Исследование структуры аморфных слоев *a*-As₂Se₃(Bi)_{*x*} методом диэлектрической спектроскопии

© Н.И. Анисимова, В.А. Бордовский, Г.И. Грабко, Р.А. Кастро[¶]

Российский государственный педагогический университет им. А.И. Герцена, 191186 Санкт-Петербург, Россия

(Получена 24 мая 2012 г. Принята к печати 31 мая 2012 г.)

В аморфных слоях триселенида мышьяка с различным содержанием примеси висмута изучены процессы диэлектрической поляризации в переменных электрических полях. Интерпретация полученных экспериментальных результатов проводится в рамках модели, согласно которой при малых концентрациях атомы Ві внедряются в сетку исходной матрицы аморфной структуры как заряженные центры; дальнейшее увеличение количества легирующей добавки сопровождается появлением упорядоченных включений (кластеров) Bi₂Se₃ в изучаемых составах.

Несмотря на все более расширяющийся диапазон практического использования халькогенидных стеклообразных и аморфных полупроводников (ХСП) в различных отраслях микро- и оптоэлектроники, до сих пор остается актуальной проблема создания теоретической модели, описывающей с единых позиций как внутреннюю структуру, так и физические явления, происходящие в объемных и поверхностных слоях данных соединений при том или ином способе воздействия.

Начиная с 1963 г., когда появилась первая монография Губанова, посвященная теоретическим представлениям об энергетическом спектре неупорядоченных веществ, разные авторы с той или иной долей успешности предлагали качественные интерпретации экспериментальных результатов исследования электронной структуры ХСП [1–7]. В настоящий момент наиболее востребованной среди них является модель, основанная на существовании координационных дефектов во внутренних слоях этих полупроводниковых систем [5,6].

Однако, несмотря на то что присутствие атомов с повышенным и (или) пониженным координационным числом позволяет достаточно успешно интерпретировать многие уникальные свойства ХСП [8], до сих пор не получено убедительных экспериментальных доказательств существования данных дефектных центров. Последнее обстоятельство связывается с диамагнитной природой этих образований, а также, возможно, с их низкой концентрацией ($\sim 10^{17}$ см⁻³) [9,10].

Аналогичная ситуация (отсутствие единого подхода) отмечается и для теоретических моделей, описывающих влияние легирующих добавок на физические свойства данных материалов. Достаточно долгое время после открытия полупроводниковых свойств ХСП не удавалось обнаружить примесную проводимость этих структур [11]. Однако в последние годы в этом направлении достигнуты значительные успехи как с точки зрения экспериментального доказательства влияния примесей на электропроводность и другие физические свойства легированных халькогенидных полупроводников, так и с точки зрения использования примесных ХСП в различных областях твердотельной электроники. Тем не менее и в этом вопросе на данном этапе наблюдается отсутствие единой модели при теоретических интерпретациях экспериментальных результатов [12–14].

Так, в некоторых последних работах изучалось влияние различных металлов, в частности висмута, на проводимость ХСП [12, 15-18]. Есть основания предполагать, что атомы Ві частично внедряются в сетку исходной матрицы неупорядоченных систем как заряженные центры и частично участвуют в образовании упорядоченных включений (кластеров) Bi_2X_3 (X = S, Se). При увеличении концентрации вводимой примеси происходит перераспределение Ві между основной матрицей аморфной структуры и упорядоченными областями в сторону увеличения содержания легирующего элемента в последних [12]. При этом, если одни авторы предлагают рассматривать дефектные центры, как положительно заряженные (Bi₃⁺ или Bi₄⁺, где нижний индекс соответствует координационному числу атома, а верхний зарядовому состоянию) [17], то другие — как отрицательно заряженные (Bi₂⁻ или Bi₆⁻) [16,18].

Из всего вышеизложенного следует необходимость дальнейшего экспериментального и теоретического изучения физических свойств ХСП, как беспримесных, так и легированных (в частности триселенида мышьяка, являющегося классическим представителем этих материалов) различными методами, одним из которых является диэлектрическая спектроскопия. Естественная разупорядоченность As₂Se₃, обусловленная наличием оборванных связей и центров с повышенным координационным числом, а также образование областей со структурой, отличной от исходной матрицы, при введении примесей, в частности Ві, предполагают значительный диэлектрический отклик от воздействия переменного электрического поля [19,20].

В данной работе методом диэлектрической спектроскопии изучалась дисперсия составляющих комплексной диэлектрической проницаемости $\varepsilon^* = \varepsilon' + i\varepsilon''$ конденсаторных систем Al-As₂Se₃(Bi)-Al, основу которых составляли тонкие слои (As₂Se₃)_{1-x}(Bi)_x

[¶] E-mail: recastro@fromru.com

Рис. 1. Дисперсия вещественной составляющей комплексной диэлектрической проницаемости для As₂Se₃ (1), As₂Se₃ (Bi)_{0.05} (2) и As₂Se₃ (Bi)_{0.1} (3) при значении напряженности электрического поля 10^3 В/см и температуре T = 293 К.

Рис. 2. Зависимости $\varepsilon'(f)$ (1', 2', 3') и tg $\delta(f)$ (1, 2, 3) для пленок As₂Se₃. *T*, K: *1*, *1'* — 283; *2*, *2'* — 313; *3*, *3'* — 343.

(x = 0, 0.05, 0.1) толщиной ~ 1 мкм, приготовленные на установке ионно-плазменного высокочастотного распыления типа УРМ-3-021 на частоте электромагнитного поля 13.6 МГц, в атмосфере аргона при давлении $8 \cdot 10^{-3}$ мм рт. ст. [21]. Площадь перекрытия электродов составляла 14.0 мм².

Измерения температурно-частотных зависимостей составляющих комплексной диэлектрической проницаемости слоев As₂Se₃ были выполнены в частотном интервале: $f = 5 \cdot 10^{-3} - 10^6$ Гц на спектрометре Concept-41 фирмы Novocontrol Tecnologies. Температура исследуемых образцов менялась в пределах T = 253 - 343 K, а напряжение, подаваемое на них, составляло 0.1 В [19,20].

Как для чистых, так и для легированных слоев наблюдается аномальная дисперсия вещественной составляющей комплексной диэлектрической проницаемости во всем исследованном частотном интервале (рис. 1). Из сравнения кривых $\varepsilon'(f)$ для экспериментальных образцов всех составов следует, что частотный интервал можно разбить приблизительно на три участка. Для

Физика и техника полупроводников, 2013, том 47, вып. 1

пленок As₂Se₃ и As₂Se₃ (Bi)_{0.1} это $f_1 < (10^0 - 10^1)$ Гц, $(10^{0}-10^{1})$ Гц $< f_{2} < 10^{2}$ Гц и $f_{3} > 10^{2}$ Гц, на каждой из участков с увеличением f наблюдаются спадающие характеристик $\varepsilon'(f)$. Для As₂Se₃ (Bi)_{0.05} ветви $f_1 < (10^0 - 10^1)$ Гц, $f_3 > (2.5 - 4) \cdot 10^5$ Гц, где ЭТО также с увеличением f наблюдаются спадающие дисперсии вещественной ветви составляющей комплексной диэлектрической проницаемости, И $(10^0 - 10^1) \Gamma_{\rm II} < f_2 < (2.5 - 4) \cdot 10^5 \Gamma_{\rm II},$ характеризующийся отсутствием влияния частоты на величину ε' .

Сопоставление зависимостей $\varepsilon'(f)$ и tg $\delta(f)$ (рис. 2) позволяет сделать вывод о классическом поведении этих характеристик, когда положение максимального значения tg $\delta(f)$ и середины спадающей ветви кривой $\varepsilon'(f)$ совпадают [22]. Данное обстоятельство, а также тот факт, что в изучаемом частотном интервале дисперсия диэлектрических параметров имеет релаксационный характер [22,23], свидетельствуют о наличии в изучаемых структурах нескольких групп релаксаторов.

Вследствие наличия этих групп при воздействии переменного поля на исследуемые материалы равновесные носители заряда (H3), а также H3, инжектируемые с электродов, образуют пространственный заряд, создаюций электрическую неоднородность и обусловливающий диэлектрические потери. Влияние определенной группы релаксаторов становится заметным лишь на тех частотах, на которых диэлектрический отклик пространственного заряда, связанного именно с этой группой, совпадает по фазе с изменением электрического поля, что и является причиной повышения ε' с уменьшением f, а также появления максимумов на кривых tg $\delta(f)$.

Наиболее значительный рост величины вещественной составляющей комплексной диэлектрической проницаемости для образцов всех составов наблюдается на инфранизкочастотном (ИНЧ) участке f_1 . По всей видимости, в этом случае мы имеем дело с приэлектродными эффектами. Известно, что в сандвич-структурах на основе некоторых высокоомных полупроводников [24,25] и, в частности, системы ХСП As-Se [21,26] при приложении к ним постоянного электрического поля перенос инжектированных в образец носителей заряда происходит с помощью прыжкового механизма по глубоким уровням захвата в запрещенной зоне. Вследствие этого на границе с анодом существует энергетический барьер, возникающий из-за разности энергии сродства электрона к локальному центру и работы выхода металла анода, что приводит к накоплению значительного заряда около последнего.

В нашем случае при уменьшении частоты прикладываемого электрического поля, особенно в ИНЧ области, мы имеем дело с тем же явлением, что и приводит к увеличению пространственного заряда, росту поляризационных эффектов и, как следствие, существенному изменению величины вещественной составляющей комплексной диэлектрической проницаемости.

В этом же инфранизкочастотном интервале $f_1 < (10^0 - 10^1)$ Гц наблюдается и наиболее значитель-

As ₂ Se ₃			$As_2Se_3\langle Bi angle_{0.05}$			$As_2Se_3\langle Bi angle_{0.1}$		
f, Hz	$T_{\rm max},{ m K}$	tg $\delta_{\rm max}$	f, Hz	$T_{\rm max},{ m K}$	tg $\delta_{\rm max}$	f, Hz	$T_{\rm max},{ m K}$	tg $\delta_{\rm max}$
$\begin{array}{r} 10^{-2} \\ 2.35 \cdot 10^{-2} \\ 5.5 \cdot 10^{-2} \\ 8 \cdot 10^{-2} \\ 1.5 \cdot 10^{-1} \\ 3.5 \cdot 10^{-1} \end{array}$	293 301 307 311 315 323	0.875 0.835 0.815 0.812 0.811 0.809	$10^{-2} \\ 5.5 \cdot 10^{-2} \\ 1.3 \cdot 10^{-1} \\ 4.85 \cdot 10^{-1} \\ 1.15$	293 303 313 323 333	0.835 0.867 0.841 0.85 0.857	$5 \cdot 10^{-3} \\ 10^{-2} \\ 2.5 \cdot 10^{-2} \\ 1.5 \cdot 10^{-1} \\ 1 \\ 3$	257 262 266 278 299 311	0.676 0.712 0.722 0.763 0.8 0.937

Координаты точек экстремумов температурных зависимостей тангенса угла диэлектрических потерь для чистых и легированных образцов в ИНЧ диапазоне

ное влияние температуры на релаксацию исследуемых слоев (рис. 3, *a*, *b*). При этом сравнительный анализ температурных зависимостей диэлектрических параметров чистых и легированных висмутом образцов обнаруживает, что наряду со сходством поляризационных процессов данных составов у них имеются и определенные различия. Общим для всех экспериментальных слоев

Рис. 3. a — температурные зависимости вещественной составляющей комплексной диэлектрической проницаемости для As₂Se₃ (Bi)_{0.05}; f, Гц: $I = 10^{-2}$, $2 = 5.5 \cdot 10^{-2}$, $3 = 1.33 \cdot 10^{-1}$, $4 = 4.85 \cdot 10^{-1}$, 5 = 1.15, 6 = 2.75. b = зависимости тангенса угла диэлектрических потерь от температуры для As₂Se₃ (Bi)_{0.05}; f, Гц: $I = 10^{-2}$, $2 = 5.5 \cdot 10^{-2}$, $3 = 1.33 \cdot 10^{-1}$, $4 = 4.85 \cdot 10^{-1}$, 5 = 1.15, 6 = 2.75.

является то, что с ростом Т в ИНЧ диапазоне наблюдается значительное увеличение (более чем на порядок) вещественной составляющей комплексной диэлектрической проницаемости (рис. 3, *a*) и появление максимумов диэлектрических потерь на кривых tg $\delta(T)$, которые соответствуют участкам резкого увеличения $\varepsilon'(T)$, снятых при тех же частотах (рис. 3, b). При этом чем больше f, тем при больших T проявляются эти эффекты. На границе между ИНЧ и низкочастотной областями при $f = 1 - 10 \, \Gamma$ ц (HY)происходит изменение механизма исследуемого релаксационного процесса, что сопровождается нивелированием как участков резкого возрастания $\varepsilon'(T)$, так и max tg(T).

Однако с увеличением процентного содержания примеси возрастает "чувствительность" исследуемых составов. Чем больше *x*, тем при более низких температурах (при одной и той же частоте) начинаются значительные изменения ε' и tg δ для As₂Se₃ (Bi)_x. Помимо этого нивелирование "аномальных" особенностей температурных зависимостей составляющих комплексной диэлектрической проницаемости исследуемых слоев наступает при разных f. Чем больше x, тем больше данная частота. Так, в частности, последний максимум на кривой tg $\delta(T)$ для As₂Se₃ отмечается при $f \approx 4 \cdot 10^{-1}$ Гц, а для $As_2Se_3(Bi)_{0.1}f = 3-4\Gamma$ ц (см. таблицу). Одной из причин, объясняющих отличие в наблюдаемых особенностях диэлектрических параметров, может служить следующий фактор. В [26] при исследовании токовой релаксации аналогичных составов было установлено, что увеличение процентного содержания висмута сопровождается существенным изменением подвижности H3 µ. По-видимому, значительное возрастание величины μ при повышении концентрации Ві обеспечивает большую "чувствительность" экспериментальных образцов к внешним факторам воздействия.

Рост x влияет также на частотные зависимости tg $\delta_{\max}(f)$ (рис. 4) и $T_{\max}(f)$ (рис. 5) (см. таблицу). Если для беспримесных слоев tg $\delta_{\max}(f)$ представляет собой спадающую экспоненту, то для As₂Se₃ (Bi)_{0.1} — возрастающую. У As₂Se₃ (Bi)_{0.05} наблюдается независимость tg δ_{\max} от f. $T_{\max}(f)$ для всех составов — это линейная функция a + kf. Если

Рис. 4. Дисперсия максимумов tg δ_{max} кривых tg $\delta(T)$, наблюдаемых в ИНЧ диапазоне для: $1 - \text{As}_2\text{Se}_3$, $2 - \text{As}_2\text{Se}_3\langle \text{Bi} \rangle_{0.05}$, $3 - \text{As}_2\text{Se}_3\langle \text{Bi} \rangle_{0.1}$.

Рис. 5. Дисперсия координат точек экстремумов T_{max} кривых tg $\delta(T)$, наблюдаемых в ИНЧ диапазоне для: $1 - \text{As}_2\text{Se}_3$, $2 - \text{As}_2\text{Se}_3\langle \text{Bi} \rangle_{0.05}$, $3 - \text{As}_2\text{Se}_3\langle \text{Bi} \rangle_{0.1}$.

k (при x = 0) $\approx k(x = 5) \approx k(x = 10)$, то $a(x = 0) \approx a(x = 5) > a(x = 10)$.

Как было сказано выше, некоторые авторы предполагают, что при малых концентрациях висмут, внедряясь в исходную матрицу аморфной структуры триселенида мышьяка, создает заряженные центры Bi_3^+ или/и Bi_4^+ (последние по аналогии с As_4^+) [17,27]. Вследствие этого внутреннее устройство исходного состава не претерпевает кардинальных изменений. Дальнейшее увеличение количества вводимой примеси сопровождается появлением упорядоченных областей (кластеров) состава Bi_2Se_3 , имеющих более узкую запрещенную зону [12].

С другой стороны, согласно представлениям классической физики [22,28,29], max tg $\delta(f)$ наблюдается при температуре, при которой время релаксации частиц диэлектрика примерно совпадает с периодом изменения приложенного переменного сигнала. Спад диэлектрических потерь при росте f свидетельствует об увеличении времени тепловой релаксации частиц (т.е. уменьшении

Физика и техника полупроводников, 2013, том 47, вып. 1

интенсивности их движения) по сравнению с полупериодом изменения электрического поля (одновременно спадает и вещественная составляющая комплексной диэлектрической проницаемости). Напротив, спад tg $\delta(f)$ при уменьшении f свидетельствует о том, что время релаксации частиц значительно меньше полупериода изменения тока. Таким образом, интенсивность теплового движения становится больше и, следовательно, ослабляется связь между частицами. В этом случае поляризация растет (ε'), а потери нивелируются (рис. 3, a, b).

Все вышеизложенное и может являться причиной того, что величина T_{max} при одной и той же частоте для $As_2Se_3\langle Bi\rangle_{0.1}$ существенно отличается от аналогичных величин двух других составов, для которых T_{max} , повидимому, имеет близкие значения (рис. 5).

Для дальнейшего рассмотрения поляризационных процессов, происходящих в As₂Se₃ $\langle Bi \rangle_x$, представлялось интересным проанализировать перестроенные экспериментальные кривые tg $\delta(T)$ в координатах $\Delta tg \delta(f)$, где $\Delta tg \delta = tg \delta_{max}(T) - tg \delta_{min}(T)$ (рис. 6). Были установлены следующие особенности дисперсии приращения тангенса угла диэлектрических потерь:

— как для легированных, так и для беспримесных слоев характерно наличие трех областей на частотных зависимостях $\Delta \operatorname{tg} \delta$ (I приблизительно совпадает с ИНЧ диапазоном $f < 10^{0}$ Гц, II — с началом низкочастотного (НЧ) интервала $f = 10^{0} - 5 \cdot 10^{2}$ Гц и III — $f > 5 \cdot 10^{2}$ Гц);

— отмечается практически полное совпадение хода кривых $\Delta \operatorname{tg} \delta(f)$ для As₂Se₃ и As₂Se₃ (Bi)_{0.05};

— при всех *x* в I и III областях наблюдается отсутствие зависимости функции $\Delta tg \delta$ от частоты;

— наиболее существенные различия дисперсии $\Delta \operatorname{tg} \delta$ связаны с интервалом $f = 10^0 - 5 \cdot 10^2 \, \Gamma$ ц.

Совпадение зависимостей $\Delta tg \,\delta(f)$ для As₂Se₃ и As₂Se₃ (Bi)_{0.05} можно интерпретировать в рамках предложенной ранее модели, согласно которой внутренняя структура данных составов имеет сходное строение. Резкий спад величины $\Delta tg \,\delta$ во II частотном интервале для As₂Se₃ и As₂Se₃ (Bi)_{0.05} корелирует с нивелированием "аномальных" особенностей температурных зависимостей составляющих комплексной диэлектрической проницаемости этих слоев. По всей видимости, в этом случае образование пространственного заряда обусловлено участием в поляризационном процессе в основном уже другой группы релаксаторов, в качестве которых могут выступать заряженные дефекты D^+ , D^- (As₄⁺, Se₃⁺, Se₁⁻, Bi₃⁺, Bi₄⁺), имеющие широкий спектр энергетических уровней в запрещенной зоне [12,17,27].

В противоположность этому, для As₂Se₃ (Bi)_{0.1} при $f = 10^0 - 5 \cdot 10^2$ Гц на кривой Δ tg $\delta(f)$ наблюдается максимум. На границе между ИНЧ и НЧ областями при увеличении f из-за низкой подвижности НЗ (характерной для данных составов [8,12]) значительный заряд в приэлектродной области уже не успевает сформироваться (что, кстати, обусловливает уменьшение ε' как для легированных, так и для беспримесных образцов).

Рис. 6. Дисперсия максимального приращения $\lg \delta (\Delta \lg \delta = \lg \delta_{\max}(T) - \lg \delta_{\min}(T))$ для: *1* — As₂Se₃, *2* — As₂Se₃ (Bi)_{0.05}, *3* — As₂Se₃ (Bi)_{0.1}.

Тем не менее для $As_2Se_3\langle Bi \rangle_{0.1}$ при этих частотах увеличение температуры продолжает "провоцировать" тепловое движение группы релаксаторов, обусловленных наличием потенциальных барьеров (на границе областей, характеризующихся повышенной координированностью атомов с основной матрицей исходного соединения), и попытки обмена какой-то частью носителей заряда дефектными центрами. "Противоречие" между результатами влияния двух факторов внешнего воздействия (T, f) и является причиной существенного увеличения диэлектрических потерь в начале второго частотного интервала.

Из дальнейшего анализа рис. 6 следует, что начиная с $f \approx 10^2$ Гц для As₂Se₃, $f = 10^2 - 10^3$ Гц для $As_2Se_3\langle Bi \rangle_{0.05}$ и $f \sim 10^4$ Гц для $As_2Se_3\langle Bi \rangle_{0.1}$ наблюдается существенное уменьшение как температурной, так и частотной зависимостей тангенса угла диэлектрических потерь у всех составов. По всей видимости, это говорит об окончательном изменении механизма поляризационного процесса и о совпадении его природы для исследуемых соединений. Скорее всего, начиная с $f \sim 10^4 \, \Gamma$ ц диэлектрические явления в слоях $As_2Se_3\langle Bi \rangle_x$ обусловлены действием собственных дефектов исходной матрицы (As₂Se₃), в качестве которых выступают заряженные центры, обладающие отрицательной корреляционной энергией D^+ , D^- [12]. Из этого можно сделать предположение, что при частотах $f > 10^4 \, \Gamma$ ц области с повышенной концентрацией примеси (кластеры) оказывают слабое влияние на процесс диэлектрической поляризации в As₂Se₃ $\langle Bi \rangle_x$.

Список литературы

- [1] А.И. Губанов. Квантово-электронная теория аморфных полупроводников (М., Изд-во АН СССР, 1963).
- [2] M.H. Cohen, H. Fritzsche, S.R. Ovshinsky. Phys. Rev. Lett., 22, 1065 (1969).
- [3] E.A. Davis, N.F. Mott. Phil. Mag., 22, 903 (1970).

- [4] M. Kastner. Phys. Rev. Lett., 26 (7), 355 (1972).
- [5] R.A. Street, N.F. Mott. Phys. Rev. Lett., 35 (19), 1293 (1975).
- [6] M. Kastner, D. Adler, H. Fritzsche. Phys. Rev. Lett., 37 (22), 1504 (1976).
- [7] В.В. Соболев, А.М. Широков. Электронная структура халькогенидов (М., Наука, 1988).
- [8] Н. Мотт, Э. Дэвис. Электронные процессы в некристаллических веществах (М., Мир, 1982).
- [9] А. Фельтц. Аморфные и стеклообразные неорганические твердые тела (М., Мир, 1986).
- [10] G.J. Adraenssens, N. Qamhieh. J. Mater. Sci.: Mater. Electron., 14, 605 (2003).
- [11] B.T. Kolomiets. Phys. Status Solidi, 7, 359 (1964).
- [12] Электронные явления в халькогенидных стеклообразных полупроводниках, под ред. К.Д. Цэндина. (СПб., Наука, 1996).
- [13] P. Nagy. Phill. Mag. B, 48 (1), 47 (1983).
- [14] Ю.С. Тверьянович, З.У. Борисова. Тез. Всесоюз. конф. "Стеклообразные полупроводники" (Л., 1985) с. 238.
- [15] N. Tohge, T. Minami, Y. Yamamoto, M. Tanaka. J. Appl. Phys., 51, 1048 (1980).
- [16] K.I. Bhatia. J. Non-Cryst. Sol., 54, 173 (1983).
- [17] M. Saiter, T. Derrey, C. Vautier. J. Non-Cryst. Sol., 77–78, 1169 (1985).
- [18] C. Vautier. Sol. St. Phenomena, 71, 249 (2000).
- [19] Р.А. Кастро, Г.И. Грабко. ФТП, 45 (5), 622 (2011).
- [20] Р.А. Кастро, Г.И. Грабко, Т.В. Татуревич. Письма ЖТФ, 37 (18), 1 (2011).
- [21] Р.А. Кастро, В.А. Бордовский, Г.И. Грабко, Т.В. Татуревич. ФТП, 45 (12), 1646 (2011).
- [22] О.В. Мазурин. Электрические свойства стекла (Л., Ленгосхимиздат, 1962).
- [23] A.A. Simashkevich, S.D. Shutov. Phys. Status Solidi, 84 (1), 343 (1984).
- [24] Б.Л. Тимман. ФТП, 7 (2), 225 (1973).
- [25] С.Н. Мустафаева, С.Д. Мамедбейли, М.М. Асадов, И.А. Мамедбейли, К.М. Ахмедли. ФТП, 30 (12), 2154 (1996).
- [26] Н.И. Анисимова, В.А. Бордовский, Г.И. Грабко, Р.А. Кастро. ФТП, 44 (8), 1038 (2010).
- [27] S.R. Elliot, A.T. Steel. Phys. Rev. Lett., 57, 1316 (1986).
- [28] О.В. Мазурин, В.Б. Браиловский. Стеклообразное состояние (М., 1965) с. 277.
- [29] П.Т. Орешкин. Физика полупроводников и диэлектриков (М., Высш. шк., 1977).

Редактор Л.В. Беляков

Investigation of structure of amorphous layers a-As₂Se₃(Bi)_x by dielectric spectroscopy method

St.Petersburg State Polytechnical University, 191186 St. Petersburg, Russia

N.I. Anisimova, V.A. Bordovsky, G.I. Grabko, R.A. Kastro