Структурные и фотолюминесцентные свойства графитоподобного нитрида углерода

© А.В. Баглов¹, Е.Б. Чубенко¹, А.А. Гнитько¹, В.Е. Борисенко^{1,2}, А.А. Малашевич³, В.В. Углов³

¹ Белорусский государственный университет информатики и радиоэлектроники, 220013 Минск. Беларусь

² Национальный исследовательский ядерный университет "МИФИ",

115409 Москва, Россия

³ Белорусский государственный университет,

220030 Минск, Беларусь

E-mail: baglov@bsuir.by

Поступила в Редакцию 7 октября 2019 г. В окончательной редакции 15 октября 2019 г. Принята к публикации 15 октября 2019 г.

> Установлена взаимосвязь между структурой и оптическими свойствами полупроводникового графитоподобного нитрида углерода, полученного термической обработкой тиокарбамида в диапазоне температур от 400 до 625°C в кислородсодержащей среде. Отмечено смещение максимума полосы фотолюминесценции от 417 к 494 нм при одновременном ее уширении с увеличением температуры синтеза вплоть до 625°C, что объяснено легированием кислородом, а также образованием дефектов вследствие разложения уже синтезированного материала при повышении температуры.

Ключевые слова: графитоподобный нитрид углерода, g-C₃N₄, структура, фотолюминесценция.

DOI: 10.21883/FTP.2020.02.48914.9279

1. Введение

Графитоподобный нитрид углерода (g-C₃N₄), обладая полупроводниковыми свойствами (ширина запрещенной зоны $E_{g} \approx 2.7 \, \text{sB}$) [1], привлекает внимание исследователей в связи с выраженными фотокаталитическими и люминесцентными свойствами, перспективными для практического использования [2]. Как и графит, объемный g-C₃N₄ имеет слоистую структуру. Каждый слой состоит из плоских три-s-триазиновых ячеек. Слои связаны между собой слабыми ван-дер-ваальсовыми силами, что позволяет расщеплять их многочисленными методами (термическая, ультразвуковая, химическая обработка), получая двумерные графеноподобные листы. Значительный интерес к материалу обусловлен простотой синтеза путем термической обработки органических соединений с большой концентрацией азота, например меламина [3,4], цианамида [5], дициандиамида [6], карбамида и тиокарбамида [7].

Ранее было показано, что g-C₃N₄ люминесцирует при комнатной температуре, что перспективно для светоизлучающих структур [8]. Отмечена зависимость положения максимума фотолюминесценции от температуры синтеза материала [9]. Проведенные нами исследования [10] показали принципиальную возможность формирования графитоподобного нитрида углерода в пористых стеклянных матрицах, что актуально для его практического фотокаталитического применения. Установлено также легирование g-C₃N₄ кислородом [11] в процессе синтеза в диапазоне температур 450–550°С. Однако совокупность имеющихся экспериментальных данных не позволяет однозначно определить зависимость физикохимических свойств получаемого материала от условий синтеза. Таким образом, целью наших исследований являлась оценка влияния температуры синтеза g-C₃N₄ из тиокарбамида в диапазоне 400–625°C на его структурные и люминесцентные свойства.

2. Методика подготовки и исследования образцов

В очищенный керамический тигель объемом 20 мл помещали 2 г тиокарбамида, $CS(NH_2)_2$, марки ЧДА с последующей механической герметизацией для уменьшения истечения газов из тигля в процессе разложения прекурсора, а также для ограничения доступа воздуха к синтезированному материалу. Термообработку проводили в муфельной печи в течение 30 мин при фиксированной температуре в диапазоне 400–625°С. Средняя скорость нагрева печи от комнатной температуры до температуры синтеза составляла 12°С/мин. После проведения процесса синтеза печь остывала естественным путем до температуры, близкой к комнатной.

Морфологию полученного материала исследовали с помощью растровой электронной микроскопии (РЭМ) на микроскопе Hitachi S-4200. Для определения кристаллической структуры и фазового состава использовали рентгенодифракционный анализ (РДА), измерения проводили на дифрактометре ДРОН-4 (длина волны излучения $\lambda = 0.154184$ нм). Химические связи в материале изучали с помощью инфракрасной спектроскопии с преобразованием Фурье (FTIR) с использованием спектрометра Bruker Vertex 70 FTIR. Фотолюминесценцию

Рис. 1. Поверхность материала, синтезированного термообработкой тиокарбамида в течение 30 мин при 450 (a), 500 (b), 550 (c), 600°С (d).

материала исследовали при комнатной температуре в условиях ее возбуждения монохроматическим излучением с длиной волны 345 нм, который выделялся из спектра излучения ксеноновой лампы мощностью 1 кВт с использованием монохроматора Solar TII DM 160. Спектр фотолюминесценции регистрировали монохроматоромспектрографом Solar TII MS 7504i, оснащенным кремниевой ПЗС-матрицей.

3. Результаты

Структура поверхности синтезированного материала показана на рис. 1. Термическая обработка тиокарбамида при 400 и 450°С приводит к образованию мелкодисперсного материала, состоящего из частиц размером ~ 20 мкм с оплавленной поверхностью и промежутками ~ 15 мкм между ними (рис. 1, *a*). В свою очередь они образованы частицами размером 3-5 мкм. Увеличение температуры приводит к уплотнению структуры и переходу от крупнозернистой структуры к смешанной, представляющей собой пластинки толщиной 500–700 нм, встроенные в субмикрометровые зерна (рис. 1, *a*–*d*). Проведенный рентгенодифракционный анализ показывает, что синтезированный материал представляет собой g-C₃N₄, типичный спектр приведен на рис. 2. Наблюдаются характерные пики при углах 13.2, 27.7, 44.2, 57.1°,

Рис. 2. Дифрактограмма g-C₃N₄, синтезированного в течение 30 мин при 500°С.

Рис. 3. FTIR-спектры материала, синтезированного из тиокарбамида при различных температурах (указаны) в течение 30 мин.

связанные с кристаллографическими плоскостями (210), (002), (220), (004) g-C₃N₄ соответственно [12]. Размер кристаллитов составляет ~ 5 нм для (210) и (002).

Результаты исследования синтезированного при различных температурах материала методом инфракрасной спектроскопии с преобразованием Фурье, показанные на рис. 3, также подтверждают образование g-C₃N₄. Так, поглощение в диапазоне $2700-3500 \,\mathrm{cm}^{-1}$ обычно относят к связям О-Н и N-Н [13]. Также отметим, что пики из этого диапазона вблизи 2900 и 3100 см⁻¹ соответствуют sp³- и sp²-гибридизации связей С-Н [14]. За слабый пик при 2133 см⁻¹ отвечают связи С-N или N=C=N [13,15], обусловленные либо частичным разложением g-C₃N₄ [13], либо неполной полимеризацией прекурсора [15]. Диапазон 1200-1600 см⁻¹ обычно связан с характерными колебательными модами гетероциклов С-N [12]. Отметим, что в спектрах образцов, синтезированных при 400 и 450°C, наблюдается пики при 1095 и 2779 см $^{-1}$, отсутствующие в образцах с более высокой температурой синтеза. Мы полагаем, что они связаны с остатками тиокарбамида [16] в синтезируемом материале, которые с ростом температуры удаляются из материала.

Также отметим наличие пика на 885 см^{-1} , присутствующего в спектре образцов, синтезированных при температурах 500° С и выше, связанного с образованием мелама и мелема — промежуточных соединений в полимеризации нитрида углерода [17].

Все синтезированные образцы характеризуются интенсивной фотолюминесценцией. Спектры фотолюминесценции приведены на рис. 4. Интенсивность фотолюминесценции с ростом температуры синтеза материала убывает, достигает минимума при 600°С и несколько увеличивается при 625°С. Также отметим уширение полосы фотолюминесценции с ростом температуры до 500°С и выше.

Положения максимумов полос фотолюминесценции, их полная ширина на половине высоты (full width at half maximum, FWHM) приведены в таблице.

С ростом температуры синтеза от 400 до 600°С происходит монотонное снижение интенсивности с неболь-

Положение максимума и полная ширина на половине высоты полос фотолюминесценции материалов, полученных при различных температурах

Температура синтеза, °С	400	450	500	550	575	600	625
Положение максимума, нм	417	453	456	468	490	494	494
FWHM, нм	78.3	66.3	69.6	94.9	126.3	132.4	130.3

Рис. 4. Спектры фотолюминесценции (PL) материала, синтезированного из тиокарбамида при различных температурах в течение 30 мин.

шим увеличением при 625°С. Положение максимума при этом смещается с 417 нм при температуре синтеза 400°С до 494 нм при температурах синтеза 600 и 625°С. Полная ширина на половине амплитуды увеличивается с 66.3 до 132.4 (130.3) нм при возрастании температуры синтеза от 450 до 600°С (625°С) соответственно. Такой результат связан со сложным строением полосы фотолюминесценции, возникающим вследствие формирования двумерной и объемной форм g-C₃N₄, увеличения количества дефектов и примесей в процессе перестройки материала, энергетические уровни которых лежат на 0.2-0.5 эВ ниже дна зоны проводимости. Установленные закономерности позволяют рекомендовать температуру синтеза 450-500°С в качестве оптимальной с точки зрения достижения наилучших люминесцентных характеристик.

4. Заключение

Экспериментально установлено формирование графитоподобного нитрида углерода путем термической обработки тиокарбамида в диапазоне температур 400–625°С в условиях ограниченного доступа кислородсодержащей атмосферы. Согласно результатам рентгенодифракционного анализа, доминирующей ориентацией кристаллитов синтезированного материала является [002]. Исследование методом инфракрасной спектроскопии с преобразованием Фурье показывает, что при температуре синтеза < 500°С происходит неполное удаление прекурсора из объема материала, что подтверждается наличием пиков при 2779 и 1095 см⁻¹. В диапазоне температур 500—625°С синтезируется материал с близкими FTIRспектрами, на которых присутствует пик, связанный с образованием мелама и мелема — промежуточных соединений в полимеризации нитрида углерода. Наличие пиков, связанных с sp^2 - и sp^3 -гибридизацией, свидетельствует о наличии g-C₃N₄ в двумерном виде (sp^2 -гибридизация) на поверхности объемного материала (sp^3 -гибридизация).

Отмеченные по FTIR-данным химические связи с кислородом и признаки нестехиометричности позволяют связать наблюдающиеся изменения в спектрах фотолюминесценции с легированием синтезируемого материала кислородом, а также с образованием дефектов вследствие разложения уже синтезированного g-C₃N₄ при повышении температуры. Установленные закономерности позволяют рекомендовать температуру синтеза 450–500°C в качестве оптимальной с точки зрения достижения наилучших люминесцентных характеристик.

Финансирование работы

Работа выполнена в рамках ГПНИ Республики Беларусь "Конвергенция-2020" (задание 3.05), ГПНИ Республики Беларусь "Материаловедение и технологии материалов" (задание 1.56) и гранта Министерства образования Республики Беларусь для докторантов.

Благодарности

Авторы выражают благодарность Д.В. Жигулину за электронно-микроскопический анализ образцов, а также С.М. Завадскому за помощь в проведении анализа синтезированных материалов методом инфракрасной спектроскопии с преобразованием Фурье.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- S. Chu, Y. Wang, Y. Guo, J. Feng, C. Wang, W. Luo, X. Fan, Z. Zou. ACS Catal., 3, 912 (2013).
- [2] A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.-O. Müller, R. Schlögl, J. Carlsson. J. Mater. Chem., 18, 4893 (2008).
- [3] S.C. Yan, Z.S. Li, Z.G. Zou. Langmuir, 25, 10397 (2009).
- [4] Е.Б. Чубенко, А.В. Баглов, Е.С. Лисимова, В.Е. Борисенко. Мокеровские чтения: сб. тр. (М., НИЯУ МИФИ, 2019) с. 81.
- [5] J. Yuan, X. Liu, Y. Tang, Y. Zeng, L. Wang, S. Zhang, T. Cai, Y. Liu, S. Luo, Y. Pei, C. Liu. Appl. Catal. B, 237, 24 (2018).
- [6] M. Zhang, J. Xu, R. Zong, Y. Zhu. Appl. Catal. B, 147, 229 (2014).
- [7] F. Dong, Z. Zhao, T. Xiong, Z. Ni, W. Zhang, Y. Sun, W.-K. Ho. ACS Appl. Mater. Interfaces, 5, 11932 (2013).
- [8] Y. Zhang, Q. Pan, G. Chai, M. Liang, G. Dong, Q. Zhang, J. Qiu. Sci. Rep., 3, 1943 (2013).

- [9] D. Das, S.L. Shinde, K.K. Nanda. ACS Appl. Mater. Interfaces, 8, 2181 (2016).
- [10] E.B. Chubenko, A.V. Baglov, E.S. Lisimova, V.E. Borisenko. Int. J. Nanosci., 18, 1940042 (2019).
- [11] N.M. Denisov, E.B. Chubenko, V.P. Bondarenko, V.E. Borisenko. Tech. Phys. Lett., 45, 108 (2019).
- [12] F. Fina, S.K. Callear, G.M. Carins, J.T.S. Irvine. Chem. Mater., 27, 2612 (2015).
- [13] J. Fu, B. Zhu, C. Jiang, B. Cheng, W. You, J. Yu. Small, 13, 1603938 (2017).
- [14] G. Lazar, K. Zellama, I. Vascan, M. Stamate, I. Lazar, I. Rusu. J. Optoelectron. Adv. Mater., 7, 647 (2005).
- [15] Y. Li, F. Wei, Y. Liu, H. Zhao, X.-N. Ren, J. Liu, T. Hasan, L. Chen, B.-L. Su. Nanoscale, 10, 4515 (2018).
- [16] Интернет-ресурс: Национальный институт стандартов и технологий США. https://webbook.nist.gov/cgi/cbook.cgi? ID=C62566&Mask=80#IR-Spec
- [17] E. Wirnhier, M.B. Mesch, J. Senker, W. Schnick. Chem. Eur. J., 19, 2041 (2013).

Редактор Л.В. Шаронова

Structural and photoluminescent properties of graphite-like carbon nitride

A.V. Baglov¹, E.B. Chubenko¹, A.A. Hnitsko¹, V.E. Borisenko^{1,2}, A.A. Malashevich³, V.V. Uglov³

¹ Belarusian State University

of Informatics and Radioelectronics, P. Browka str., 6, 220013 Minsk, Republic of Belarus ² National Research Nuclear University MEPhI, 115409 Moscow, Russia ³ Belarusian State University, 220030 Minsk, Belarus

Abstract The relationship between the structure and optical properties of semiconductor graphite-like carbon nitride obtained by heat treatment of thiocarbamide in the temperature range from 400 to 625° C in an oxygen-containing medium is established. A shift of the maximum of the photoluminescence band from 417 to 494 nm was noted with its simultaneous broadening with increasing synthesis temperature up to 625° C, which is explained by doping with oxygen, as well as the formation of defects due to decomposition of already synthesized material with increasing temperature.