Перенос заряда в планарных структурах на основе халькогенидной системы (As₂Se₃)_{100-x}Bi_x

© Р.А. Кастро¹, С.Д. Ханин^{1,2}, А.П. Смирнов¹, А.А. Кононов^{1,¶}

¹ Российский государственный педагогический университет им. А.И. Герцена,

191186 Санкт-Петербург, Россия

² Военная академия связи им. Маршала Советского Союза С.М. Буденного,

194064 Санкт-Петербург, Россия

[¶] E-mail: rakot1991@mail.ru

Поступила в Редакцию 21 мая 2019 г. В окончательной редакции 1 июля 2019 г. Принята к публикации 10 июля 2019 г.

Представлены результаты исследования процессов переноса заряда в тонких слоях стеклообразной системы $(As_2Se_3)100 - xBi_x$. Обнаружена степенная зависимость удельной проводимости от частоты и уменьшение значения показателя степени *s* с ростом температуры. Перенос заряда является термически активированным процессом с наличием двух участков на температурной зависимости проводимости с энергиями активации $E_1 = 0.12 \pm 0.01$ и $E_2 = 0.23 \pm 0.01$ зВ соответственно. Полученные результаты объясняются в рамках СВН модели прыжковой проводимости в неупорядоченных системах. Проведен расчет основных микропараметров системы: плотности локализованных состояний (N), длины прыжка (R_{ω}) , максимального значения высоты потенциального барьера (W_M) .

Ключевые слова: стеклообразная система $(As_2Se_3)_{100-x}Bi_x$, диэлектрическая спектроскопия, удельная проводимость, гэп-структуры, рентгеноструктурный анализ.

DOI: 10.21883/FTP.2019.12.48623.9165

1. Введение

Комплексные халькогенидные стеклообразные полупроводники (ХСП) привлекают внимание исследователей в связи с их использованием в многочисленных компонентах и датчиках микро- и оптоэлектроники. Например, в настоящее время ХСП используются при изготовлении тепловых систем отображения [1], волокон и плоских волноводов, прозрачных в ИК диапазоне [2], в оптических сенсорах [3] и нелинейной оптике [4], являются перспективными для создания элементов солнечных батарей [5].

С точки зрения прикладного применения халькогенидных систем, важным является вопрос влияния различного рода примесей на их электрофизические свойства [6,7]. В работе [8], в которой приведен обзор ранних работ, посвященных изучению влияния примесей, вводимых методом синтеза, на электропроводность халькогенидных стеклообразных полупроводников (ХСП), сообщалось о невозможности легирования данных материалов. В теории Мотта-Губанова этот факт объяснялся тем, что в неупорядоченной структуре ХСП примесный атом имеет возможность использовать все свои валентные электроны для образования связей с соседними атомами. В последующем это утверждение было сформулировано, как "правило 8-№", суть которого заключается в том, что атом, имеющий N валентных электронов (при N > 4), всегда образует в стеклообразном состоянии валентные связи с 8-N соседями. Ввиду этого атомы примеси в неупорядоченной сетке стекла имеют возможность формировать все свои валентные 8-Л связи, становясь при этом электрически неактивными.

Вместе с тем ситуация кардинально меняется, если использовать неравновесный способ изготовления образцов. При радиочастотном (высокочастотном) сораспылении ХСП и примеси на холодную подложку (так назваемый способ модифицирования) удалось получить примесную проводимость. Более того, при увеличении концентрации вводимой примеси может происходить изменение типа проводимости. Перспектива получения новых полупроводниковых материалов, характеризующихся p- и n-типом проводимости, что в свою очередь создает предпосылки конструирования p-n-переходов на основе ХСП, стимулировала повышение интереса к изучению этих структур.

Цель данной работы состоит в выявлении особенностей процессов переноса заряда в гэп структурах на основе стеклообразной системы $(As_2Se_3)_{100-x}Bi_x$ методом диэлектрической спектроскопии (ДС). Метод ДС показал свою эффективность при анализе физических процессов, ответственных за формирование кинетических свойств диэлектрических материалов. Данный метод также может быть использован при структурном исследовании и контроле качества новых функциональных диэлектрических материалов [9–11].

2. Методика эксперимента

Известно, что использование сандвич-структур типа "металл-диэлектрик/высокоомный полупроводникметалл" для проведения фотоэлектрических измерений сопряжено с определенными технологическими трудностями, в частности, связанными с необходимостью

Рис. 1. Рентгенограмма образца системы $(As_2Se_3)_{100-x}Bi_x$.

Рис. 2. Элементный состав образцов системы $(As_2Se_3)_{100-x}Bi_x$, полученный на сканирующем электронном микроскопе Carl Zeiss EVO 40.

нанесения электродов. Этого недостатка лишены экспериментальные образцы, выполненные по планарной технологии в виде гэп-структур.

Планарные структуры Au- $(As_2Se_3)_{100-x}Bi_x$ -Au ($x = 2.5 \, at^{6}$), используемые для диэлектрических измерений, изготавливались методом высокочастотного распыления на установке ионно-плазменного высокочастотного распыления типа УРМ-3-021. Толщина слоев (As_2Se_3)_{100-x}Bi_x была измерена с помощью спектроэллипсометра ЭЛЬФ и составила ~ 1.0 мкм, а расстояние между электродами ~ 10.0 мм.

Исследование аморфности слоев осуществлялось методом рентгеноструктурного анализа на рентгеновском дифрактометре ДРОН-7 с параболическим зеркалом, предназначенным для формирования первичного параксиального пучка рентгеновских лучей. Для записи рентгенограммы использовалось монохроматическое рентгеновское излучение $CuK_{\alpha 1}$ с длиной волны $\lambda = 1.5406$ Å. На рис. 1 представлена рентгенограмма образца системы $(As_2Se_3)_{100-x}Bi_x$.

Приведенная рентгенограмма показывает, что исследованные образцы являются чисто аморфными с выраженными гало, обозначенными на рисунках углами 20. Согласно представлениям физики рентгеновых лучей гало на рентгенограммах является результатом интерфе-

Таблица 1. Элементный состав образцов системы $(As_2Se_3)_{100-x}Bi_x$ ($x = 2.5 \, \mathrm{ar\%}$)

Элемент	Атомная доля (%)
As	36.96
Se	60.47
Bi	2.57

ренции рентгеновских лучей, на двух каких-либо атомах, многократно повторяющихся в твердом теле на постоянном расстоянии *S* друг от друга [12]. По известным угловым положениям гало можно рассчитать межатомное расстояние *S* по формуле Керзома–Смита: $S = \frac{7.72\lambda}{4\pi \sin \theta}$, где θ — половина угла рассеяния 2θ , λ — длина волны падающего рентгеновского излучения, равная 1.5406 Å. Расчет значения величины межатомного расстояния по формуле Керзома–Смита дает значение S = 4.21 Å.

Исследование элементного состава образцов проводилось с использованием сканирующего электронного микроскопа (SEM) Carl Zeiss EVO 40 (рис. 2). Элементный состав образцов представлен в табл. 1.

Измерения температурно-частотных зависимостей составляющих комплексной диэлектрической проницаемости и удельной проводимости исследуемых слоев были выполнены на спектрометре "Concept-81" (Novocontrol Technologies GmbH), предназначенном для исследования диэлектрических и электрофизичских свойств широкого класса материалов. Измерения проводились в широком диапазоне частот ($f = 10^{-2} - 10^6 \, \Gamma \mu$) и температур ($T = 273 - 353 \, \text{K}$). Напряжение, подаваемое на образцы, составляло $U = 1 \, \text{B}$.

3. Результаты и обсуждение

На рис. 3 представлена дисперсия удельной проводимости исследуемых слоев, полученная в темновом режиме измерения для различных температур. Как следует из

Рис. 3. Частотная зависимость удельной проводимости σ' при разных температурах.

Рис. 4. Температурная зависимость показателя степени s.

рисунка, дисперсия σ' подчиняется степенному закону:

$$\sigma'(\omega) \sim A\omega^S,\tag{1}$$

что характерно для многих халькогенидных стеклообразных и аморфных полупроводников [13]. Здесь ω – угловая частота, А — независимая от частоты постоянная, s — показатель степени (s = 0.74...0.84) (рис. 4). Температурная зависимость *s* часто используется для исследования особенностей процессов переноса заряда в различных системах. Обнаруженная степенная зависимость проводимости от частоты (1) и уменьшение значения параметра *s* с ростом температуры, вероятно, обусловлены существованием прыжкового механизма проводимости. Согласно модели CBH (correlated barrier hopping model) [14], электроны совершают прыжки между энергетическими состояниями, преодолевая потенциальный барьер. При этом выражение для проводимости на переменном токе для конкретной фиксированной температуры имеет вид [15]

$$\sigma'(\omega) = \frac{\pi^3 N^2 \varepsilon \varepsilon_0 \omega R_\omega^6}{24}.$$
 (2)

Здесь N — плотность состояний, между которыми совершают прыжки носители заряда. Связь между длиной прыжка R_{ω} и высотой потенциального барьера выражается соотношением

$$R_{\omega} = \frac{e^2}{\pi\varepsilon\varepsilon_0} \left[W_M - kT \ln\left(\frac{1}{\omega\tau_0}\right) \right]^{-1}, \qquad (3)$$

где τ_0 — характеристическое время релаксации — величина, обратная фононной частоте ν_{ph} . С другой стороны, показатель степени *s* связан с высотой барьера W_M через выражение:

$$s = 1 - \frac{6kT}{W_M}.$$
 (4)

На основе полученных экспериментальных данных, пользуясь уравнениями (1)-(4), можно оценить значение параметров системы N, R_{ω} и W_M при разных температурах (см. табл. 2, рис. 5).

Таблица 2. Значение параметров переноса заряда в тонких слоях стеклообразной системы Ge_{28.5}Pb₁₅S_{56.5}

Τ,Κ	S	<i>N</i> , м ⁻³	$R_{\omega}, \mathrm{\AA}$	$W_M,$ эВ
273	0.84	$3.395\cdot 10^{26}$	2.870	0.896
293	0.82	$2.389 \cdot 10^{26}$	3.392	0.868
313	0.80	$1.674 \cdot 10^{26}$	4.082	0.845
333	0.77	$4.684 \cdot 10^{25}$	6.751	0.770
353	0.74	$4.913 \cdot 10^{24}$	15.671	0.713

По виду температурной зависимости удельной проводимости σ' (рис. 6) можно сделать вывод о том, что перенос заряда в исследуемых структурах является термически активированным процессом с наличием двух участков на температурной зависимости проводимости с энергиями активации $E_1 = 0.12 \pm 0.01$ и $E_2 = 0.23 \pm 0.01$ эВ соответственно. Существование двух участков на температурной зависимости проводимости, по-видимому, может быть связано с особенностями энергетического спектра локализованных состояний, а именно наличием выделенных значений энергии. Можно предположить, что полученная температурная

Рис. 5. Температурная зависимость длины прыжка R_{ω} , рассчитанной по формуле (6).

Рис. 6. Температурная зависимость удельной проводимости σ' на частоте $f = 10^3$ Гц.

Физика и техника полупроводников, 2019, том 53, вып. 12

зависимость проводимости отражает электронные, а не атомарные процессы в исследованном материале, так как температура стеклования данных соединений находится за пределами исследуемого интервала температур.

Модель СВН предполагает, что перенос заряда осуществляется посредством прыжков электронов через потенциальный барьер W между двумя локализованными состояниями (центрами равновесия). При этом высота барьера между двумя центрами определяется кулоновским взаимодействием между соседними дефектными состояниями, в роли которых могут выступать заряженные дефекты типа D^+ и D^- , образующие диполь. В случае стеклообразной системы $(As_2Se_3)_{100-x}Bi_x$ обмен электронами может осуществляться между заряженными центрами, обусловленными как дефектами собственной структуры стекла, так и дефектами, связанными с введением примеси в матрицу стекла.

Известно, что структура псевдобинарной системы $(As_2Se_3)_{100-x}Bi_x$ характеризуется тем, что при малых концентрациях атомы Bi внедряются в сетку исходной матрицы аморфной структуры как заряженные центры. В данном случае заряженными центрами могут быть как дефекты собственной структуры стекла, как и дефекты, связанные с введением примеси в матрицу стекла. Некоторые авторы предполагают, что висмут, внедряясь в исходную матрицу аморфной структуры триселенида мышьяка, создает заряженные центры Bi_3^+ или(и) Bi_4^+ (последние по аналогии с As_4^+ [16]. При этом внутреннее устройство исходного состава не претерпевает кардинальных изменений.

При больших концентрациях примеси Ві $(x = 2.5 \, \text{ат}\%)$ в системе возможно появление в основной матрице стекла микронеоднородных областей с повышенной концентрацией примеси [17]. Эти области (кластеры) состава Bi₂Se₃ имеют более узкую запрещенную зону [8] и характеризуются более высокой координированностью атомов по сравнению с матрицей.

Можно предположить, что появление кластеров обусловливает резкое увеличение значения параметра R_{ω} и существование второго участка на температурной зависимости проводимости. Согласно авторам [18], при температурах ниже 300 К в кристаллах Bi₂Se₃ проявляется металлическая проводимость, при нагреве выше этой температуры начинается полупроводниковый участок, меняющий характер общего переноса заряда системы. Данное изменение проявляется в увеличении энергии активации удельной проводимости.

Хорошее совпадение экспериментальных данных с результатами анализа СВН модели позволяет сделать вывод о том, что в тонких пленках исследуемой халькогенидной системы в области низких частот осуществляется прыжковый перенос носителей заряда между локализованными состояниями в запрещенной зоне.

4. Заключение

Таким образом, степенной характер частотной зависимости удельной проводимости при разных температурах, а также уменьшение значения показателя степени *s* с ростом температуры в системе $(As_2Se_3)_{100-x}Bi_x$, позволяют сделать вывод о существовании прыжкового механизма переноса заряда в рамках модели СВН. Можно предположить, что появление кластеров Bi_2Se_3 в матрице стекла обусловливает резкое увеличение значения параметра R_{ω} и существование второго участка на температурной зависимости удельной проводимости.

Финансирование работы

Работа выполнена при поддержке Министерство образования и науки РФ в рамках выполнения государственного задания (проект № 16.2811.2017/ПЧ).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- D. Cha., H. Kim., Y. Hwang., J. Jeong., J. Kim. Appl. Optics, 51 (23), 5649 (2012).
- [2] G.E. Snopatin., V.S. Shiryaev, V.G. Plotnichenko, E.M. Dianov, M.F. Churbanov. Inorg. Mater., 45 (13), 1439 (2009).
- [3] J. Charrier, M.L. Brandily, H. Lhermite, K. Michel, B. Bureau, F. Verger, V. Nazabal. Sensors Actuators B: Chem., 173, 468 (2012).
- [4] B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, B. Luther-Davies. J. Am. Ceramic Soc., 98 (5), 1389 (2015).
- [5] S. Kurmar, B.R. Mehta, S.C. Kashyap, K.L. Chopra. Appl. Phys. Lett., 52 (1), 24 (1988).
- [6] R.A. Castro, F.S. Nasredinov. Glass Phys. and Chem., 32 (4), 412 (2006).
- [7] R.A. Castro, S.A. Nemov, P.P. Seregin. Semiconductors, 40 (8), 898 (2006).
- [8] Л.П. Казакова, Э.А. Лебедев, Э.А. Сморгонская, К.Д. Цэндин. Электронные явления в халькогенидных стеклообразных полупроводниках, под ред. К.Д. Цэндина (СПб., Наука, 1996).
- [9] R.A. Castro, V.A. Bordovsky, N.I. Anisimova, G.I. Grabko. Semiconductors, **43** (3), 365 (2009).
- [10] R.A. Castro, V.A. Bordovsky, G.I. Grabko. Glass Phys. and Chem., 35 (1), 43 (2009).
- [11] N.I. Anisimova, V.A. Bordovsky, G.A. Bordovsky. Rad. Eff. Def. Solids, 156 (1), 359 (2002).
- [12] М.И. Корсунский. Физика рентгеновых лучей (М.-Л., ОНТИ, 1936).
- [13] N.F. Mott, E.A. Davis. *Electronic Processes in non-crystalline Materials*. (Calendon Press, Oxford, 1979).
- [14] S.R. Elliot. Adv. Phys., 36 (2), 135 (1987).
- [15] I.G. Austin, N.F. Mott. Adv. Phys., 18 (71), 41 (1969).
- [16] M. Saiter, T. Derrey, C. Vautier. J. Non-Cryst. Sol., 77–78, 1169 (1985).
- [17] Б.Л. Гельмонт, К.Д. Цэндин. ФТП, 6, 1040 (1983).
- [18] D.B. Hyun, J.S. Hwang, B.C. You. J. Mater. Sci., 33, 5595 (1998).

Редактор Г.А. Оганесян

Charge transfer in gap structures based on chalcogenide system $(As_2Se_3)_{100-x}Bi_x$

R.A. Castro¹, S.D. Khanin^{1,2}, A.P. Smirnov¹, A.A.Kononov¹

 ¹ Herzen State Pedagogical University of Russia, 191186 St. Petersburg, Russia
² Budyonny Military Academy of Communications, 194064 St. Petersburg, Russia

Abstract The results of the investigations of the charge transfer processes in the thin layers of the $(As_2Se_3)_{100-x}Bi_x$ chalcogenide system are presented. The power-law dependence of the specific conductivity on frequency and a decreasing of the power exponent s value with increasing temperature were found. The charge transfer is a thermally activated process with the presence of two regions on the temperature dependence of the conductivity with the activation energy $E_1 = 0.12 \pm 0.01$ eV and $E_2 = 0.23 \pm 0.01$ eV respectively. These results are explained within the CBH model of the hopping conductivity in disordered systems. The calculation of the basic microparameters of this system, namely, the density of localized states (*N*), the hopping length (R_{ω}), the maximum value of the potential barrier height (W_M), was made.