097, пространственная группа Fm3m).

На рис. 3 представлена зависимость параметра решетки CaF_2 : Er от концентрации ионов Er^{3+} . Видно, что параметр решетки флюорита линейно увеличивается при повышении концентрации ионов Er³⁺. Так как радиус ионов Er^{3+} меньше ионного радиуса Ca^{2+} (1.144 и 1.26 Å для Er^{3+} и Ca^{2+} соответственно [35]), то в соответствии с законом Вегарда [36] значения параметра решетки для CaF₂: Ег должны несколько уменьшаться по сравнению с нелегированным CaF₂. Выявленная в настоящей работе тенденции увеличения параметра решетки CaF₂:Er с увеличением концентрации ионов Er³⁺ может быть связана с внедрением ионов фтора в междоузельное пространство [37]. Следует заметить, что аналогичное увеличение параметра решетки с ростом концентрации RE наблюдалось в работе [38] для твердых растворов $Ca_{1-x}La_xF_{2+x}$.

На рис. 4 представлен спектр отражения люминофора CaF₂: Ег в спектральном диапазоне 300–1700 nm. На спектре отчетливо просматриваются полосы поглощения, соответствующие электронным переходам ионов Er³⁺ с основного состояния ⁴*I*_{15/2} на возбужденные мультиплеты ⁴*G*_{11/2}, ²*H*_{9/2}, ⁴*F*_{3/2}, ⁴*F*_{5/2}, ⁴*F*_{7/2}, ²*H*_{11/2}, ⁴*S*_{3/2}, ⁴*F*_{9/2}, ⁴*I*_{9/2}, ⁴*I*_{11/2} и ⁴*I*_{13/2}. Штриховой стрелкой на спектре показана длина волны возбуждения люминесценции на уровень ⁴*I*_{13/2} ионов Er³⁺.

Диаграмма энергетических уровней ионов Er^{3+} с указанием перехода ${}^{4}I_{15/2} \rightarrow {}^{4}I_{13/2}$ ионов Er^{3+} , на который осуществляется возбуждение, а также оптических переходов между энергетическими уровнями ионов Er^{3+} , соответствующих антистоксовой люминесценции, приведена на рис. 5. Также на рис. 5 показаны возможные механизмы передачи энергии между ионами Er^{3+} , предложенные в работах [7,15], обеспечивающие наличие апконверсионной люминесценции в твердых растворах

Рис. 4. Спектр отражения люминофора CaF_2 : Er (15%) в спектральном диапазоне 300-1700 nm при T = 300 K.

Рис. 5. Диаграмма энергетических уровней ионов Er^{3+} с указанием: 1) переходов, соответствующих апконверсионной люминесценции этих ионов; 2) перехода ${}^{4}I_{15/2} \rightarrow {}^{4}I_{13/2}$ ионов Er^{3+} , на который осуществлялось возбуждение люминесценции (GSA); 3) возможных механизмов взаимодействия ионов Er^{3+} , обеспечивающих наличие апконверсионной люминесценции [7,15].

Рис. 6. Спектры апконверсионной люминесценции ионов Er^{3+} для люминофора CaF_2 : Er (6%) при T = 300 K. Плотность мощности возбуждения составила 709 W/cm².

Состав	Обозначение	B _{en} , %		X	Y	КТЦ, К	GRR
		380-780, nm	380–1100, nm				
Ca _{0.995} Er _{0.005} F _{2.005}	CaF ₂ :Er (0.5%)	_	_	0.3614	0.6128	5100	0.655
Ca _{0.98} Er _{0.02} F _{2.02}	CaF ₂ :Er (2%)	_	_	0.5348	0.4478	2142	0.120
Ca _{0.96} Er _{0.04} F _{2.04}	CaF ₂ :Er (4%)	0.5	3.4	0.5806	0.4026	1726	0.074
Ca _{0.94} Er _{0.06} F _{2.06}	CaF ₂ :Er (6%)	0.6	4.0	0.5765	0.4049	1738	0.074
Ca _{0.92} Er _{0.08} F _{2.08}	CaF ₂ :Er (8%)	0.3	2.1	0.5698	0.4110	1773	0.079
Ca _{0.90} Er _{0.10} F _{2.10}	CaF ₂ :Er (10%)	0.2	1.6	0.5708	0.4070	1757	0.075
Ca _{0.91} Er _{0.11} F _{2.11}	CaF ₂ :Er (11%)	0.1	1.3	0.5696	0.4075	1762	0.075
$Ca_{0.87}Er_{0.13}F_{2.13}$	CaF ₂ :Er (13%)	0.08	1.0	0.5680	0.4068	1765	0.076
Ca _{0.85} Er _{0.15} F _{2.15}	CaF ₂ :Er (15%)	0.04	0.6	0.5722	0.4001	1735	0.072
Ca _{0.8} 3Er _{0.17} F _{2.17}	CaF ₂ :Er (17%)	0.03	0.5	0.5799	0.3922	1714	0.066

Значения энергетического выхода, координат цветности, КТЦ и GRR люминофоров CaF2:Er

Рис. 7. Спектральная мощность апконверсионной люминесценции для люминофоров CaF₂: Ег при возбуждении лазерным излучением с длиной волны 1531.8 nm.

MF₂: Ег. При возбуждении лазерным излучением с длиной волны 1531.8 nm люминофоры CaF₂: Ег обладают интенсивной апконверсионной люминесценцией в видимом и инфракрасном спектральных диапазонах.

На рис. 6 показаны спектры апконверсионной люминесценции, обусловленные переходами ${}^{4}G_{11/2} \rightarrow {}^{4}I_{15/2}, {}^{2}H_{9/2} \rightarrow {}^{4}I_{15/2}, {}^{4}F_{5/2} \rightarrow {}^{4}I_{15/2}, {}^{4}F_{7/2} \rightarrow {}^{4}I_{15/2}, {}^{2}H_{11/2} \rightarrow {}^{4}I_{15/2}, {}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}, {}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}, {}^{4}I_{9/2} \rightarrow {}^{4}I_{15/2}$ и ${}^{4}I_{11/2} \rightarrow {}^{4}I_{15/2}$ и онов Er^{3+} для люминофора CaF₂: Er (6%), зарегистрированные при возбуждения на уровень ${}^{4}I_{13/2}$ ионов Er^{3+} . Из рис. 6 видно, что относительная интенсивность люминесценции, соответствующая красной области спектра (переход ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$ ионов Er^{3+}), выше интенсивности спектра (переход ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$ и ${}^{2}H_{9/2} \rightarrow {}^{4}I_{15/2}$ соответственно). В таблице представлены значения коэффициента GRR, равного отношению интегральной испектральной области

 $({}^{2}H_{11/2}, {}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2})$ к интенсивности люминесценции в красной области $({}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}).$

Для потенциального использования порошков CaF_2 : Ег в качестве визуализаторов лазерного излучения и в фотовольтаике важными являются количественные характеристики их апконверсионной люминесценции, а именно: энергетический выход люминесценции в видимой и инфракрасной областях спектра, координаты цветности и коррелированные цветовые температуры (КЦТ).

На рис. 7 представлены зависимости спектральной мощности апконверсионной люминесценции в диапазоне длин волн 380-1100 nm для концентрационного ряда порошков CaF₂: Ег. Данные зависимости свидетельствует о том, что интенсивность люминесценции для всего спектрального диапазона увеличивается в интервале концентраций ионов Er^{3+} от 0.5 до 6%, при дальнейшем увеличении концентрации ионов Er^{3+} от 8 до 17% интенсивность начинает уменьшаться. Данный факт может быть обусловлен конкуренцией процессов межионного взаимодействия (последовательной передачи энергии (ETU) и кросс-релаксации (CR)), ответственных за загрузку и разгрузку верхних энергетических уровней ионов Er^{3+} (рис. 5).

В таблице представлены значения энергетического выхода апконверсионной люминесценции для люминофоров CaF₂:Er, определенные в соответствии с (1). Максимальный энергетический выход апконверсионной люминесценции в видимом спектральном диапазоне составил 0.6% для образца CaF₂:Er (6%). Также был определен $B_{\rm en}$ для спектрального диапазона 380–1100 nm. Максимальное значение соответствовало образцу CaF₂:Er (6%) и составил 4%.

На рис. 8 и в таблице представлены координаты цветности (X, Y) и КЦТ для концентрационной серии люминофоров CaF₂: Ег. Для концентрации 0.5% ионов Er³⁺ наблюдается свечение в зеленой области с КЦТ 5100 К. Для образцов с концентрациями ионов Er³⁺ от 2 до 17% наблюдается красное свечение с КЦТ в диапазоне 1714–2142 К. Полученные результаты объясняются

Рис. 8. Хроматическая диаграмма апконверсионной люминесценции для люминофоров CaF₂: Ег при возбуждении лазерным излучением с длиной волны 1531.8 nm.

различным соотношением интенсивностей люминесценции в зеленой и красной областях спектра для порошков с концентрациями 0.5% ионов Er^{3+} и концентрациями в интервале 2–17% соответственно. Для образца с концентрацией 0.5% ионов Er^{3+} GRR равен 0.655. При увеличении концентрации ионов Er^{3+} от 2% до 17% интенсивность люминесценции в красной области по сравнению с интенсивностью люминесценции зеленой области возрастает, и коэффициент GRR изменяется в пределах от 0.120 до 0.066.

При увеличении плотности мощности возбуждения до 850 W/cm^2 значения КЦТ для всей концентрационной серии люминофоров изменяются незначительно. Например, для люминофора CaF₂:Er (4%) при плотности мощности 425, 567, 709 и 850 W/cm^2 КЦТ составили 1779, 1780, 1726 и 1792 К соответственно.

Сравнение значений характеристик апконверсионной люминесценции порошков $SrF_2:Er$ и $CaF_2:Er$ показывает, что данные люминофоры отличаются значениями КЦТ (1773 К для $CaF_2:Er$ (8%) и 4305 К для $SrF_2:Er$ (8.8%)). Данное отличие может быть связано с различным соотношением между интенсивностями спектральных линий в красной и зеленой областях спектра. Значения GRR для $CaF_2:Er$ (8%) и $SrF_2:Er$ (8.8%) равны 0.079 и 0.365 соответственно. В свою очередь различные значения GRR могут быть обусловлены различием вероятности процессов безызлучательной многофононной релаксацией (MPR) и характером заселения соответствующих энергетических уровней при осуществлении процессов безызлучательного переноса энергии в люминофорах $CaF_2:Er$ и $SrF_2:Er$.

Таким образом, в настоящей работе исследованы характеристики апконверсионной люминесценции концентрационного ряда кристаллических порошков CaF₂: Ег, синтезированных методом соосаждения из водных растворов. При возбуждении на уровень ${}^{4}I_{13/2}$ ионов Er³⁺ были зарегистрированы спектры апконверсионной люминесценции, соответствующие электронным переходам ${}^{4}G_{11/2} \rightarrow {}^{4}I_{15/2}$, ${}^{2}H_{9/2} \rightarrow {}^{4}I_{15/2}$, ${}^{4}F_{5/2} \rightarrow {}^{-4}I_{15/2}$, ${}^{4}F_{7/2} \rightarrow {}^{4}I_{15/2}$, ${}^{2}H_{11/2} \rightarrow {}^{4}I_{15/2}$, ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$, ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$, ${}^{4}I_{9/2} \rightarrow {}^{4}I_{15/2}$, ${}^{4}I_{9/2} \rightarrow {}^{4}I_{15/2}$,

Максимальные значения энергетического выхода апконверсионной люминесценции характерны для образца CaF₂: Er (6%) и составляют 0.6 и 4% для спектральных диапазонов 380–780 и 380–1100 nm соответственно.

Апконверсионное излучение люминофоров $CaF_2:Er$ характеризуется значениями КЦТ в интервале 1714—5100 К при плотности мощности падающего излучения 709 W/cm². Сравнительный анализ спектров люминесценции порошков $CaF_2:Er$ и $SrF_2:Er$ выявил различное соотношение интенсивностей полос люминесценции в красной и зеленой областях спектра, которое может быть обусловлено различной вероятностью процессов MPR и характером заселения соответствующих энергетических уровней при осуществлении процессов безызлучательного переноса энергии.

Благодаря наличию широких полос поглощения в инфракрасном спектральном диапазоне и эффективной апконверсионной люминесценции в видимой и инфракрасной областях длин волн люминофоры CaF₂: Ег могут быть использованы при создании визуализаторов лазерного излучения.

Финансирование работы

Исследование выполнено за счет гранта Российского научного фонда (проект № 17-72-10163). Просвечивающая электронная микроскопия была выполнена А.В. Атановой с использованием оборудования ЦКП ФНИЦ "Кристаллография и фотоника" РАН при поддержке Министерства науки и высшего образования в рамках выполнения работ по Государственному заданию ФНИЦ "Кристаллография и фотоника".

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Auzel F. // Chem. Rev. 2004. V. 104. N 1. P. 139–174. doi 10.1021/cr020357g
- [2] Vetrone F., Naccache R., Zamarrón A., Juarranzdela Fuente A., Sanz-Rodriguez F., MartinezMaestro L., Martín-Rodriguez E., Jaque D., GarcíaSolé J., Capobianco J.A. // ACSNano. 2010. V. 4. N 6. P. 3254–3258. doi 10.1021/nn100244a

- [3] Dong N.N., Pedroni M., Piccinelli F., Conti G., Sbarbati A., Enrique Ramírez-Hernández J., Martínez Maestro L., Carmen Iglesias-delaCruz M., Sanz-Rodriguez F., Juarranz A., Chen F., Vetrone F., Capobianco J.A., GarcíaSole J., Bettinelli M., Jaque D., Speghini A. // ACSNano. 2011. V. 5. N 11. P. 8665–8671. doi 10.1021/nn202490m
- [4] Wang G., Peng Q., Li Y. // J. Am. Chem. Soc. 2009. V. 131.
 N 40. P. 14200–14201. doi 10.1021/ja906732y
- [5] Qiao X., Fan X., Wang J., Wang M. // J. Non-Cryst. Solids. 2005. V. 351. N 5. P. 357–363. doi 10.1016/j.jnoncrysol.2004.11.021
- [6] Capobianco J.A., Vetrone F., Christopher Boyer J. // J. Phys. Chem. B. 2002. V. 106. N 6. P. 1181–1187. doi 10.1021/jp0129582
- [7] Pollack S.A., Chang D.B., Moise N.L. // J. Appl. Phys. 1986.
 V. 60. N 12. P. 4077-4086. doi 10.1063/1.337486
- [8] Goldschmidt J.C., Fischer S. // Adv. Opt. Mater. 2015. V. 3. N 4. P. 510–535. doi 10.1002/adom.201500024
- [9] Lyapin A.A., Ryabochkina P.A., Chabushkin A.N., Ushakov S.N., Fedorov P.P. // J. Lumin. 2015. V. 167. P. 120–125. doi 10.1016/j.jlumin.2015.06.011
- [10] Fedorov P.P., Luginina A.A., Kuznetsov S.V., Voronov V.V., Lyapin A.A., Ryabochkina P.A., Chernov M.V., Mayakova M.N., Pominova D.V., Uvarov O.V., Baranchikov A.E., Ivanov V.K., Pynenkov A.A., Nishchev K.N. // J. Fluorine Chem. 2017. V. 202. P. 9–18. doi 10.1016/j.jfluchem.2017.08.012
- [11] Lyapin A.A., Kuznetsov S.V., Ryabochkina P.A., Merculov A.P., Chernov M.V., Ermakova Yu.A., Luginina A.A., Fedorov P.P. // Laser Phys. Lett. 2017. V. 14. N 7. P. 076003. doi 10.1088/1612-202X/aa7418
- [12] Rozhnova Yu.A., Luginina A.A., Voronov V.V., Ermakov R.P., Kuznetsov S.V., Ryabova A.V., Pominova D.V., Arbenina V.V., Osiko V.V., Fedorov P.P. // Mater. Chem. Phys. 2014. V. 148. N 1–2. P. 201–207. doi 10.1016/j.matchemphys.2014.07.032
- [13] Kuznetsov S.V., Ermakova Yu.A., Voronov V.V., Fedorov P.P., Busko D., Howard I.A., Richards B.S., Turshatov A. // J. Mater. Chem. C. 2018. V. 6. N 3. P. 598–604. doi 10.1039/C7TC04913G
- [14] Misiak M., Skowicki M., Lipiński T., Kowalczyk A., Prorok K., Arabasz S., Bednarkiewicz A. // Nano Res. 2017. V. 10. N 10.
 P. 3333–3345. doi 10.1007/s12274-017-1546-y
- [15] Ivanova S., Pellé F., Tkachuk A., Joubert M.-F., Guyot Y., Gapontzev V.P. // J. Lumin. 2008. V. 128. N 5. P. 914–917. doi 10.1016/j.jlumin.2007.11.031
- [16] Pollack S.A., Chang D.B., Shih I-Fu., Tzeng R. // Appl Opt. 1987. V. 26. N 20. P. 4400–4406. doi 10.1364/AO.26.004400
- [17] Jouart J.P., Mary G. // J. Lumin. 1990. V. 46. N 1. P. 39–45. doi 10.1016/0022-2313(90)90080-U
- [18] Verber C.M. // J. Appl. Phys. 1973. V. 44. N 7. P. 3263–3265. doi 10.1063/1.1662744
- [19] Lyapin A.A., Gushchin S.V., Kuznetsov S.V., Ryabochkina P.A., Ermakov A.S., Proydakova V.Yu., Voronov V.V., Fedorov P.P., Artemov S.A., Yapryntsev A.D., Ivanov V.K. // Opt. Mater. Express. 2018. V. 8. N 7. P. 1863–1869. doi 10.1364/OME.8.001863
- [20] Lyapin A.A., Gushchin S.V., Ermakov A.S., Kuznetsov S.V., Ryabochkina P.A., Proydakova V.Yu., Voronov V.V., Fedorov P.P., Chernov M.V. // Chin. Opt. Lett. 2018. V. 16. N 9. P. 091901. doi 10.3788/COL201816.091901

- [21] Ляпин А.А., Рябочкина П.А., Гущин С.В., Кузнецов С.В., Чернов М.В., Пройдакова В.Ю., Воронов В.В., Федоров П.П. // Опт. и спектр. 2018. Т. 125. № 4. С. 516-521. doi 10.21883/OS.2018.10.46704.168-18; Lyapin А.А., Ryabochkina P.A., Gushchin S.V., Kuznetsov S.V., Chernov M.V., Proydakova V.Yu., Voronov V.V., Fedorov P.P. // Opt. Spectrosc. 2018. V. 125. N 4. P. 537-542. doi 10.1134/S0030400X18100132
- [22] Brown M.R., Thomas H., Whiting J.S.S., Shand W.A. // J. Chem. Phys. 1969. V. 50. N 2. P. 881–890. doi 10.1063/1.1671139
- [23] Patel D.N., Reddy R.B., Nash-Stevenson S.K. // Appl. Opt. 1998. V. 37. N 33. P. 7805-7808. doi 10.1364/AO.37.007805
- [24] Kumar G.A., Chen C.W., Riman R.E. // Appl. Phys. Lett. 2007.
 V. 90. P. 093123. doi 10.1063/1.2392284
- [25] Richman I. // J. Chem. Phys. 1964. V. 41. N 9. P. 2836–2837. doi 10.1063/1.1726360
- [26] Seelbinder M.B., Wright J.C. // Phys. Rev. B. 1979. V. 20.
 N 10. P. 4308-4320. doi 10.1103/PhysRevB.20.4308
- [27] Fedorov P.P., Luginina A.A., Kuznetsov S.V., Osiko V.V. // J. Fluorine Chem. 2011. V. 132. N 12. P. 1012–1039. doi 10.1016/j.jfluchem.2011.06.025
- [28] Kazanskii S.A., Ryskin A.I., Nikiforov A.E., Zaharov A.Yu., Ougrumov M.Yu., Shakurov G.S. // Phys. Rev. B. 2005. V. 72.
 N 1. P. 014127. doi 10.1103/PhysRevB.72.014127
- [29] Greis O., Haschke J.M. // Handbook on the Physics and Chemistry of Rare Earths. 1982. V. 5. P. 387–460. doi 10.1016/S0168-1273(82)05008-9
- [30] Ma W., Qian X., Wang J., Liu J., Fan X., Liu J., Su L., Xu J. // Sci. Rep. 2016. V. 6. P. 36635. doi 10.1038/srep36635
- [31] Wright W.D. // Trans. Opt. Soc. 1929. V. 30. N 4. P. 141–164. doi 10.1088/1475-4878/30/4/301
- [32] Guild J. // Phil. Trans. Roy. Soc. A 1931. V. 230. N 681–693.
 P. 149–187. doi 10.1098/rsta.1932.0005
- [33] Ryabova A.V., Pominova D.V., Krut'ko A.V., Komova M.G., Loschenov V.B. // Photon. Lasers Med. 2013. V. 2. N 2.
 P. 117–128. doi 10.1515/plm-2013-0013
- [34] Kobayashi A. Absolute Measurements of Photoluminescence Quantum Yields of Organic Compounds Using an Integrating Sphere. Gunma University, 2010. 109 p.
- [35] Shannon R.D. // Acta Crystallogr., Sect. A: Found. Adv. 1976.
 V. 32. N 5. P. 751-767. doi 10.1107/S0567739476001551
- [36] Kingery W.D., Bowen H.K., Uhlmann D.R. Introduction to Ceramics. New York: Wiley, 1976. 1032 p.
- [37] Zhi G., Song J., Mei B., Zhou W. // J. Alloys Compd. 2011.
 V. 509. N 37. P. 9133–9137.
 doi 10.1016/j.jallcom.2011.06.084
- [38] Fedorov P.P., Sobolev B.P. // Sov. Phys. Crystallogr. 1992. V. 37. N 5. P. 651–656.