07

Тритиевые источники электропитания на основе гетероструктур AIGaAs/GaAs

© В.П. Хвостиков, В.С. Калиновский, С.В. Сорокина, О.А. Хвостикова, В.М. Андреев

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия E-mail: vlkhv@scell.ioffe.ru

Поступило в Редакцию 20 июня 2019г. В окончательной редакции 18 июля 2019г. Принято к публикации 27 августа 2019г.

Приведены результаты разработки радиоизотопного источника электропитания на основе полупроводникового (Al_xGa_{1-x}As/GaAs) преобразователя энергии β -излучения и трития в качестве источника излучения. Проведено сравнение эффективности преобразователя при использовании в качестве источника радиоизотопного излучения насыщенного тритием титанового диска, тритиевой лампы зеленого люминесцентного свечения и газообразного трития. При использовании преобразователя на основе гетероструктуры Al_{0.35}Ga_{0.65}As/GaAs в капсуле с тритием получен КПД $\eta = 5.9\%$ при максимальной выходной удельной электрической мощности 0.56 μ W/cm². За счет длительного ресурса работы такие автономные и компактные источники электропитания могут использоваться в космической и подводной технике, в имплантатах-кардиостимуляторах, биологических датчиках, портативном мобильном оборудовании высокой надежности.

Ключевые слова: радиоизотопный источник питания, тритий, β-излучение, AlGaAs/GaAs.

DOI: 10.21883/PJTF.2019.23.48716.17941n

В отличие от традиционных фотоэлементов, облучаемых фотонами, в радиоизотопных источниках электропитания (РИЭП) используется энергия *β*-распада (прямое преобразование энергии *β*-частиц) [1–3] или радиолюминесцентное излучение (двухступенчатое преобразование активированного свечения люминофоров) [4,5]. Основными требованиями, предъявляемыми к РИЭП, являются большой срок эксплуатации (до 10-20 лет), высокая эффективность и выходная удельная мощность при малой энергии ионизирующего излучения для предупреждения деградации бета-вольтаического преобразователя (БВП), доступная стоимость, отсутствие загрязнения окружающей среды. За счет длительного ресурса работы РИЭП находят практическое применение при использовании в агрессивных средах, в удаленных или труднодоступных местах (в космической, морской и подводной технике, на Крайнем Севере, в имплантатах-кардиостимуляторах, протезных устройствах и биологических датчиках). Такие источники питания не нагреваются при эксплуатации, а после снижения активности изотопа не содержат токсичных веществ.

Характеристики РИЭП зависят от свойств изотопа, выбора конструкции и полупроводникового материала БВП. Ранее сообщалось об использовании ⁹⁰Sr⁹⁰Y [6], однако в настоящее время большее распространение получают β -батареи на основе ¹⁴⁷Pm [7], ⁶³Ni или трития [3,7]. Сравнение активности, безопасности, доступности и стоимости изотопов показывает, что тритий — один из лучших кандидатов в качестве источника излучения. Он относится к нестабильным изотопам с достаточно большим (12.3 года) периодом полураспада, в процессе которого превращается в гелий и испускает

электроны с максимальной энергией 18.6 keV. Излучение низких энергий не приводит к заметной генерации дефектов в полупроводнике и деградации БВП. Максимальный пробег электронов на воздухе при распаде трития составляет 4.2 mm, поэтому при внешнем облучении тритий не представляет серьезной угрозы и не требует дополнительной биологической защиты (в отличие от ⁹⁰Sr или ¹⁴⁷Pm). Тритий характеризуется относительно низкой стоимостью и доступностью в виде тритий-титановой фольги и радиолюминесцентных тритиевых ламп (герметично запаянных и заполненных газообразным тритием стеклянных капсул, внутренняя поверхность которых покрыта люминофором).

В бета-вольтаических РИЭП используются преимущественно преобразователи на основе кремния [8,9] и полупроводников A^3B^5 [3,10], в которых существует возможность изменения ширины запрещенной зоны. Для БВП на основе кремния эффективность (η) теоретически может достигать ~ 15%, в AlGaAs/GaAs ~ 22%, в GaP ~ 24% [1].

В настоящей работе представлены результаты создания и исследования РИЭП на основе эпитаксиальных гетероструктур AlGaAs/GaAs с использованием тритиевых эмиттеров различного типа. БВП с ультратонкими фронтальными слоями были выращены методом эпитаксии из жидкой фазы при пониженной температуре кристаллизации (400–500°С). Приборная структура включала буферный слой *n*-GaAs, *p*–*n*-переход в Al_xGa_{1-x}As/GaAs (x = 0.1-0.35), ультратонкий широкозонный *p*-Al_{0.85}Ga_{0.15}As и контактный слой p^+ -GaAs, удаляемый в местах, свободных от фронтальной металлизации.

Рис. 1. Напряжение холостого хода (V_{oc}) и ток короткого замыкания (J_{sc}) БВП на основе гетероструктур Al_{0.1}Ga_{0.9}As $(S = 0.3 \text{ cm}^2)$ в зависимости от давления газообразного трития.

Таблица 1. Параметры помещенных в капсулу, заполненную газообразным тритием, БВП с *p*-*n*-переходом в Al_{0.15}Ga_{0.85}As и Al_{0.35}Ga_{0.65}As

Параметр	Значение			
Параметр	Активная область Al _{0.15} Ga _{0.85} As	Активная область Al _{0.35} Ga _{0.65} As		
Плотность фототока, μ A/cm ²	1.0	0.76		
Напряжение холостого хода V_{oc} , V	0.65	0.9		
Коэффициент заполнения ВАХ FF, %	78	79		
$\eta, \%$	5.4	5.9		

Табли	ца 2	. Параме	тры БВІ	Т при	облучении	различными	тритиевыми	источниками	излучени
-------	------	----------	---------	-------	-----------	------------	------------	-------------	----------

Источник β-излучения	Плотность фототока, nA/cm ²	Напряжение холостого хода, V	Плотность выходной мощности, nW/cm ²
Тритий-титановый твердотельный эмиттер	58	0.62	27
Капсулированный газообразный тритий Тритиевая лампа	760	0.91	560
зеленого (550 nm) свечения	180	0.79	100

Рис. 2. Зависимость КПД (1, 2) и плотности генерированного тока (3, 4) от толщины широкозонного слоя Al_{0.85}Ga_{0.15}As в БВП в случае тритий-титанового источника с мощностью $0.48 \,\mu$ W/cm². 1, 3 — структуры с p-n-переходом в Al_{0.25}Ga_{0.75}As без защитного покрытия, 2, 4 — с защитной пленкой ZnS (50 nm).

Рис. 3. Вольт-амперные характеристики (ВАХ) (1, 2) и зависимости мощность – напряжение (3, 4) в БВП на основе Al_{0.25}Ga_{0.75}As без защитного покрытия (1, 3) и с пленкой ZnS (2, 4) в случае тритий-титанового источника с мощностью излучения $0.48 \,\mu$ W/cm².

Исследовались три типа источников *β*-излучения:

- тритий-титановый диск с диаметром 1-1.5 cm;
- *β*-люминесцентные лампы зеленого свечения;
- капсулированный газообразный тритий.

В последнем случае БВП с активной площадью $S = 0.3 - 1.0 \text{ cm}^2$ помещался внутрь объема, заполненного тритием (в капсулу) до давления 1 - 2 atm. Плотность генерированного фототока при этом достигала $\sim 10^{-6} \text{ A/cm}^2$ (рис. 1).

В табл. 1 представлены выходные параметры помещенных в капсулу бета-вольтаических преобразователей с различающейся по содержанию алюминия активной областью. На лучших образцах с p-n-переходом в Al_{0.35}Ga_{0.65}As достигнуты значения КПД $\eta = 5.9\%$ и выходная удельная мощность $0.56 \,\mu$ W/cm².

Твердотельные тритий-титановые радиоактивные источники β-излучения генерируют значительно меньшую выходную электрическую мощность, чем при использовании газообразного трития (таблица 2). Характеристики БВП в случае тритий-титанового эмиттера показаны на рис. 2, 3. Как следует из представленных зависимостей, при плотности мощности β -излучения $0.48\,\mu W/cm^2$ с уменьшением толщины широкозонного слоя Al_{0.85}Ga_{0.15}As от $d \sim 100$ до 30 nm генерированный фототок возрастал в 1.5 раза. Нанесение на поверхность гетероструктуры защитной пленки ZnS (толщиной $\sim 50\,\mathrm{nm})$ приводило к уменьшению плотности генерируемого тока на 15-20 nA/cm² за счет "бесполезного" поглощения в слое ZnS (рис. 3, кривые 3, 4). В БВП с *p*-*n*-переходом в Al_{0.25}Ga_{0.75}As в случае тритийтитанового источника излучения получены плотность выходной электрической мощности 15-27 nW/cm² и КПД $\eta = 5.6\%$ (рис. 3).

Двухэтапное преобразование свечения активированных тритием люминофоров (табл. 2) может обеспечить достаточно высокую оптическую эффективность благодаря точной подстройке ширины запрещенной зоны фотоэлемента $Al_x Ga_{1-x} As/GaAs$ под длину волны источника, однако требует специальных мер по уменьшению потерь на накачку люминофора, а также минимизации самопоглощения в нем и рассеяния выходящего излучения, что в итоге снижает суммарный КПД.

Таким образом, проведенные исследования показывают, что наиболее перспективным типом тритиевых РИЭП, обеспечивающим максимальную выходную электрическую мощность и высокий суммарный КПД, являются капсулированные с газообразным тритием гетероструктурные элементы $Al_x Ga_{1-x} As/GaAs$ для прямого преобразования энергии β -частиц.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Olsen L.C. Review of betavoltaic energy conversion // Proc. 12th Space Photovoltaic Research and Technology Conf. Cleveland, 1992. P. 256–267.
- [2] Olsen L.C., Cabauy P., Elkind B.J. // Phys. Today. 2012. V. 65. N 12. P. 35–38.
- [3] Андреев В.М., Калиновский В.С., Ларионов В.Р., Стругова Е.О., Румянцев В.Д. // ФТП. 1994. Т. 28. В. 2. С. 338–342.
- [4] Kherani N.P., Shmayada W.T. // Z. Phys. Chem. 1994. V. 183.
 N 5. P. 453–463.
- [5] Хвостиков В.П., Калиновский В.С., Сорокина С.В., Шварц М.З., Потапович Н.С., Хвостикова О.А., Власов А.С., Андреев В.М. // ФТП. 2018. Т. 52. В. 13. С. 1647– 1650. DOI: 10.21883/FTP.2018.13.46881.8942
- [6] Rappaport P. // Phys. Rev. 1954. V. 93. P. 246–247.
- [7] Yakubova G.N. Nuclear batteries with tritium and promethium-147 radioactive sources. PhD thesis. University of Illinois at Urbana-Champaign, 2010. 162 p.
- [8] Deus S. Tritium-powered betavoltaic cells based on amorphous silicon // Conf. Record of the IEEE Photovoltaic Specialists Conf. IEEE, 2000. P. 1246–1249. DOI: 10.1109/PVSC.2000.916115
- [9] Kosteski T., Kherani N.P., Gaspari F., Zukotynski S., Shmayda W.T. // J. Vac. Sci. Technol. A. 1998. V. 16. P. 893– 896. DOI: 10.1116/1.581031
- [10] Войтович В., Гордеев А., Думаневич А. // Современная электроника. 2015. № 6. С. 10–17.