03,19

Математическое моделирование процесса выращивания монокристалла CdTe методом Обреимова–Шубникова

© М.Д. Павлюк¹, Е.А. Суханова², М.П. Зыкова², И.С. Волчков¹, В.М. Каневский¹, И.А. Субботин³, К.М. Подурец³, Б.Ф. Павлюк⁴, Ю.М. Иванов⁵

 ¹ ИК РАН, ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия
² Российский химико-технологический университет им. Д.И. Менделеева, Москва, Россия
³ Национальный исследовательский центр "Курчатовский институт", Москва, Россия
⁴ ФГУП Всероссийский научно-исследовательский институт авиационных материалов, Москва, Россия
⁵ Институт металлургии и материаловедения им. А.А. Байкова РАН, Москва, Россия

E-mail: zenkova@crys.ras.ru

Поступила в Редакцию 16 июля 2019 г. В окончательной редакции 16 июля 2019 г. Принята к публикации 25 июля 2019 г.

> Впервые выполнено моделирование ростового процесса кристалла CdTe модифицированным методом Обреимова-Шубникова с применением техники самозатравления от начальной температуры охлаждения (1100°C) до момента выхода на режим стационарного роста. Рассчитано движение фронта кристаллизации в процессе роста кристалла. Результаты подтверждены методом рентгеновской топографии с использованием синхротронного излучения.

Ключевые слова: CdTe, фронт кристаллизации, термоконвективные потоки.

DOI: 10.21883/FTT.2020.01.48722.24ks

1. Введение

Высококачественные кристаллы CdTe и твердые растворы на его основе активно используются при производстве различного рода приборов, широко применяемых в медицине, науке и промышленности. Поскольку потребность в кристаллах СdTe непрерывно растет, то одновременно растет и потребность в высококачественных кристаллах большого диаметра, так как это позволяет резко увеличить производительность процесса, повысить выход монокристаллического материала и снизить его стоимость. Наиболее распространенным способом выращивания кристаллов CdTe является стандартный метод Бриджмена, с осуществлением кристаллизации в запаяных кварцевых ампулах. Именно этим методом в последние годы были получены высококачественные структурно совершенные детекторные кристаллы с высоким временем жизни неосновных носителей заряда, доходящим до $11 \,\mu s$ [1]. Однако серьезным недостатком метода Бриджмена является невысокий выход монокристалла, в лучшем случае 50%. Основным препятствием выхода монокристалла являются трудности применения монокристаллической затравки, обусловленные применением малых осевых градиентов температуры и связанной с ними высокой вероятностью ее расплавления. Повышение осевого градиента температуры

неблагоприятно влияет на структурные характеристики выращенного кристалла и является нежелательным.

Выбранный технологический процесс выращивания кристаллов CdTe основан на модифицированном методе Обреимова–Шубникова [2–4].

Данный метод имеет следующие преимущества по сравнению с методом Бриджмена:

 – благодаря отсутствию механизма перемещения ампулы не вносятся дополнительных тепловых возмущений при зародышеобразовании и росте кристаллов;

 отсутствие перемещения ампулы приводит к преимущественному отводу тепла вдоль оси ампулы, обеспечивая необходимую форму фронта кристаллизации (в методе Бриджмена перемещение ампулы в холодную зону увеличивает вероятность отвода тепла в радиальном направлении, что приводит к паразитирующему зародышеобразованию на стенках ампулы);

– применение техники самозатравления с большой вероятностью приводит к получению полностью монокристаллических слитков, не требуя при этом использования затравочных монокристаллов, что удешевляет и упрощает процесс выращивания кристаллов CdTe.

Низкая теплопроводность твердого CdTe создает существенную проблему поддержания баланса теплового потока на поверхности раздела и диктует использование малой скорости роста и относительно больших температурных градиентов для выращивания крупных мо-

Рис. 1. Ростовая установка: а) 3D модель ростовой установки (в разрезе); b) схематическое изображение зарождение кристалла, его разрастание и последующий рост; c) схема печи: *1* — корпус печи, *2* — кварцевая ампула, *3* — ростовой тигель с крышкой, *4* — расплав, *5* — нагреватель стенки печи (спираль), *6* — нагреватель днища печи (змеевик), *7* – электрическая шунтирующая линия, *8* — переключатель, *9* — термопары, *10* — управляющее устройство.

нокристаллов. Описание теплопереноса в реальных системах выращивания кристаллов — сложная проблема, которая принимает во внимание все способы теплопереноса (кондуктивный, конвективный и радиационный) в расплаве и твердом теле, ростовом тигле и печи. Кинетика роста весьма интересна с точки зрения совершенствования технологии выращивания монокристаллов для понимания процессов образования оптических и структурных дефектов кристалла в течение ростового процесса. Непосредственное исследование кинетики в процессе выращивания кристаллов CdTe весьма затруднительно. Так как растущий кристалл хорошо экранирован, фронт кристаллизации (ФК) находится в расплаве и его визуализация невозможна.

Недостаток выращивания методами направленной кристаллизации расплавов — термоконвективные потоки, возникающие из-за негативного влияния неравномерного распределения температуры по объему тигля. Это приводит к неравномерному распределению концентрации компонентов по объему расплава, а также к флуктуациям температуры и состава в области фронта кристаллизации. Теоретические исследования влияния возникающих в расплаве градиентов температуры и концентрации на морфологию фронта кристаллизации показали важность равномерности их величин вдоль всей поверхности фронта.

В настоящей работе представлены результаты численного моделирования на основе решения системы нестационарных двумерных уравнений Навье–Стокса для несжимаемой жидкости в приближении Буссинеска, уравнений непрерывности, переноса тепла и теплопроводности процесса выращивания монокристалла CdTe диаметром 100 mm методом Обреимова–Шубникова. Задача решалась с использованием программного обеспечения ANSYS FLUENT 14.5

Постановка задачи и метод решения

2.1. Модель ростовой установки

Для моделирования процесса выращивания монокристалла CdTe диаметром 100 mm модифицированным методом Обреимова–Шубникова с использованием техники самозатравления в реальной кристаллизационной установке (печь фирмы "Кантал") мы проектируем установку роста, показанную на рис. 1.

Учитывая, что CdTe характеризуется очень малой величиной критического сдвигового напряжения [5], применение малых температурных градиентов является существенным фактором, предотвращающим генерацию большого числа дислокаций на стадии роста кристалла. Для расчета были взяты следующие температурные градиенты: осевой — 2–3 grad/ст и радиальный — 0.2–0.4 grad/ст. В реальном ростовом процессе загруженная печь выдерживалась 10 h при показаниях нижней и боковой термопар 1100°С. По истечении этого времени проводилось охлаждение со скоростью остывания 0.5°C/h, до показания нижней термопары

Название	Детали	Свойства
Фибротал	Стенка печи Дно печи Крышка печи	Плотность ρ (kg/m ³) — 200 Теплоемкость C_p (J/kg K) — 1010 Теплопроводность λ (W/m K) — 0.28 Коэффициент теплового излучения e (1/m) — 0.4
Фехраль	Нагреватель стенки печи (спираль) Нагреватель дна печи (спираль)	Плотность ρ (kg/m ³) — 7100 Теплоемкость C_p (J/kg K) — 480 Теплопроводность λ (W/m K) — 13.5 Коэффициент теплового излучения e (1/m) — 0.7
Кварц SiO2	Кварцевая труба Кварцевая ампула	Плотность ρ (kg/m ³) — 2201 Теплоемкость C_p (J/kg K) — 1052 Теплопроводность λ (W/m K) — 1.38 Коэффициент теплового излучения e (1/m) — 0.5 Коэффициент преломления n — 1.4
Стеклоуглерод (графит)	Тигель с крышкой	Плотность ρ (kg/m ³) — 1780 Теплоемкость C_p (J/kg K) — 1900 Теплопроводность λ (W/m K) — 37 Коэффициент теплового излучения e (1/m) — 0.5
Теллурид кадмия CdTe	Расплав	Плотность ρ (kg/m ³) — 5680 Теплоемкость C_p (J/kg K) — 187 Теплопроводность λ (W/m K) — 3 Коэффициент теплового излучения e (1/m) — 1 Коэффициент теплового расширения β (1/K) — 1.87 \cdot 10 ⁻⁴ Динамическая вязкость (N/m s) — 2.5 \cdot 10 ⁻³ Температура плавления T_m (K) — 1373 Теплота плавления H_m (kJ/kg) — 209.2
Пар кадмия Cd	Атмосфера кварцевой ампулы	Плотность ρ (kg/m ³) — 0.33 Теплоемкость C_p (J/kg K) — 106.43 Теплопроводность λ (W/m K) — 0.0242 Коэффициент теплового излучения e (1/m) — 0 Коэффициент теплового расширения β (1/K) — 4.57 \cdot 10 ⁻⁴ Динамическая вязкость (N/m s) — 1.78 \cdot 10 ⁻⁵

Материалы и их физические свойства, используемые при моделировании

1090°С, а боковой — 1092°С. С этого момента нижний нагреватель выключается. Детально метод описан в [3].

Все свойства используемых материалов принимались постоянными и использовались их значения при температуре 1100°С (см. таблицу).

2.2. Численное моделирование

Использовалась двумерная модель в осесимметричном приближении.

Были заданы граничные условия для температуры и скорости потоков. На стенках использовалось условие прилипания. На внешних стенках печи учитывался свободный конвективный теплообмен с окружающей средой, на стенках ампулы — температурный профиль. Для учета излучательного теплопереноса использовалась модель дискретных ординат. Стенки кварцевой ампулы считались абсолютно прозрачными для излучения; остальные стенки считались абсолютно непрозрачными. Для моделирования процесса кристаллизации использовалась энтальпийная модель.

Сетка образована четырехугольными ячейками, с основным размером в области внутри ампулы 1 и 2 mm в печи. Сетка имела пограничные слои уменьшенных ячеек вдоль внутренних стенок ампулы и тигля. Общее количество ячеек сетки составило 56000.

3. Результаты расчета и обсуждение

Расчет проводился в три этапа. На первом этапе рассчитывали тепловой профиль шахты пустой печи (рис. 2). Шахта печи заполнена воздухом, для которого рассчитывается конвекция.

На рис. 2 видны весьма интенсивные термоконвективные потоки вдоль оси печи, возникающие за счет отвода тепла через центральное отверстие в крышке печи, причем за счет того, что крышка не обогревается, в верхней части печи термоконвективные потоки носят сложный характер.

Рис. 2. Распределение температур (a), векторов осредененных скоростей термоконвективных потоков (b) и термоконвективных потоков (c) в шахте печи в отсутствие ампулы с расплавом и тиглем.

Рис. 3. Распределение температур (*a*) и термоконвективных потоков (*b*) во внутреннем пространстве печи с кварцевой ампулой и находящимся в ней тиглем с расплавом.

На втором этапе моделировались процесы во внутреннем пространстве печи с кварцевой ампулой и находящимся в ней тиглем с расплавом. Расплав на этой стадии предполагается твердым. Для внутреннего пространства ампулы (паровая фаза) и воздуха в шахте печи рассчитывалась термоконвекция. Теплообмен осуществлялся как за счет теплопроводности и конвекции, так и за счет переноса тепла излучением. Расчет проводился с учетом ранее найденного распределения температуры в печи.

На рис. 3 видно, что температура в тигле распределена равномерно. Введение ампулы в печь в нижней части печи приводит практически к равномерному распределению термоконвективных потоков и низким их скоростям. В верхней части печи сохраняется сложный характер термоконвективных потоков.

На третьем этапе рассчитываются потоки в тигле с использованием тепловых условий, полученных в предыдущих расчетах. В расчете была учтена кристаллизация жидкого расплава с использованием энтальпийной модели.

Расчеты показали, что полностью кристаллизация слитка происходит за 22 h 20 min (точность ± 5 min), что соответствует реальному ростовому процессу и нашему представлению о технике самозатравления. Следует

Рис. 4. *а* — вид фронта кристаллизации кристалла от момента затравления до выхода на режим стационарного роста, *b* — скорости термоконвективных потоков, справа векторные скорости (*V*, m/s).

Рис. 5. Диаграмма распределения компонентов: *а* — перпендикулярно оси роста слитка и *b* — по высоте слитка в кристалле CdZnTe.

отметить, что в процессе охлаждения кристалла, наибольшая часть времени (а именно, 18 h) отводится остыванию расплава, перегретого на 10° С, до температуры плавления 1092° С. Последующие 4 h соответствуют интервалу температур $1092-1089^{\circ}$ С (рис. 4, b-e). Показано, что разращивание кристалла произошло достаточно быстро в радиальном направлении, после чего процесс роста вышел на почти стационарный режим. В расплаве борются два типа конвекции: свободная (связанная с перепадом температуры в тигле) и вынужденная. Первая вместе с отводом тепла от фронта кристаллизации

посредством излучения стремится прогнуть фронт в расплав, а вторая, наоборот, сделать его плоским. Под кристаллом образовался вихрь вынужденной конвекции, однако этой скорости было недостаточно для существенного изменения формы фронта кристаллизации.

На практике ФК можно определить в дефектных монокристаллах по декорированию этого фронта в нескольких местах кристалла микропузырьками, или использование рентгеновского микроанализа позволяет выявить распределение компонентов вдоль оси роста и диаметра слитка. Эти данные позволяют сравнивать полученные

Рис. 6. Рентгеновская топография кристалла CdZnTe.

с помощью моделирования результаты с практическими данными.

Для сравнения с результатами моделирования был выращен кристалл CdZnTe с концентрацией Zn 7 at.% (с теми же параметрами, которые были взяты при расчете). Использование рентгеновского микроанализа (Метод энергодисперсионной рентгеновской спектроскопии (англ. Energy-dispersive X-ray spectroscopy (EDS) на руском языке сокращенно ЭДС)) позволило выявить распределение компонентов вдоль и перпендикулярно оси роста слитка и установить высокую микрооднородность компонентов (рис. 5, *a* и *b* соответственно). Полученные данные о микрооднородности образцов, подтверждают отсутствие процессов распада твердых растворов. Распределение компонентов на представленных диаграммах свидетельствует о плоском фронте кристаллизации слитков.

Результаты расчета согласуются с результатами ростового эксперимента, оцененными по данным рентгеновского микроанализа, что подтверждает адекватность численной модели.

Для надежности полученных результатов были проведены дополнительные исследования, а именно, была проведена рентгеновская топография на синхротронном источнике. Исследования с использованием синхротронного излучения проводили на станции "Медиана" Курчатовского источника синхротронного излучения. Изображения регистрировались с помощью двухкоординатного детектора на основе GdOS:Tb-экрана и CCD-матрицы размерностью 4008 × 2672 пикселей, размер пикселя составлял 8.9 µm. Для топографии на белом пучке кристалл устанавливали в симметричной геометрии с горизонтальной плоскостью дифракции, и отражение под брэгговским углом $q \approx 15^\circ$ регистрировали детектором, расположенным на расстоянии 30 cm от кристалла. Высота пучка составляла 5 mm. Время регистрации одного изображения составляло 15 s (обычное время для слабопоглощающих кристаллов — 1 s).

Ориентировка кристалла с естественным сколом (110) проводилась на рентгеновском дифрактометре Rigaku SmartLab (Токио, Япония) с использованием характе-

ристического излучения меди. В состав дифрактометра входит пятиосевая система позиционирования образца с радиальным и азимутальным вращением, позволяющая легко вывести искомую плоскость в дифракционное положение. Результаты топографии, полученные с помощью синхротронного излучения, полностью подтверждают адекватность численной модели и полностью соответствуют данным рентгеновского микроанализа, как в осевом, так и в радиальном направлениях.

4. Заключение

В настоящей работе выполнено моделирование ростового процесса кристалла CdTe модифицированным методом Обреимова–Шубникова с применением техники самозатравления, с использованием программного обеспечения ANSYS FLUENT 14.5. Рассчитано, что межфазная граница на стадии разращивания кристалла слегка выпуклая, а при температуре 1090°С форма фронта кристаллизации становится плоской. Результаты расчета согласуются с результатами ростового эксперимента по данным рентгеновского микроанализа. А результаты топографии, полученные с помощью синхротронного излучения, полностью подтверждают адекватность численной модели.

Финансирование работы

Работа выполнена при поддержке Министерства науки и высшего образования в рамках выполнения работ по Государственному заданию ФНИЦ "Кристаллография и фотоника" РАН.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- M. Azoulay, A. Raizman, G. Gafni, M. Roth. J. Cryst. Growth. 101, 256 (1990)
- [2] Yu.M. Ivanov. J. Cryst. Growth. 194, 509 (1998).
- [3] Ю.М. Иванов, А.Н, Поляков, М.Д. Зенкова, В.М. Каневский. Установка для выращивания кристаллов / Патент на полезную модель RU 51030 U1 2006.
- [4] M.D. Pavlyuk, V.M. Kanevsky, V.F. Dvoryankin, A.A. Kudryashov, A.G. Petrov, Yu.M. Ivanov. Nucl. Instrum. Methods Phys. Res. A 624, 482 (2010).
- [5] Osamu Oda. Compound semiconductor bulk materials and characterizations. World Scientific Publishing Company, Singapore (2007). 556 p.

Редактор Е.Ю. Флегонтова