13

Адсорбция атомов Ga и Cl и молекулы GaCl на карбиде кремния: модельный подход

© С.Ю. Давыдов¹, О.В. Посредник²

 ¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия
 ² Санкт-Петербургский государственный электротехнический университет (ЛЭТИ), Санкт-Петербург, Россия
 E-mail: Sergei_Davydov@mail.ru

Поступила в Редакцию 18 сентября 2019 г. В окончательной редакции 18 сентября 2019 г. Принята к публикации 24 сентября 2019 г.

> В рамках модели Халдейна – Андерсона вычислены металлическая ионная составляющие энергии адсорбции атомов Ga и Cl на C- и Si-гранях *p*- и *n*-SiC. Показано, во-первых, что во всех рассмотренных случаях величина ионного вклада превосходит величину вклада металлического. Во-вторых, при адсорбции на *p*-SiC энергия связи адатомов Ga больше, чем адатомов Cl, тогда как при адсорбции на *n*-SiC имеет место обратная ситуация. Предложена простая ионная модель адсорбции молекулы GaCl на карбиде кремния. Сопоставление с результатами других авторов демонстрируют приемлемость предлагаемых моделей.

Ключевые слова: зонные и локальные состояния, числа заполнения, энергия адсорбции.

DOI: 10.21883/FTT.2020.02.48882.596

1. Введение

Карбид кремния является широкозонным полупроводником, обладающим повышенной стойкостью к температурным, механическим и радиационным воздействиям, т.е. материалом, перспективным для структурных элементов приборов, работающих в экстремальных условиях [1–4]. Хорошо известно также, что карбид кремния используется как платформа для формирования графена [5], а также иных углеродных структур [6].

В работе [7] предложен способ выращивания тонких слоев (~ 1 μ m) оксида галлия β -Ga₂O₃ (моноклинная структура) методом хлоридной эпитаксии (в парах GaCl и O₂) на кремниевой подложке, покрытой нанослоем (~ 100 nm) карбида кремния (гетероструктура β -Ga₂O₃/SiC/Si). Одним из первичных и многое определяющих физико-химических актов такого процесса является адсорбция (хемосорбция) атомов галлия и хлора на поверхности SiC, описанию которой и посвящена настоящая статья. Отметим, что способность карбида кремния адсорбировать галлий представляет интерес и для создания гетероструктуры GaN/SiC/Si [8]. В настоящей работе мы приведем теоретические оценки энергии связи атомов Ga, Cl и молекулы GaCl с поверхностью карбида кремния.

2. Модель Халдейна—Андерсона

2.1. Адсорбция атомов галлия

Общие соотношения адсорбционной модели Халдейна-Андерсона приведены в [9–11]. Поэтому здесь мы сразу начнем с оценок параметров энергетической диаграммы адсорбционной системы Ga/SiC. Согласно [12], для политипов 4*H*- и 6*H*-SiC электронное сродство χ и ширина запрещенной зоны E_g равны соответственно 3.17, 3.23 eV и 3.45, 3.00 eV. В дальнейшем за нуль энергии примем положение центра запрещенной зоны относительно вакуума $E_0 = \chi + E_g/2$. Энергия квазиуровня адатома галлия равна $\varepsilon_a = -I + e^2/4d + E_0$, где I = 6 eV [13] — энергия ионизации атома галлия, e заряд электрона, d — длина адсорбционной связи [9–11]. Здесь мы полагаем, что на переход заряда между адатомом Ga и подложкой работает один электрон галлия.

Рассмотрим теперь адсорбционную систему Ga/SiC(0001), когда атом галлия взаимодействует с С-гранью карбида кремния. Полагая $d = r_a$ (Ga) + r_a (C) = 2.16 Å (атомные радиусы r_a (Ga) = 1.39 Å, r_a (C) = 0.77 Å [13]), получим $\varepsilon_a = 0.45$ и 0.62 eV для 4*H*- и 6*H*-SiC соответственно. Таким образом, энергетический уровень адатома перекрывается с запрещенными зонами 4*H*- и 6*H*-политипов.

Перейдем теперь к оценкам числа заполнения атома галлия n. В соответствии с [9–11], при нулевой температуре вклад валентной зоны n_{ν} в число заполнения определяется выражением

$$n_{\nu} = rac{1}{\pi} rcctg \; rac{arepsilon_a + R}{\Gamma}, \quad R = rac{E_g}{2} \sqrt{1 + rac{4\Gamma}{\pi E_g}}, \quad (1)$$

где Γ — полуширина квазиуровня адатома галлия (в формуле (7) работы [9] в выражении для R из (1) допущена опечатка). При $\Gamma = E_g/2$ получаем $n_v = 0.19$ для 4*H*- и 0.17 для 6*H*-политипа; при $\Gamma = E_g/8$ имеем $n_v = 0.06$ для 4*H*- и 0.05 для 6*H*-политипа. При нулевой

Модель Халдейна—Андерсона: значения модуля энергии адсорбции |*E*_{*ads*}| (в eV)

Подложка		Ga	Cl
4H-SiC	С-грань	1.57 1.95	$\begin{array}{c} 1.02 \ (2.42) \\ 0.88 \ (2.76) \end{array}$
	Si-грань	1.31 1.62	$\begin{array}{c} 0.74 \ (1.84) \\ 0.68 \ (2.14) \end{array}$
6H-SiC	С-грань	1.63 1.98	$\begin{array}{c} 1.01 \ (2.42) \\ 0.87 \ (2.76) \end{array}$
	Si-грань	1.33 1.65	$0.66 (1.62) \\ 0.65 (2.14)$

Примечание. Верхние числа отвечают $\Gamma = E_g/2$, нижние числа — $\Gamma = E_g/8$. Для адатомов хлора числа без скобок соответствуют адсорбции на *p*-SiC, числа в скобках — адсорбции на *n*-SiC (см. уточнение в тексте).

температуре и $\varepsilon_a > E_F$, где E_F — уровень Ферми, можно пренебречь вкладом локальных состояний [10,11] положить $n \approx n_v$. Тогда ионная составляющая энергии адсорбции равна

$$E_{ads}^{ion} = -\frac{(Ze)^2}{4d},\tag{2}$$

где Z = 1 - n есть заряд адатома галлия. При $\Gamma = E_g/2$ получаем $E_{ads}^{ion} = -1.09 \text{ eV}$ для 4H- и -1.15 eV для 6H-политипа; при имеем $E_{ads}^{ion} = -1.47 \text{ eV}$ для 4Hи — 150 eV для 6H-политипа. Подчеркнем, что параметр Γ является, как правило, подгоночным, так как вычисление его затруднительно [10].

Для оценки металлической (или ковалентной) составляющей энергии адсорбции E_{ads}^{met} воспользуемся соотношением неопределенности Гейзенберга $\Delta x \cdot \Delta p \sim \hbar$. Полагая, что в изолированном атоме $\Delta x \sim r_a$, а в адсорбированном состоянии $\Delta x \sim d$, получим выигрыш в кинетической энергии $\Delta E_{kin} \sim (\hbar^2/2md^2)[1 - (r_a/d)^2]$, где m — масса свободного электрона. Этот выигрыш в кинетической энергии, связанный с делокализацией электрона, принимаем за оценку металлической составляющей энергии адсорбции:

$$E_{ads}^{met} = -\frac{\hbar^2}{2md^2} \left(1 - \frac{r_a^2}{d^2} \right).$$
 (3)

Тогда для С-грани находим $E_{ads}^{met} = -0.48$ eV. Таким образом, для адсорбционной системы Ga/SiC(0001) получаем энергию адсорбции $E_{ads} = E_{ads}^{met} + E_{ads}^{ion}$: при $\Gamma = E_g/2$ для $E_{ads} = -1.57$ eV для 4*H*-и -1.63 eV для 6*H*-политипа; при $\Gamma = E_g/8$ имеем $E_{ads} = -1.95$ eV для 4*H*-и -1.98 eV для 6*H*-политипа.

Теперь рассмотрим адсорбционную систему Ga/SiC(0001), когда атом галлия взаимодействует с Si-гранью карбида кремния. Полагая $d = r_a$ (Ga) $+ r_a$ (Si) = 2.57 Å (атомный радиус r_a (Si) = 1.18 Å [13]), получим $\varepsilon_a = 0.19$ и 0.35 eV для 4H- и 6H-SiC соответственно. И в этом случае энергетические уровни

адатома перекрываются с запрещенными зонами 4*H*-и 6*H*-политипов.

Из (1) при $\Gamma = E_g/2$ получаем $n_v = 0.20$ для 4*H*- и 0.19 для 6*H*-политипа; при $\Gamma = E_g/8$ имеем $n_v = 0.07$ для 4*H*- и 0.06 для 6*H*-политипа. Тогда из (2) найдем: при $\Gamma = E_g/2$ получаем $E_{ads}^{ion} = -0.90$ eV для 4*H*- и -0.92 eV для 6*H*-политипа; при $\Gamma = E_g/8$ имеем $E_{ads}^{ion} = -1.21$ eV для 4*H*- и -1.24 eV для 6*H*-политипа. Получая из выражения (3) значение $E_{ads}^{met} = -0.41$ eV, находим значения энергии адсорбции E_{ads} , приведенные в таблице.

2.2. Адсорбция атомов хлора

В данном случае считаем, что на переход заряда работает дырочное состояние. В этом случае энергия квазиуровня адатома хлора равна $\varepsilon_a = -A - e^2/4d + E_0$, где A = 3.62 eV [13] — энергия сродства к электрону. Для С-грани положим $d = r_a(C) + r_a(Cl) = 1.76 \text{ Å}$, так как атомный радиус хлора (по Полингу) равен $r_a(Cl) = 0.99 \text{ Å}$ [14]; для Si-грани d = 2.17 Å. Тогда при адсорбции на C-грани для $\varepsilon_a = -0.88 \text{ ev}$ для 4H-и $\varepsilon_a = -0.72 \text{ ev}$ для 6H; при адсорбции на Si-грани $\varepsilon_a = -0.49 \text{ ev}$ для 4H и $\varepsilon_a = -0.33 \text{ ev}$ для 6H. Для системы Cl/SiC(0001) при $\Gamma = E_g/2$ получаем $n_v = 0.30$ для 4H-и 0.29 для 6H-политипа; при $\Gamma = E_g/8$ имеем $n_v = 0.14$ для 4H-и 0.13 для 6H-политипа.

Так как $\varepsilon_a < 0$, в общем случае нужно учитывать вклад локальных состояний в суммарное число заполнения *n* [10,11]. Энергия локального состояния $\omega_l(|\omega_l| < E_g/2)$, находится из решения уравнения

$$\omega - \varepsilon_a - \Lambda(\omega) = 0, \tag{4}$$

где функция сдвига $\Lambda(\omega) = (\Gamma/\pi) \ln |(\omega - E_g/2)/(\omega + E_g/2)|$. Число заполнения локального состояния равно

$$n_l = \left(1 + \frac{\Gamma}{\pi} \frac{E_g}{(E_g/2)^2 - \omega_l^2}\right)^{-1} \Theta(E_F - \omega_l), \quad (5)$$

где функция Хэвисайда $\Theta(E_F - \omega_l)$ гарантирует, что учитываются вклады только тех уровней, которые лежат ниже уровня Ферми [10,11]. Тогда для адсорбции на 4*H*-политипе получаем $\omega_l = -0.53 \,\mathrm{eV}$ и $\omega_l = -0.75 \,\mathrm{eV}, \; n_l = 0.58$ и 0.83 соответственно для $\Gamma = E_g/2$ и $\Gamma = E_g/8$; для адсорбции на 6*H*-политипе имеем $\omega_l = -0.43$ и $\omega_l = -0.57 \text{ eV}, n_l = 0.59$ и 0.84 соответственно для $\Gamma = E_g/2$ и $\Gamma = E_g/8$. Если E_F лежит ниже ω_l , то $n = n_{\nu}$, так как при нулевой температуре такие локальные уровни пусты. В дальнейшем такой случай будем условно относить к подложке р-типа. Учитывая, что для хлора Z = -n, найдем соответствующие значения E_{ads}^{ion} при $\Gamma = E_g/2$: -1.58 eV для 4*H*и 6*H*-политипа; при $\Gamma = E_g/8$ имеем $-1.92 \,\text{eV}$ для 4*H*и 6Н-политипа. Получив с помощью выражения (3) значения $E_{ads}^{met} = -0.84$ еv для С-грани, найдем величины энергии адсорбции E_{ads}, приведенные в таблице без скобок. Если E_F лежит выше локальных уровней, то

все состояния дают вклад, т.е. $n = n_v + n_l$. Неравенству $E_F > -0.43$ еv заведомо отвечают *i*- и *n*-SiC, но может соответствовать и *p*-SiC, если -0.43 еv $< E_F < 0$. В дальнейшем для определенности будем в данном случае говорить об *n*-SiC. Соответствующие значения E_{ads} приведены в таблице в скобках.

Для системы Cl/SiC(0001) при $\Gamma = E_g/2$ получаем $n_v = 0.25$ для 4*H*- и 0.16 для 6*H*-политипа; при $\Gamma = E_g/8$ имеем соответственно 0.10 и 0.09. Для адсорбции на 4*H*-политипе получаем $\omega_l = -0.30$ и $\omega_l = -0.42 \,\mathrm{eV}, \ n_l = 0.60$ и $n_l = 0.85$ для $\Gamma = E_g/2$ и $\Gamma = E_g/8$; для адсорбции на 6*H*-политипе имеем $\omega_l = -0.20$ и $\omega_l = -0.27 \, \text{eV}, \ n_l = 0.61$ и 0.86 соответственно для $\Gamma = E_g/2$ и $\Gamma = E_g/8$. Если $E_F < 0.42 \, \text{eV}$, то $n_{\nu} = n$. Тогда соответствующие значения E_{ads}^{ion} при $\Gamma = E_g/2$ равно $-0.10 \,\mathrm{eV}$ для 4H- и $-0.02 \,\mathrm{eV}$ для 6*H*-политипа; при $\Gamma = E_g/8$ имеем $-0.04 \,\mathrm{eV}$ для 4*H*- и -0.01 eV для 6*H*-политипа. Получив с помощью выражения (3) значения $E_{ads}^{met} = -0.064 \, {
m eV}$ для Si-грани, найдем величины энергии адсорбции Eads, приведенные в таблице без скобок. Если $E_F > -0.20 \,\text{eV}$, то $n = n_v + n_l$, соответствующие значения E_{ads} приведены в скобках.

Сопоставим теперь полученные результаты с результатами других авторов для адсорбции Ga. Начнем с того, что первый слой атомов галлия на 6H-SiC(0001) и (0001) является 2D структурой, а во втором слое начинается образование 3D структур [15]. Таким образом, при малой поверхностной концентрации адсорбата можно рассматривать адатом галлия как изолированный. Согласно [16], в оценочных целях допустимо рассматривать двухатомные молекулы вида GaC и GaSi. Далее, в [17] приводятся длины адсорбционных связей $d_{\text{GaC}} = 1.99$ Å и $d_{\text{GaSi}} = 2.43$ Å, что близко к использованным нами величинам. В [15] для энергии активации десорбции атомов галлия с 6H-SiC(0001) получены значения 2.5-3.5 eV для слоев и капель галлия, что в 1.5-2 раза превышает найденные нами. Что касается зарядов, то в [16] связь Si-C характеризуется зарядом 0.4-0.5, что близко к нашим оценкам. Подчеркнем, однако, что в [16,17] речь идет не об адсорбции Ga на SiC, а о гетероконтакте GaN-SiC. В [18] приводится энергия связи в системе Cl-SiC-Cl, равная 1.93 eV, что по порядку величины близко к нашим оценкам. В [19] для адсорбции хлора на карбиде кремния получено значение энергии десорбции, равное 5.13 eV, представляющееся нам завышенной оценкой.

3. Адсорбция молекулы GaCl на SiC: ионная модель

Рассмотрим связь атомов галлия и хлора, предположив *sp*-гибридизацию и воспользовавшись методом связывающих орбиталей Харрисона [20–22]. Тогда, следуя таблицам атомных термов Манна [20,22], получим для энергий *sp*-гибридных орбиталей $\varepsilon_h = (\varepsilon_s + \varepsilon_p)/2$ следующие значения: ε_h (Ga) = -8.61 eV, ε_h (Cl) = -21.49 eV.

Полярная энергия $V_3 = (\varepsilon_h(\text{Ga}) - \varepsilon_h(\text{Cl}))/2 = 6.44 \text{ eV}$. Так как $d_{\text{GaCl}} = r_{\text{Ga}} + r_{\text{Cl}} = 1.39 + 1.04 = 2.43 \text{ Å}$ [13], ковалентная энергия $V_2(\text{CaCl}) = 3.19 (\hbar^2/md_{\text{CaCl}}^2) = 4.12 \text{ eV}$ [21,22]. Ковалентность связи $\alpha_c = V_2/(V_2^2 + V_3^2)^{1/2}$ молекулы GaCl равна 0.54, а полярность $\alpha_p = \sqrt{1 - \alpha_c^2} = 0.84$. Заряды ионов, численно равные полярности связи, есть Z = Z(Ga) = -Z(Cl) = 0.84. Таким образом, в молекуле GaCl доминирует ионная связь, энергия которой может быть оценена как $E_b^{ion} \sim (Z^c e)^2/d_{\text{CaCl}} \sim 4 \text{ eV}$. Это значение хорошо коррелирует с энергией диссоциации молекулы GaCl 4.5 eV [23]. Отметим также, что полученное нами значение E_b^{ion} близко к энергиям связи молекул NaCl (4.23 eV) и NaBr (3.80 eV) [14].

Энергию адсорбции для молекулы GaCl, расположенной параллельно поверхности подложки, в ионном приближении представим в виде

$$E_{ads}^{ion} \sim -2 \, \frac{(Z^c e)^2}{4 d_{ads}} \left(1 - \frac{d_{ads}}{\sqrt{d_{GaCl}^2 + 4 d_{ads}^2}} \right), \qquad (6)$$

где d_{ads} — длина адсорбционной связи, множитель 2 отвечает двум ионам (ионная модель). Принимая для оценки $d_{ads} \sim 2$ Å, получим $E_{ads} \sim -1$ ev. Легко обобщить полученный результат, учитывая различие значений d_{ads} для С- и Si-граней. Мы, однако, ограничимся здесь порядковой оценкой.

Нам не удалось найти данных для адсорбционной системы GaCl/SiC. Однако согласно [24], величина энергия адсорбции GaCl на GaAs $|E_{ads}|$ лежит в интервале 1.39–1.65 eV.

4. Заключительные замечания

Из таблицы следует, что при адсорбции атомов Ga и Cl на p-SiC, когда локальный уровень хлора пуст, энергия связи с подложкой у адатома галлия выше, чем у адатома хлора. При адсорбции на n-SiC наблюдается обратная картина: заполненный локальный уровень хлора значительно увеличивает заряд адатома, что приводит к возрастанию (по модулю) ионного вклада в энергию адсорбции. В обоих рассмотренных случаях адатом Ga выступает как донор, а адатом Cl — как акцептор. Далее, согласно нашим оценкам, во всех рассмотренных случаях ионный вклад |E_{ads}| превышает металлический вклад $|E_{ads}^{met}|$ в суммарное значение $|E_{ads}|$. Это обстоятельство позволило нам описать адсорбцию молекулы GaCl на SiC, учитывая только кулоновское взаимодействие зарядов адмолекулы и их изображений в подложке.

Сравнение с имеющимися данными других авторов показывает приемлемость предлагаемого нами подхода к описанию адсорбционных свойств карбида кремния. Авторы надеются, что приведенные в работе простые аналитические выражения будут полезны экспериментаторам и технологам для экспресс-оценок.

Благодарности

Авторы признательны С.А. Кукушкину за предложение темы и полезные обсуждения.

Конфликт интересов

Автор зявляет, что конфликт интересов отсутствует.

Список литературы

- Silicon Carbide: recent major advances / Ed. W.J. Choyke, H. Matsunami, G. Pensl. Springer, Berlin–Heidelberg (2004). http://www.springer.de.
- [2] Advances in Silicon Carbide. Processing and Applications / Ed. S.E. Saddow, A. Agarwal. Artech House, Boston–London (2004). www.artechhouse.com.
- [3] A.A. Lebedev. Semicond. Sci. Technol. 21, R17 (2006).
- [4] G. Liu, B.R. Tuttle, S. Dhar. Appl. Phys. Rev. 2, 021307 (2015).
- [5] Y.H. Wu, T. Yu, Z.X. Chen. Appl. Phys. Rev. 108, 071301 (2010).
- [6] Г.В. Бенеманская, П.А. Дементьев, С.А. Кукушкин, А.В. Осипов, С.Н. Тимошнев. Письма в ЖТФ 45, 5, 17 (2019).
- [7] С.А. Кукушкин, В.И. Николаев, А.В. Осипов, Е.В. Осипова, А.И. Печников, Н.А. Феоктистов. ФТТ 58, 1812 (2016).
- [8] Ш.Ш. Шарофидинов, С.А. Кукушкин, А.В. Редьков, А.С. Гращенко, А.В. Осипов. Письма в ЖТФ 45, 14, 24 (2019).
- [9] С.Ю. Давыдов, О.В. Посредник ФТТ 61, 1538 (2019).
- [10] С.Ю. Давыдов, А.А. Лебедев, О.В. Посредник Элементарное введение в теорию наносистем. Изд-во "Лань", СПб. (2014).
- [11] С.Ю. Давыдов, С.В. Трошин. ФТТ 49, 1508 (2007).
- [12] С.Ю. Давыдов. ФТП 53, 706 (2019).
- [13] Физические величины. Справочник / Под ред. Е.С. Григорьева, Е.З. Мейлихова. Энергоатомиздат. М. (1991).
- [14] Краткий справочник физико-химических величин / Под ред. К.П. Мищенко и А.А. Равделя. Химия, Л. (1974).
- [15] L.X. Zheng, M.H. Xie, S.Y. Tong. Phys. Rev. B 61, 4890 (2000).
- [16] S.Y. Ren, J.D. Appl. Phys. Lett. 69, 251 (1996).
- [17] R.B. Capaz, H. Lim, J.D. Joannopoulos. Rev. B 51, 17755 (1995).
- [18] L.B. Drissi, F.Z. Ramadan, S. Lounis. arXiv: 1708.01726.
- [19] M.T. Schulberg, M.D. Allendorf, D.A. Outka. The Adsorption of Hydrogen Chloride on Polycrystalline β -Silicon Carbide (1995). https://www.ostigov/servlets/purl/10162437
- [20] W.A. Harrison. Phys. Rev. B 27, 3552 (1983).
- [21] С.Ю. Давыдов, О.В. Посредник. Метод связывающих орбиталей в теории полупроводников. Изд-во СПбГЭТУ, СПб. (2007). 96 с. (twirpx.com/file/1014608/).
- [22] W.A. Harrison. Phys. Rev. B 31, 2121 (1985).
- [23] H.Y. Abdulah. J. Ovonic Res. 9, 55 (2013).
- [24] C. Sasaoka, Y. Kato, A. Usui. Jap. J. Appl. Phys. 30, L1756 (1991).

Редактор К.В. Емцев