Размерный эффект в нанокристаллических манганитах $La_{1-x}A_xMnO_3$ (A = Ag, Sr)

© А.Е. Теплых, С.Г. Богданов, Э.З. Валиев, А.Н. Пирогов, Ю.А. Дорофеев, А.А. Остроушко*, А.Е. Удилов*, В.А. Казанцев, А.Е. Карькин

Институт физики металлов Уральского отделения Российской академии наук, 620219 Екатеринбург, Россия *Институт физики и прикладной математики Уральского государственного университета, 620083 Екатеринбург, Россия

E-mail: pirogov@uraltc.ru

(Поступила в Редакцию 25 февраля 2003 г. В окончательной редакции 20 мая 2003 г.)

Методом пиролиза синтезированы нанокристаллические образцы манганитов La_{0.9}Ag_{0.1}MnO₃, La_{0.7}Ag_{0.3}MnO₃ и La_{0.7}Sr_{0.3}MnO₃ и проведены изотермические отжиги. С помощью магнитных, рентгено- и нейтронографических измерений исследованы атомная, субатомная и магнитная структуры этих манганитов. Повышение температуры отжига от 600 до 1200°C вызывает укрупнение частиц от 30–40 до 600–700 nm. Все исследованные образцы имеют ромбоэдрическую структуру и являются ферромагнетиками. Температура Кюри образцов, допированных серебром, понижается, а образцов, допированных стронцием, повышается с ростом температуры отжига. Во всех трех системах намагниченность ионов Mn увеличивается с ростом размеров наночастиц, т. е. имеет место размерный эффект.

Работа поддержана Российским фондом фундаментальных исследований и правительством Свердловской области (гранты РФФИ № 00-02-16211 и РФФИ-Урал № 01-02-96412) и программой "Нейтронные исследования конденсированных сред" (ГК 40.012.1.1.11.50).

В настоящее время интенсивно изучаются манганиты типа $La_{1-x}A_xMnO_3$ с колоссальным магнитосопротивлением (см., например, [1,2]). Исследования, выполненные на керамических и монокристаллических образцах, позволили обнаружить ряд ярких свойств этих манганитов: зарядовое, орбитальное и спиновое упорядочение, переход типа металл-изолятор и т.д. Установлена корреляция между параметрами, описывающими кристаллическую структуру манганитов, и параметрами, характеризующими их магнитные свойства. В частности, было показано, что величина температуры Кюри (T_c) зависит от угла связи Mn–O–Mn ($\theta_{Mn-O-Mn}$).

Магнитосопротивление манганитов связывают [3] с тремя процессами рассеяния носителей заряда. Один из них — критическое рассеяние на флуктуациях намагниченности — вносит главный вклад в магнитосопротивление при температурах, близких к Т_С. Два других процесса — межзеренное и внутризеренное рассеяние существенны при $T < T_C$. Межзеренное рассеяние реализуется на доменных стенках, совпадающих, как правило, с границами зерен. Это рассеяние отсутствует в совершенных монокристаллах [4] и наблюдается в микрокристаллических образцах уже при небольшом внешнем поле, его механизм связан, вероятно, с междоменным туннелированием носителей [5]. Внутризеренное рассеяние наблюдается при более высоких полях и связано с упорядочением магнитных моментов, образующих в отсутствие поля состояние типа спинового стекла. Этот эффект связан, по-видимому, с повышенной дефектностью кристаллической (и магнитной) структуры внутри зерна.

Поэтому для выяснения механизма эффекта колоссального магнитосопротивления в манганитах целесообразно изучить нанокристаллические образцы, в которых размер частиц сравним с размером домена. Нанокристаллические манганиты представляют интерес и с практической точки зрения, так как они по сравнению с керамическими образцами имеют более высокие значения низкополевого магнитосопротивления [6] и, следовательно, могут быть основной для магнитных сенсоров.

Результаты пока немногочисленных исследований нанокристаллических манганитов показывают, что их свойства могут существенно изменяться при уменьшении размеров частиц. Например, образцы La_{2/3}Sr_{1/3}MnO₃, имеющие размеры частиц $L = 30 \,\mathrm{nm}$ и менее, не обнаруживают [6] в отличие от соответствующих керамических образцов металлической проводимости. Согласно [7], спонтанная намагниченность (σ) манганита La_{0.85}Sr_{0.15}MnO₃ увеличивается примерно в 2 раза при уменьшении L от 1000 до 20 nm. Напротив, понижение величины σ примерно в 2 раза наблюдалось в нанокристаллических манганитах $La_{1-x}A_xMnO_3$ (где A = Ca, Sr, $x \approx 0.3$) [7,8]. В [7] сделан вывод, что рост величин σ и T_C в нанокристаллическом La_{0.85}Sr_{0.15}MnO₃ и понижение их в La_{0.65}Sr_{0.35}MnO₃ связаны с изменением угла $\theta_{Mn-Q-Mn}$. Значения этого угла были рассчитаны для образцов, отожженных при разных температурах, причем учитывалось лишь изменение параметров решетки при изменении температуры отжига. Возможным изменением координат атомов кислорода пренебрегалось, поскольку нейтронографические измерения в [7] не проводились. Другое мнение о причинах изменения σ было высказано в [8]. Согласно данным этой работы, понижение σ в La_{0.67}Ca_{0.33}MnO₃ могло быть связано с увеличением объемной доли аморфной фазы, существующей в нанокристаллических образцах при невысоких температурах отжига.

В настоящей работе мы предприняли попытку установить зависимость величины магнитного момента и угла связи Mn-O-Mn от размера наночастиц в манганитах $La_{1-x}Ag_xMnO_3$ с x = 0.1, 0.3 и $La_{0.7}Sr_{0.3}MnO_3$, используя данные по дифракции нейтронов. Отметим, что нам неизвестны нейтронографические исследования магнитного состояния нанокристаллических манганитов.

1. Образцы и методика эксперимента

Исходные нанокристаллические манганиты $La_{1-x}Ag_xMnO_3$ с x = 0.1, 0.3 и $La_{0.7}Sr_{0.3}MnO_3$ были синтезированы методом пиролиза. Навески нитратов лантана и серебра (стронция в случае La_{0.7}Sr_{0.3}MnO₃) растворялись при нагревании в 10 wt% растворе поливинилового спирта и добавлялось необходимое количество раствора нитрата марганца. Полученный раствор упаривался, а образовавшийся твердый продукт прокаливался для завершения процесса синтеза и последующего спекания. Все образцы были приготовлены из одного и того же раствора. Для изменения размеров частиц проводился отжиг в течение 4h при температурах от $T_{\rm an} = 600$ до 1200°C в случае образцов, допированных серебром, и от 700 до 1300°С в случае образцов, допированных стронцием. Чтобы обеспечить постоянную величину кислородной нестехиометрии в разных образцах, проводился нормализующий отжиг при 700°С.

Для структурной аттестации использовались рентгенограммы, полученные с помощью дифрактометра ДРОН-УМ-1 с Си K_{α} -излучением, отфильтрованным кристаллом пирографита на дифрагированном пучке, при 293 К. Измерения намагниченности образцов La_{0.9}Ag_{0.1}MnO₃ проводились на СКВИД-магнитометре MPMSR5-XL (Quantum Design). Температуры Кюри манганитов La_{0.7}Ag_{0.3}MnO₃ и La_{0.7}Sr_{0.3}MnO₃ определялись по данным *ac*-восприимчивости в поле 10 Ое при частоте 1 kHz.

Нейтронографические измерения выполнялись на дифрактометрах Д-2 и Д-3 с длиной волны нейтронов $\lambda = 0.180$ и 0.243 nm соответственно. Для расчета рентгено- и нейтронограмм использовалась программа Fullprof [9].

Размер частиц определялся с помощью сканов малоуглового рассеяния нейтронов, полученных на дифрактометре Д-6 с $\lambda \approx 0.45$ nm. Для пересчета измеренных интенсивностей в поперечные сечения использовалось оргстекло. Дифрактометры Д-2, Д-3 и Д-6 были установлены на горизонтальных каналах реактора ИВВ-2М.

2. Экспериментальные результаты

2.1. Кристаллическая структура при 293 К. Полученные при 293 К экспериментальные рентгенограммы нанокристаллических образцов La_{0.9}Ag_{0.1}MnO₃, La_{0.7}Ag_{0.3}MnO₃ и La_{0.7}Sr_{0.3}MnO₃ подобны. Из расчета рентгенограмм установлено, что все исследованные нами манганиты обладают ромбоэдрической структурой (пространственная группа $R\bar{3}c$). Рентгенограммы образцов, допированных серебром, содержали помимо рефлексов основной фазы слабые рефлексы, обусловленные рассеянием от металлического серебра. К сожалению, нам не удалось определить истинное содержание серебра в манганитах. Проведенные оценки позволили сделать лишь качественный вывод, что основная фаза в La_{0.7}Ag_{0.3}MnO₃ содержит серебра больше, чем в La_{0.9}Ag_{0.1}MnO₃.

На рис. 1 показана зависимость параметров a и c элементарной ячейки (используется гексагональная установка группы $R\bar{3}c$) от температуры отжига для трех групп образцов. Видно, что во всех образцах увеличение температуры $T_{\rm an}$ вызывает некоторое расширение решетки в базисной плоскости и, напротив, ее сжатие вдоль гексагональной оси. Относи-

Рис. 1. Параметры и объем элементарной ячейки манганитов La_{0.9}Ag_{0.1}MnO₃ (I), La_{0.7}Ag_{0.3}MnO₃ (2) и La_{0.7}Sr_{0.3}MnO₃ (3) в зависимости от температуры отжига.

Характеристики наночастиц манганитов $La_{0.9}Ag_{0.1}MnO_3$, $La_{0.7}Ag_{0.3}MnO_3$ и $La_{0.7}Sr_{0.3}MnO_3$, определенные по данным малоуглового рассеяния нейтронов

$T_{\rm an},^{\circ}{\rm C}$	La _{0.9} Ag _{0.1} MnO ₃			La _{0.7} Ag _{0.3} MnO _{0.3}			La _{0.7} Sr _{0.3} MnO ₃		
	D_S	L, nm	c^*	D_S	L, nm	c^*	D_S	L, nm	c^*
600	2	36	0.16	2.5	36	0.16	-	_	_
700	2	36	0.16	2.3	33	0.19	2.1	30	0.22
800	2.1	60	0.15	2.1	36	0.12	2.1	50	0.14
900	2.1	60	0.09	2.1	60	0.12	2.1	60	0.10
1000	2.2	400	0.14	2.3	400	0.15	2.1	140	0.11
1100	2.2	400	0.14	2.4	400	0.11	2.1	180	0.18
1200	2	600	0.17	2.4	700	0.14	2	200	0.16
1300	-	-	—	—	-	—	2	300	0.12

Примечание. D_S — фрактальная размерность поверхности, L — размер частиц, c^* — объемная доля частиц твердой фазы.

тельные величины этих изменений решетки примерно равны: $\Delta a/a \approx \Delta c/c \approx 0.2\%$. В целом это приводит к некоторому увеличению объема элементарной ячейки ($\Delta V/V \approx 0.5\%$) с ростом $T_{\rm an}$. Из рис. 1 видно также, что допирование серебром несколько уменьшает параметр a и увеличивает параметр c.

2.2. Малоугловое рассеяние нейтронов. Для определения размеров частиц в исследуемых нами нанокристаллических образцах были измерены сканы малоуглового рассеяния нейтронов. Полученные кривые рассеяния хотя и имели один характер зависимости интенсивности от угла рассеяния, но в то же время несколько различались по величине сечения, форме кривых и их наклону. Они отражают различия в размере и концентрации частиц, а также в свойствах их поверхности. При $q > 0.5 \,\mathrm{nm^{-1}}$ экспериментальные точки описываются законом $d\Sigma/d\Omega \sim q^{-n}$, где $d\Sigma/d\Omega$ поперечное сечение рассеяния единичным объемом образца, $q = 4\pi \sin \theta / \lambda$, θ — угол рассеяния. Если известна величина показателя *n*, можно определить размерность поверхности D_S наночастиц, поскольку $D_S = 6 - n$. Полученные значения D_S приведены в таблице. Отличие значения D_S от 2 указывает на фрактальную (шероховатую) поверхность наночастиц. Как видно из таблицы, образцы La_{0.7}Ag_{0.3}MnO₃ имеют отчетливо выраженную фрактальную поверхность. Для описания экспериментальных кривых $d\Sigma/d\Omega = f(q)$ мы использовали формулу Дебая-Порода [10]

$$\frac{d\Sigma}{d\Omega} = \frac{8\pi\rho^2 c^* r^3}{(1+A(qr)^2)^{\frac{6-D_S}{2}}},$$
(1)

где *А* — интерполяционный коэффициент, определяемый следующим выражением:

$$A^{\frac{6-D_S}{2}} = \frac{2}{\Gamma(5-D_S)\sin\left(\frac{\pi}{2}(D_S-1)\right)},$$
 (2)

 ρ — плотность амплитуды рассеяния нейтронов, r — радиус корреляции, c^* — объемная доля рассеивающих частиц, $\Gamma(x)$ — гамма-функция.

В результате процедуры подгонки кривых, рассчитанных с помощью соотношений (1), (2), к экспериментальным кривым $d\Sigma/d\Omega = f(q)$ были получены размеры частиц L = 2r и объемная доля рассеивающих частиц (табл. 1). Видно, что размер частиц относительно слабо изменяется с ростом T_{an} от 600 до 900°С и резко увеличивается при повышении T_{an} от 900 до 1000°С.

2.3. Магнитные измерения. На рис. 2 приведена температурная зависимость намагниченности образцов La_{0.9}Ag_{0.1}MnO₃, измеренная во внешнем поле 100 Oe. Хорошо видно, что намагниченность образцов, отожкенных при температурах $T_{\rm an} \leq 900^{\circ}$ С, исчезает при более высоких температурах, чем в случае образцов с $T_{\rm an} \geq 1000^{\circ}$ С. Принимая за величину T_C точку перегиба на кривой $\sigma(T)$, получаем, что в первом случае $T_C \approx 130$ K, во втором $T_C \approx 90$ K. Температуры Кюри всех исследованных нами образцов представлены на рис. 3. Видно, что в отличие от поведения T_C в La_{0.9}Ag_{0.1}MnO₃ в допированном стронцием образце величина T_C увеличивается с ростом $T_{\rm an}$.

На рис. 3 приведена также зависимость спонтанного магнитного момента на ион Mn (μ_{Mn}) от температуры отжига для манганитов La_{0.9}Ag_{0.1}MnO₃. Видно, что μ_{Mn} монотонно увеличивается с повышением T_{an} .

2.4. Основное магнитное состояние. В качестве примера на рис. 4 показаны измеренные при 4.2 К нейтронограммы образцов La_{0.9}Ag_{0.1}MnO₃ отожженных при $T_{an} = 600$ и 1200°С. Различие в интенсивностях рефлексов связано в основном с различием в насыпной плотности образцов (примерно в 5 раз). Все исследованные нами нанокристаллические манганиты при 4.2 К имеют ромбоэдрическую структуру. Магнитная элементарная ячейка совпадает по размеру с кристаллической, что указывает на волновый вектор магнитной структуры $\mathbf{k} = 0$. Магнитные моменты Мп-ионов (μ_{Mn}) ориентированы ферромагнитно по отношению друг к другу и параллельно плоскости a-b. Зависимость величины момента μ_{Mn} от температуры отжига представлена на рис. 3. Видно, что с повышением температу-

Рис. 2. Температурные зависимости намагниченности образцов $La_{0.9}Ag_{0.1}MnO_3$, измеренные в поле 100 Ос. T_{an} , °С: I = 600, 2 = 700, 3 = 800, 4 = 900, 5 = 1000, 6 = 1100, 7 = 1200.

Физика твердого тела, 2003, том 45, вып. 12

Рис. 3. Угол связи Mn–O–Mn (*a*), средний магнитный момент иона Mn (*b*) и температура Кюри (*c*) для манганитов La_{0.9}Ag_{0.1}MnO₃ (*I*) (светлые кружки — нейтронографические данные, темные — результаты магнитных измерений), La_{0.7}Ag_{0.3}MnO₃ (*2*) и La_{0.7}Sr_{0.3}MnO₃ (*3*) в зависимости от температуры отжига.

Рис. 4. Измеренные при 4.2 К (точки) и расчетные (линии) нейтронограммы образцов $La_{0.9}Ag_{0.1}MnO_3$, отожженных при 600 (*a*) и 1200°С (*b*). Штрихи указывают угловые положения рефлексов.

ры T_{an} момент μ_{Mn} , как и σ , монотонно увеличивается. Рост величины μ_{Mn} при повышении T_{an} наблюдается и для двух других групп образцов — La_{0.9}Ag_{0.3}MnO₃ и La_{0.9}Sr_{0.3}MnO₃.

3. Обсуждение результатов

Исследованные в настоящей работе нанокристаллические образцы синтезированы методом пиролиза, тогда как в [7] использовался золь-гель метод. Тем не менее полученная нами зависимость размера наночастиц La_{0.7}Sr_{0.3}MnO₃ от температуры отжига хорошо согласуется с установленной в [7] для манганита La_{0.65}Sr_{0.35}MnO₃. Это позволяет считать, что процесс укрупнения частиц в манганитах La_{1-x}Sr_xMnO₃ с $x \approx 0.3$ слабо зависит от метода синтеза наночастиц. С другой стороны, как видно из таблицы, повышение температуры отжига допированных серебром нанокристаллических образцов вызывает (при T_{an} > 900°C) значительно более интенсивный рост размера частиц, чем в случае допированных Sr образцов. Это указывает на зависимость процесса укрупнения наночастиц от допирующего элемента. Возможно, что допирующий элемент влияет и на формирование поверхности наночастиц, поскольку значения размерности D_S в манганитах La_{0.7}Ag_{0.3}MnO₃ и La_{0.7}Sr_{0.3}MnO₃ существенно различаются.

Как показано выше, наши образцы La_{0.7}Sr_{0.3}MnO₃, отожженные при $T_{an} = 700-1300^{\circ}$ С, содержат лишь одну фазу — ромбоэдрическую. Для этого интервала температур T_{an} исследованные в [7] образцы La_{0.65}Sr_{0.35}MnO₃ претерпевали изменение структурного состояния от орторомбической фазы до сосуществования орторомбической и ромбоэдрической фаз. Различие в структурных состояниях исследованных в настоящей работе и в [7] образцов может быть связано с кислородной нестехиометрией Z (обозначение взято из [7]). Полученные из расчета нейтронограмм оценки величины Z показывают, что в наших образцах Z немного больше трех ($Z \approx 3.06(7)$), тогда как в [7] изучались кислородно-дефицитные образцы ($Z \approx 2.99$).

Наблюдаемое нами увеличение объема элементарной ячейки (рис. 1) с ростом температуры *T*_{an} согласуется с распространенным мнением о расширении кристаллической решетки наночастиц с ростом их размера.

Как следует из рис. 3, в образцах, допированных серебром, величина T_C увеличивается с ростом концентрации допанта. Подобное поведение T_C наблюдается в керамических образцах, допированных, например, кальцием или стронцием, и объясняется увеличением числа ферромагнитно взаимодействующих пар $Mn^{4+}-Mn^{3+}$. По-видимому, это справедливо и в нашем случае. Более высокие значения T_C в образцах, допированных стронцием, чем в серебросодержащих манганитах, можно объяснить наличием в первых большего числа пар $Mn^{4+}-Mn^{3+}$.

В трех группах нанокристаллических образцов средний магнитный момент ионов Mn (рис. 3), а следовательно, и намагниченность увеличиваются с ростом температуры отжига, т.е. с ростом размера наночастиц. Такое поведение намагниченности наблюдалось ранее в манганитах La_{0.65}Sr_{0.35}MnO₃ [7] и La_{0.67}Ca_{0.33}MnO₃ [8]. Рост намагниченности при укрупнении наночастиц наблюдался и при исследованиях, например, оксидных систем NiFe₂O₄ [11] и CoFe₂O₄ [12]; по мнению авторов этих исследований, он обусловлен неколлинеарностью спинов на поверхности частиц. Уменьшение величины σ с ростом размеров наночастиц было обнаружено в случае La_{0.85}Sr_{0.15}MnO₃ [7].

Основываясь на модели двойного обмена, авторы работы [7] предположили, что поведение спонтанной намагниченности (как и величины T_C) нанокристаллических образцов обусловлено зависимостью угла связи Мп–О–Мп от $T_{\rm an}$. В модели двойного обмена [12] величина ферромагнитных взаимодействий растет с шириной перекрытия e- и p_{σ} -орбиталей Мп- и О-ионов соответственно

$$W \approx \nu^2 \cos \phi \cos(\theta_{ij}/2), \tag{3}$$

где ν — параметр ковалентности, $(2\pi - \phi) = \theta_{Mn-O-Mn}$, θ_{ij} — угол между спинами ближайших ионов Мп. Поскольку в [7] координаты ионов О не уточнялись, изменение угла $\theta_{Mn-O-Mn}$ было обусловлено изменением межатомных расстояний с ростом T_{an} . Если угол связи Мп-O-Мп увеличивается с ростом T_{an} , то следует ожидать и повышения величины T_C , как это имеет место в La_{0.65}Sr_{0.35}MnO₃. Уменьшение же этого угла с температурой T_{an} вызывает понижение T_C , что происходит в La_{0.85}Sr_{0.15}MnO₃.

С этих позиций мы попытались объяснить зависимости $\mu_{Mn}(T_{an})$ и $T_C(T_{an})$, полученные для нанокристаллических La_{0.9}Ag_{0.1}MnO₃, La_{0.7}Ag_{0.3}MnO₃ и La_{0.7}Sr_{0.3}MnO₃. На рис. 3 представлена зависимость угла $\theta_{Mn-O-Mn}$, рассчитанная для этих трех групп образцов на основе рентгено- и нейтронографических данных. Видно, что в случае манганитов, допированных серебром, имеется корреляция в зависимостях величин T_C и угла $\theta_{Mn-O-Mn}$: с ростом T_{an} обе величины уменьшаются в La_{0.9}Ag_{0.1}MnO₃ и обнаруживают небольшой максимум в La_{0.7}Ag_{0.3}MnO₃. С другой стороны, повышение T_{an} в системе образцов La_{0.7}Sr_{0.3}MnO₃ сопровождается ростом T_C , хотя угол $\theta_{Mn-O-Mn}$ уменьшается. Не исключено, что в последней системе понижение Т_С за счет уменьшения угла $\theta_{Mn-O-Mn}$ перекрывается ростом T_C вследствие уменьшения угла θ_{ii} с повышением температуры отжига. Такое предположение можно сделать, например, в соответствии с полученным в [13] выводом о неколлинеарности спинов на поверхности наночастиц. Поскольку число ближайших соседей для ионов Mn на поверхности наночастиц меньше, чем их число внутри частиц, среднее значение угла θ_{ii} для магнитных моментов ионов на поверхности должно быть больше, чем для ионов внутри частиц. С повышением T_{an} (а следовательно, с увеличением размеров наночастиц) вклад от "внутренних" магнитных моментов растет быстрее, чем вклад от "поверхностных" моментов, что и сопровождается уменьшением среднего значения θ_{ij} . Уменьшение θ_{ij} должно приводить к росту намагниченности ионов Mn, что, как видно из рис. 3, действительно происходит в исследованных нами группах образцов. Это дает основания полагать, что увеличение намагниченности связано с укрупнением наночастиц, т.е. имеет место размерный эффект.

Манганиты La_{0.7}Sr_{0.3}MnO₃, отожженные при высоких T_{an} , имеют значения намагниченности и, следовательно, μ_{Mn} , близкие к наблюдаемым в керамических образцах [2]. Более низкие значения μ_{Mn} в системе La_{0.7}Sr_{0.3}MnO₃ по сравнению с μ_{Mn} в La_{0.7}Ag_{0.3}MnO₃ можно объяснить бо́льшим содержанием ионов Mn⁴⁺ в образцах первой системы. Повышение концентрации ионов Mn⁴⁺ увеличивает число как ферромагнитных (Mn³⁺-Mn⁴⁺), так и антиферромагнитных (Mn⁴⁺-Mn⁴⁺) пар. Поэтому начиная с некоторой концентрации ионов Mn⁴⁺, влияние антиферромагнитных Mn⁴⁺-Mn⁴⁺-пар станет преобладающим, и это приведет к понижению намагниченности.

Итак, исследованные нанокристаллические манганиты La_{0.9}Ag_{0.1}MnO₃, La_{0.7}Ag_{0.3}MnO₃ и La_{0.7}Sr_{0.3}MnO₃ кристаллизуются в ромбоэдрическую структуру и имеют при 4.2 К коллинеарную ферромагнитную структуру с $\mathbf{k} = 0$. Средний магнитный момент иона марганца увеличивается с ростом размера наночастиц, что, возможно, связано с неколлинеарностью спинов ионов Mn на поверхности частиц.

Список литературы

- [1] Ю.А. Изюмов, Ю.Н. Скрябин. УФН 171, 2, 121 (2001).
- [2] J.M.D. Coey, M. Viret, S. Von Monlar. Adv. Phys. 48, 2, 167 (1999).
- [3] А.Е. Карькин, Д.А. Шулятев, А.А. Арсенов, В.А. Черепанов, Е.А. Филонова. ЖЭТФ 116, 2 (8), 671 (1999).
- [4] H.Y. Hwang, S.-W. Cheong, N.P. Ong, B. Batlog. Phys. Rev. Lett. 77, 2041 (1996).
- [5] M. Auslender, A.E. Kar'kin, E. Rozenberg, G. Gorodetsky. J. Alloys Comp. 314, 163 (2000).
- [6] M.B. Salamon, M. Jaime. Rev. Mod. Phys. 73, 583 (2001).
- [7] N. Zhang, W. Yang, W. Ding, D. Xing, Y. Du. Solid State Commun. 109, 537 (1999).
- [8] R.D. Sanchez, J. Rivas, C. Vazquez-Vazquez, A. Lopez-Quintela, M.T. Causa, M. Tovar, S. Oseroff. Appl. Phys. Lett. 68, 1, 134 (1996).
- [9] J. Rodriguez-Carvayal. Physica B 192, 55 (1993).
- [10] P. Debye, H.R. Andreson, H. Brumberger. J. Appl. Phys. 28, 679 (1957).
- [11] R.N. Panda, J.C. Shin, T.S. Chin. J. Magn. Magn. Mater. 257, 79 (2003).
- [12] J. Topfer, J.B. Godenough. J. Sol. State Chem. 130, 117 (1997).
- [13] S. Prasad, N.S. Gajbhiye. J. Alloys Comp. 265, 87 (1998).