05.1;06.4

Влияние химического состава и локальной атомной упаковки твердосмазочных нанопокрытий MoS_x и MoSe_x на их трибологические свойства в осложненных условиях

© В.Ю. Фоминский, В.Н. Неволин, Д.В. Фоминский, Р.И. Романов, М.Д. Грицкевич

Национальный исследовательский ядерный университет "МИФИ", Москва, Россия E-mail: vyfominskij@mephi.ru

Поступило в Редакцию 9 августа 2019 г. В окончательной редакции 9 августа 2019 г. Принято к публикации 24 октября 2019 г.

Представлены результаты сравнительного исследования трения и износа покрытий MoS_x и $MoSe_x$, проведенного в окислительной среде (смеси аргона и воздуха) при температуре -100° С. Пленки создавались методом импульсного лазерного осаждения из мишеней MoS_2 , $MoSe_2$, Mo в вакууме и H_2S . Установлено, что Se-содержащие покрытия существенно превосходили по износостойкости S-содержащие покрытия и обеспечивали коэффициент трения ~ 0.09 . Свойства MoS_x зависели от концентрации S, определяющей локальную упаковку атомов в аморфной структуре пленки. Коэффициент трения для пленок MoS_3 после приработки оказался в 2 раза меньше, чем для пленок MoS_2 , и его значение составило 0.08.

Ключевые слова: твердые смазки, тонкие пленки, коэффициент трения, износ, аморфная структура, локальная атомная упаковка.

DOI: 10.21883/PJTF.2020.02.48951.18012

Развитие высокотехнологичных устройств, в особенности для микромеханики, космической и авиационной техники, предъявляет все более жесткие требования к работоспособности узлов трения в сильно изменяющихся по составу среды и температуре условиях. Нанесение твердосмазочных и самоадаптирующихся покрытий на основе халькогенидов переходных металлов рассматривается в настоящее время как один из наиболее перспективных способов модифицирования трибологических свойств контактных областей в парах трения. Создаются и исследуются различные по составу композитные и многослойные наноструктурированные покрытия, содержащие компоненты Mo/W//S_x/Se_x (см., например, [1,2]). Подавляющее большинство исследований проведено при температурах от комнатной до 600°С. Трибологические свойства таких материалов при более низких температурах исследованы и представлены в ограниченном числе публикаций, хотя температуры ниже 0°С могут оказать существенное влияние на работоспособность узлов трения, использующих твердые смазки [3,4]. Наиболее опасной для таких узлов может быть комбинация низкой температуры и окислительной среды, которая вызывает усиление трения и ускоренный износ. Для разработки состава и архитектуры наноструктурированных покрытий, содержащих твердосмазочный компонент и ориентированных на осложненные условия эксплуатации, необходимы более глубокие сравнительные исследования трибологических свойств наиболее часто применяемых дихалькогенидов молибдена и вольфрама, таких как MoS₂, MoSe₂, WS₂ и WSe₂. Также важно проводить поиск новых химических и структурных состояний, обеспечивающих улучшение трибологических свойств.

Цель настоящей работы заключается в сравнительном исследовании трибологических свойств (трения и износа) твердосмазочных тонкопленочных покрытий из сульфидов и селенидов молибдена при осложненных условиях трения скольжения. Покрытия различались как природой халькогена (S и Se), так и характером локальной атомной упаковки в аморфном сульфиде молибдена с составом MoS₂ и MoS₃.

Для формирования твердосмазочных покрытий MoS_x и MoSe_x использовался метод импульсного лазерного осаждения в вакууме или реакционной среде H₂S. Для нанесения пленок в вакууме проводилась абляция мишеней MoS₂ и MoSe₂ наносекундными импульсами излучения лазера на основе YAG: Nd⁺ с длиной волны 1.06 µm и частотой следования импульсов 25 Hz. Энергия излучения составляла 40 mJ, а в зоне облучения мишени после фокусировки излучения плотность энергии была равна $\sim 8 \text{ J/cm}^2$. Для получения пленок MoS_x методом реакционного лазерного осаждения проводилась абляция мишени Мо лазерными импульсами с энергией $\sim 90\,\text{mJ}$. Лазерный флюенс в зоне облучения увеличивался до 20 J/cm². После откачки камеры осаждения до давления 10^{-4} Ра в нее напускался H_2S до давления 9 и 18 Ра. Время осаждения равнялось 20 min. Толщина покрытий составляла 400-500 nm. Все эксперименты по осаждению тонкопленочных покрытий проводились при комнатной температуре подложек, изготовленных из полированных дисков стали марки 95Cr18, пластин Si и кристаллов NaCl. Для NaCl время осаждения уменьшалось до 1 min.

Рис. 1. СЭМ-изображения покрытий $MoSe_x$ (*a*) и MoS_3 (*b*), полученных осаждением в вакууме и H_2S соответственно. На вставках — изображения ПЭМ и МД для более тонких пленок, полученных в аналогичных условиях.

Импульсная лазерная абляция мишеней MoS_2 и $MoSe_2$ сопровождалась формированием эрозионного факела, содержащего как атомарный (плазменный) поток компонентов мишени, так и частицы субмикронных и нанометровых размеров. Если осаждение пленок MoS_x , как правило, сопровождается формированием из-за этого пористой структуры [5], то полученные в работе пленки $MoSe_x$ обладали, согласно данным анализа методом сканирующей электронной микроскопии (СЭМ), достаточно плотной структурой (рис. 1, *a*). В потоке частицы нанометровых размеров, которые внедрялись в аморфную матрицу $MoSe_x$ [6]. Измерение состава этих пленок методом энергодисперсионной рентгеновской

спектроскопии показало, что $x \sim 1.8$. Структурные исследования очень тонких пленок $MoSe_x$, осажденных на NaCl в вакууме, методом просвечивающей электронной микроскопии высокого разрешения (ПЭМ) и микродифракции (МД) показали, что для них характерно локальное упорядочение атомов и формирование слоистой атомной упаковки (вставка на рис. 1, *a*). В этой упаковке расстояние между атомными плоскостями составляло ~ 0.65 nm, что реализуется в турбостратной упаковке атомов на основе частично разупорядоченной структуры типа 2*H*-MoSe₂.

Применение реакционного лазерного осаждения позволяло исключить осаждение крупных частиц и легко варьировать химический состав покрытий MoS_x. При давлении H₂S, равном 9 Ра, получены пленки с химическим составом, соответствующим, согласно результатам энергодисперсионной рентгеновской спектроскопии, MoS₂. При повышении давления до 18 Ра состав полученных пленок описывался формулой MoS₃. Морфология осажденных для трибоиспытаний пленок MoS₃ характеризовалась плотной упаковкой наночастиц с аморфной структурой (рис. 1, b). На это указывали результаты МД-исследования очень тонких пленок (вставка на рис. 1, *b*). ПЭМ-исследования выявили формирование локального атомного упорядочения (чередование темных и светлых полос на ПЭМ-контрасте). Всесторонние ПЭМ-исследования показали, что появление такого контраста на пленках MoS₃ было, вероятно, инициировано электронным пучком. Это указывало на метастабильность состояния пленок MoS₃, формируемого при реакционном осаждении.

На рис. 2 представлены результаты сравнительного исследования пленок MoS_2 и MoS_3 методом рентгеновской фотоэлектронной спектроскопии (РФЭС). Следует выделить два важных отличия. Во-первых, в обеих пленках атомы Мо образуют химическую связь с атомами S, однако в спектре Mo3d для MoS_2 на пики от Mo^{4+} накладывался сигнал от Mo^{6+} . Это указывало на то,

Рис. 2. Участки спектров РФЭС для пленок $MoS_2(1)$ и $MoS_3(2)$, полученных осаждением в H_2S .

a

0.4 Coefficient of friction 0.3 0.2 0.1 0 100 200 300 400 0 Number of cycles h 100 µm С 100 µm 100 µm

Рис. 3. a — изменение коэффициента трения при увеличении циклов обратно-поступательного скольжения контртела для покрытий MoS₃ (1), MoSe_x (2), MoS₂ (3) и MoS_x (4). b, c — микрофотографии треков износа, образовавшихся после трибоиспытаний покрытий MoS₃ и MoSe_x соответственно. На вставках — контактные области на контртелах после испытаний.

что поверхность пленки MoS_2 проявляла склонность к взаимодействию с воздухом, вызывающему образование оксидов Мо. Во-вторых, в спектре S 2p для MoS_3 увеличился вклад от состояний S, характеризующихся повышенной энергией связи (HBE). Такие состояния реализуются в локальной упаковке атомов, отличной от упаковки в структуре 2H-MoS₂, характеризующейся меньшей энергией связи атомов S (LBE). В работе [7] показано, что структура пленки MoS_3 может иметь полимероподобный характер и состоять из линейных

цепочек, в которых атомы Мо связаны между собой через три атома S. Существует и иная модель для MoS₃, предполагающая формирование хаотичной упаковки кластеров Mo₃—S, содержащих три атома Mo, окруженных атомами S в нескольких химических состояниях.

Результаты трибоиспытаний полученных покрытий на стальных подложках представлены на рис. 3, а. Испытания проведены на приборе Anton Paar TRB3 в режиме возвратно-поступательного скольжения со скоростью 2 cm/s стального шарика диаметром 3 mm при нагрузке 1 N. Держатель образца охлаждался жидким азотом. Для предотвращения конденсации влаги в зону трения подавался аргон. В результате смешивания Ar с воздухом (относительная влажность RH $\sim 50\%$) в зоне трения RH $\sim 9\%$. Рис. 3, *а* показывает, что покрытия MoS₃ обеспечивали наименьший коэффициент трения, равный после приработки 0.08. Твердосмазочные свойства покрытий MoS_{x ≤2}, полученных как при осаждении в вакууме, так и при реакционном осаждении, оказались существенно хуже, чем свойства MoS₃. Коэффициент трения для этих покрытий составлял 0.16-0.4, и они интенсивно изнашивались при трении.

Коэффициент трения для покрытий $MoSe_x$ несколько превышал этот показатель для MoS_3 и составлял ~ 0.1. Однако для $MoSe_x$ практически не требовалась приработка, а износ был труднорегистрируемым. Рис. 3, *b* показывает, что на MoS_3 после испытания сформировался заметный трек, в котором видны следы коррозии. Поверхность же $MoSe_x$ (рис. 3, *c*) практически не изнашивалась после испытания.

Исследования контртела показали, что слабый износ покрытия $MoSe_x$ по сравнению с износом MoS_3 сопровождался более выраженным износом контртела. Граница трека, видимая на вставке к рис. 3, *с* для $MoSe_x$, сформировалась от накопления частиц износа контртела. Линейный размер контактной площадки, образовавшейся на шарике после скольжения по $MoSe_x$, составил ~ $75\,\mu$ m. После скольжения по MoS_3 размер линейной площадки износа контртела не превышал $50\,\mu$ m (рис. 3, *b*). Однако на шарик эффективно налипали частицы износа шарика и покрытия.

Известно, что трение и износ во многом зависят от характера процессов, протекающих в контактной области. Следует учитывать возможность трибоиндуцированных изменений в структуре, а также взаимодействие материалов с окружающей средой. Относительно низкая химическая активность Se по сравнению с S определяет улучшенные трибологические свойства Se-содержащих покрытий по сравнению со свойствами сульфидов металлов во влажном воздухе при комнатной температуре и выше [8]. Как правило, сопоставляются трибологические свойства покрытий с $x \leq 2$, для которых характерна слоистая локальная упаковка атомов (по типу фазы $2H-MoS_2$). Эта особенность Se проявилась и в представленных исследованиях в окислительной среде при -100°С (с точки зрения влияния на коэффициент трения и износостойкость по сравнению с покрытиями $MoS_{x \leq 2}$).

Однако S-содержащее покрытие MoS_3 характеризовалось улучшенными твердосмазочными свойствами по сравнению с $MoSe_{x \leq 2}$. Проведенные исследования позволяют предположить, что причина обнаруженного явления обусловлена особенностями химического состояния атомов S и специфической локальной упаковкой атомов в соединении MoS_3 . Нельзя исключить, что при трении поверхностный слой этого покрытия претерпевает трансформацию с формированием слоистой атомной упаковки [9]. Однако эти изменения могут протекать в очень тонком поверхностном слое, что исключало возможность эффективного проникновения молекул H_2O и O_2 в объем MoS_3 .

Таким образом, покрытия MoS_3 с полимероподобной локальной упаковкой атомов проявляют достаточно хорошие твердосмазочные свойства при трении в окислительной среде при температуре -100° С. Они значительно превосходят по антифрикционным свойствам покрытия $MoS_{x \leq 2}$ со слоистой локальной атомной упаковкой. Слоистая локальная упаковка может также обеспечить хорошие антифрикционные свойства и износостойкость в осложненных условиях, если она содержит атомы Se. Однако при скольжении по таким покрытиям следует ожидать ускоренного изнашивания контртела.

Финансирование работы

Работа выполнена при финансовой поддержке Российского научного фонда (соглашение 19-19-00081).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Ren S., Shang K., Cui M., Wang L., Pu J., Yi P. // J. Mater. Sci. 2019. V. 54. P. 11889–11902. https://doi.org/10.1007/s10853-019-03754-8
- [2] Duan Z., Qiao L., Chai K., Xu J., Wang P., Liu W. // Appl. Surf. Sci. 2019. V. 465. P. 564–574. https://doi.org/10.1016/j.apsusc.2018.09.076
- [3] Colbert R.S., Sawyer W.G. // Wear. 2010. V. 269. P. 719–723.
 DOI: 10.1016/j.wear.2010.07.008
- [4] Descartes S., Godeau C., Berthier Y. // Wear. 2015. V. 330-331.
 P. 478–489. http://dx.doi.org/10.1016/j.wear.2015.01.027
- [5] Fominski V.Yu., Romanov R.I., Fominski D.V., Dzhumaev P.S., Troyan I.A. // Opt. Laser Technol. 2018. V. 102. P. 74–84. https://doi.org/10.1016/j.optlastec.2017.12.028
- [6] Фоминский В.Ю., Григорьев С.Н., Романов Р.И., Волосова М.А. // Письма в ЖТФ. 2015. Т. 41. В. 5. С. 50–57.
- [7] Lince J.R., Pluntze A.M., Jackson S.A., Radhakrishnan G., Adams P.M. // Tribol. Lett. 2014. V. 53. P. 543–554.
 DOI: 10.1007/s11249-014-0293-4
- [8] Kubart T., Polcar T., Kopecký L., Novák R., Nováková D. // Surf. Coat. Technol. 2005. V. 193. P. 230–233.
 DOI: 10.1016/j.surfcoat.2004.08.146

[9] Oumahi C., De Barros-Bouchet M.I., Le Mogne T., Charrin C., Loridant S., Geantet C., Afanasiev P., Thiebaut B. // RSC Adv. 2018. V. 8. P. 25867–25872. DOI: 10.1039/c8ra03317j