02 Фононный спектр La₂Zr₂O₇: *ab initio* расчет

© В.А. Чернышев

Уральский федеральный университет, 620002 Екатеринбург, Россия

e-mail: vchern@inbox.ru

Поступила в редакцию 20.11.2019 г. В окончательной редакции 24.04.2019 г. Принята к публикации 16.05.2019 г.

В рамках подхода МО ЛКАО с использованием гибридных функционалов DFT, учитывающих вклад нелокального обмена в формализме Хартри-Фока, проведено исследование кристаллической структуры и фононного спектра кристалла La₂Zr₂O₇. Определены частоты, типы и интенсивность фундаментальных колебаний, активных в ИК и КР. Рассчитаны упругие постоянные. Расчеты проводились в новой версии программы CRYSTAL, предназначенной для моделирования периодических структур в рамках подхода МО ЛКАО — CRYSTAL17.

Ключевые слова: редкоземельные цирконаты, фононы, гибридные функционалы.

DOI: 10.21883/OS.2019.11.48511.337-18

Введение

Интерес к исследованию редкоземельных цирконатов R₂Zr₂O₇ (R — редкоземельный ион) обусловлен многообразием их свойств и разнообразным применением [1-5]. Представитель этого ряда, La₂Zr₂O₇, экспериментально исследован методами РСА-, КР- и ИК спектроскопии [6-12]. Моделирование структуры и динамики решетки редкоземельного цирконата La₂Zr₂O₇ проводилось более 10 лет назад методом молекулярной динамики [13], в последнее время — в рамках подхода *ab initio* в базисе плоских волн [14,15]. Недавно в рамках этого же подхода были исследованы и другие редкоземельные цирконаты со структурой пирохлора [16]. В работах [14-16] был проведен расчет зонной структуры и упругих постоянных, но фононный спектр не исследовался. При этом в литературе отсутствует информация об исследовании редкоземельных цирконатов, в том числе La₂Zr₂O₇, в рамках подхода МО ЛКАО. Представляется актуальным провести такое исследование.

В настоящей работе в рамках подхода МО ЛКАО, с гибридными функционалами DFT исследуется структура и динамика решетки представителя этого ряда — редкоземельного цирконата $La_2Zr_2O_7$ со структурой пирохлора ($Fd\bar{3}m$).

Методы расчета

Расчеты *ab initio* были проведены в рамках теории функционала плотности (DFT) с использованием гибридных функционалов, учитывающих как локальный, так и нелокальный (в формализме Хартри-Фока (ХФ)) обмен. Были проведены расчеты с функционалами РВЕ0 [17], ВЗРW [18], НЅЕОб [19,20], широко используемыми в последнее время [21], а также с функционалом РВЕSOL0, инкрементированным в программе CRYSTAL17 [22,23]. С использованием гибридных функционалов, учитывающих как локальный, так и нелокальный обмен ХФ, удается хорошо описывать соединения с ионно-ковалентной связью, их зонную структуру, инфракрасные (ИК) и спектры комбинационного рассеяния (КР), упругие свойства [24-26]. Недавно был проведен сравнительный анализ функционалов ВЗLYP, РВЕО и других относительно расчета CCSD (всего было протестировано 128 функционалов разного уровня) [27]. Было показано, что РВЕО характеризуется малой ошибкой для функционалов своего уровня при воспроизведении электронной плотности и других характеристик относительно CCSD расчета [27]. В наших предыдущих работах с использованием гибридного функционала РВЕО были успешно описаны структура и динамика кристаллической решетки, а также упругие свойства редкоземельных титанатов со структурой пирохлора R₂Ti₂O₇ (R редкоземельный ион) [28,29].

Исследование La₂Zr₂O₇ проводится для высокосимметричной структуры пирохлора ($Fd\bar{3}m$, Z=2). Ионы находятся в позициях: Zr — 16c (0,0,0); La — 16d (1/2,1/2,1/2); O1 - 48f (x, 1/8, 1, 8); O2 - 8b(3/8,3/8,3/8) [6]. Кислород входит во все структурные единицы этого соединения, при этом находится в двух симметрийно неэквивалентных позициях. Поэтому воспроизведение структуры и свойств будет существенным образом зависеть именно от базиса кислорода. В данной работе был использован базис TZVP типа [30], доступный на сайте программы CRYSTAL [31]. Базис циркония [32] также доступен на сайте CRYSTAL. Этот базис был использован авторами программы CRYSTAL для расчета структуры и ИК спектра циркониевых комплексов, в которых лигандами циркония являлся кислород [32]. Для описания внутренних оболочек лантана был использован квазирелятивистсткий псевдопотенциал ECP46MWB (ECP — effective core potential;

В скобках после названия функционала приведена доля ХФ-обмена	Расчет HSE06 (25%)	Расчет ВЗРW (20%)	Расчет РВЕ0 (25%)	Расчет PBESOL0 (25%)	Эксперимент [7]	Эксперимент [8]
Постоянная решетки	10.842	10.859	10.838	10.763	10.798(3)	10.805
La-O1	2.64	2.64	2.64	2.62	2.63(3)	—
La-O2	2.3473	2.3510	2.3464	2.3302	2.3379(9)	—
Zr-O1	2.116	2.119	2.115	2.103	2.105(18)	_
La–Zr	3.8332	3.8392	3.8317	3.8053	3.8178(13)	_
x	0.333	0.333	0.333	0.333	_	0.332

Таблица 1. La₂Zr₂O₇. Постоянная решетки, межионные расстояния (Å), смещение (x) кислорода в позиции 48f (отн. ед.)

46 — количество внутренних электронов, замененных на псевдопотенциал; WB — quasirelativistic [33,34]). Для описания внешних оболочек, $5s^25p^6$, участвующих в образовании химической связи, использован валентный базисный набор типа TZVP с диффузными и поляризационными орбиталями [33,35,36]. Псевдопотенциал и валентный базисный набор ("ЕСР46МWB-II") доступны на сайте Stuttgart [37]. Из валентного базисного набора были удалены гауссовы примитивы с показателем экспоненты менее чем 0.1 а.u.⁻², поскольку данные расчеты периодические. Также была удалена последняя диффузная орбиталь типа 4f с показателем 0.17033. При расчетах сначала проводилась оптимизация кристаллической структуры. Затем для кристаллической структуры, соответствующей минимуму энергии, выполнялся расчет фононного спектра (в Г-точке) или расчет упругих постоянных. Погрешность расчета самосогласованного поля была установлена равной 10^{-10} a.u. (TOLDEE = 10), параметры, определяющие точность расчета интегралов — "TOLINTEG", равными 8,8,8,8,16. Параметры "SHRINK", определяющие частоту сетки Монхорста-Пака в обратном пространстве, — равными 8. Подробности алгоритма расчета рассмотрены в работе [38].

Обсуждение результатов

Результаты расчета кристаллической решетки приведены в табл. 1. Гибридные функционалы достаточно хорошо воспроизводят кристаллическую структуру цирконата лантана. Функционал HSE06, использующий при расчете нелокального обмена ХФ экранирование кулоновского потенциала, дает вполне приемлемый результат. По-видимому, разделение обменного вклада в HSE06 на близкодействующий (SR) и дальнодействующий (LR), которым пренебрегается, сделано удачно. В основу функционала HSE06 положен функционал PBE0, соответственно доля обмена ХФ в нем такая же — 25% [19]. Использование данного приближения экранировки — существенно сокращает время расчета, например, расчет кристаллической структуры с функционалом HSE06 требует в 5 раз меньше времени, чем расчет с функционалом РВЕО. Такое сокращение затрат компьютерных ресурсов приводит к несущественному ухудшению результатов — расхождение постоянной решетки с экспериментом увеличивается всего на 0.004 Å по сравнению с расчетом РВЕ0 (табл. 1). Функционал PBESOL0 отличается от PBE0 тем, что вместо локального обменно-корреляционного функционала РВЕ в нем используется РВЕЅОL [39]. Расчет с этим функционалом занижает постоянную решетки, расхождение с экспериментом сравнимо с расчетами РВЕО и HSEO6 (табл. 1). Функционал B3PW дает максимальное расхождение с экспериментом (табл. 1), что может быть связано с меньшей долей обмена ХФ. Отметим, что при моделировании редкоземельных титанатов R₂Ti₂O₇ функционал PBE0 воспроизводил структуру решетки значительно лучше, чем B3LYP [28]. В целом расчет кристаллической структуры La₂Zr₂O₇ хорошо воспроизводит межионные расстояния и постоянную решетки.

Исследуемый цирконат лантана La₂Zr₂O₇ имеет структуру пирохлора и соответствующие фононные моды в Г-точке: $\Gamma = A_{1g} + E_g + 2F_{1g} + 4F_{2g} + 3A_{2u} + 3E_u + 8F_{1u} + 4F_{2u}$, из них одна мода F_{1u} трансляционная, $4F_{2u}$, $3E_u$, $3A_{2u}$, $2F_{1g}$ — "молчащие" моды, неактивные ни в ИК, ни в КР. Моды $A_{1g} + E_g + 4F_{2g}$ — активны в КР ("рамановские"), 7 мод F_{1u} активны в ИК.

Результаты расчета фононных мод в Г-точке приведены в табл. 2. Из расчета *ab initio* были определены частоты и типы фононных мод. Из анализа векторов смещений, полученных при расчете *ab initio*, была определена степень участия ионов в данной моде (столбец "Ионы-участники"). Расчеты предсказывают сильное смешивание колебаний структурных единиц. При этом можно выделить моды, в которых участвуют только ионы кислорода. Например, в ИК активной моде F_{1u} с частотой 246 сm⁻¹ (волновое число согласно расчету PBE0) участвуют только ионы кислорода. Причем в этой моде преимущественно участвуют ионы O1, находящиеся в позиции 48f, характеризуемой смеще

			Частота расчет		Частота, эксперимент				Ионы-участники		
Тип	ИК	КР	-	laciola, pacec	1	[9] (ИК)	[10] (ИК)	[11] (КР, ИК)	[12] (ИК)	[7] (KP)	ионы-участники
			B3PW	PBE0	PBESOL0						
F _{2u}	Ι	Ι	55	55	62						La ^S , Zr ^W , O1 ^W
E_u	Ι	Ι	96	96	99						La, Zr, O1
F_{1u}	А	Ι	101(182)	102(155)	105(48)	101	104.8				La, Zr ^S , O1, O2
F_{2u}	Ι	Ι	129	131	136						La, Zr ^S , O1
F_{1u}	Α	Ι	137 (1873)	138 (1763)	142 (1589)	140	141.5				La ^S , Zr, O1 ^S
Eu	Ι	Ι	146	147	154						La, Zr, O1 ^S
F_{1u}	Α	Ι	201 (6958)	203 (6757)	206 (6577)	176	166.8				La, Zr, O1 ^S
F_{1u}	Ι	Ι	243 (197)	246 (155)	249 (26)	244; 208	213.7				O1 ^s , O2
A_{2u}	Α	Ι	248	251	259						La, Zr, O1
F _{1g}	Ι	Ι	254	256	264						O1 ^s
F_{2u}	Ι	Ι	278	281	287						Zr ^w , O1 ^s
A_{2u}	Ι	Ι	298	301	306						La, Zr ^S
F _{2g}	Ι	Α	305	308	318			299		298	O1 ^s , O2
E_g	Ι	Α	322	325	334					315	O1 ^s
F_{1u}	А	Ι	325 (15287)	329 (16157)	341 (16244)	352	352.7		366		La ^w , Zr, O1 ^s , O2
F_{1u}	А	Ι	381 (0.02)	384 (0.38)	396 (0.02)	412	411.9				La, O1, O2 ^S
A_{2u}	Ι	Ι	388	391	392						La ^w , Zr ^s , O1 ^s
Eu	Ι	Ι	389	393	400						La ^W , Zr ^W , O1 ^S
F _{2g}	Ι	Α	410	413	421					395	O1, O2 ^S
F_{1u}	А	Ι	494 (2851)	499 (2856)	508 (3354)	518	517.4	508	508		Zr ^w , O1 ^s , O2
A _{1g}	Ι	Α	502	506	510			506		503	O1 ^s
F _{2g}	Ι	Α	532	536	545					527	01, 02 ^s
F_{1g}	Ι	Ι	552	556.8	571						O1 ^s
F_{2u}	Ι	Ι	542	557.3	570						O1 ^s
F _{2g}	Ι	Α	751	758	768						O1 ^s

Таблица 2. Частоты (сm⁻¹) и типы фононных мод в Г-точке. В скобках у ИК мод приведена интенсивность (km/M). Обозначения в столбцах "КР" и "ИК": А — активная мода, I — неактивная

Примечание. Верхние индексы в последнем столбце: "S" — сильное, "W" — слабое смещение иона в моде.

нием x. Отметим, что в самой интенсивной КР-моде F_{2g} (308 cm⁻¹) участвуют ионы O1 и O2, но в преимущественной степени — O1. В рамановской моде E_g с частотой 325 cm⁻¹ участвуют только ионы O1. Согласно расчетам, это вторая по интенсивности мода в спектре КР (табл. 2, рис. 1). В КР-модах A_{1g} с частотой 506 cm⁻¹ и F_{2g} с частотой 758 cm⁻¹ также участвуют только ионы O1. В модах F_{2g} (413 и 536 cm⁻¹) участвуют только ионы кислорода, причем преимущественно — O2, находящийся в позиции 8b (3/8,3/8,3/8). В целом можно отметить, что в КР-активных модах участвуют только ионы кислорода. Причем, в модах A_{1g} и E_g только кислород O1, находящийся в позиции 48f. Таким образом, поведение этих мод может нести информацию о смещении *x*-кислорода в этой позиции под влиянием внешних воздействий на кристалл.

В ИК активных модах (F_{1u}) участвуют все ионы — La, Zr, O1, O2, но в разной степени в той или иной моде. (Ионы, степень участия которых незначительна, не приведены в столбце "Ионы-участники".) В наиболее интенсивной ИК моде F_{1u} с частотой 329 сm⁻¹ участвуют

Рис. 1. КР-спектр $La_2Zr_2O_7$. Расчет для возбуждающего излучения с длиной волны 488 nm и T = 298 K (функционал PBE0).

цирконий и оба иона кислорода, причем в наибольшей степени — О1. Во второй по интенсивности ИК моде $(F_{1u}, 203 \, \text{cm}^{-1})$ — лантан, цирконий и в существенной степени О1. В третьей по интенсивности ИК моде $(F_{1u}, 499 \, cm^{-1})$ принимают участие ионы кислорода и также в существенной степени — О1. Преимущественное участие лантана проявляется в низколежащей моде F_{2u} (55 cm⁻¹), однако она не активна ни в ИК, ни в КР. В низколежащей моде F_{1u} (102 cm⁻¹) участвуют все ионы, но преимущественно — цирконий. Лантан и цирконий участвуют в ИК и КР-модах с частотами до 200 cm⁻¹, затем можно выделить две моды с более высокими частотами: в моде F_{1u} с частотой 329 cm⁻¹ участвует цирконий и в моде F_{1u} с частотой $384 \, \mathrm{cm}^{-1}$ участвует лантан (табл. 2). Можно отметить существенное участие лантана и циркония в "молчащих" модах, не активных ни в ИК, ни в КР. Результаты моделирования спектров КР и ИК приведены на рис. 1, 2.

В работах [2,6] в измеренном спектре КР наиболее интенсивный пик наблюдался около $300 \,\mathrm{cm}^{-1}$, что хорошо согласуется с результатами расчета. Наличие двух пиков около 350 и 500 cm⁻¹ (рис. 2) хорошо согласуется с результатами измерения коэффициента пропускания ИК спектра La₂Zr₂O₇ [12].

Выводы, сделанные в экспериментальной работе [11] об участии в ИК моде с частотой $508 \,\mathrm{cm}^{-1}$ структурной группы ZrO₆, согласуются с тем, что расчеты предсказывают сильное смещение (участие) в этой моде ионов O1, которые являются лигандами циркония. Выводы об участии в рамановских модах с частотами 299 и

Таблица 3. Интенсивность КР-мод для поликристаллического
образца (отн. ед.). Расчет проведен для возбуждающего излуче-
ния с длиной волны $488\mathrm{nm}$ и $T=298\mathrm{K}$

Расчет с функционалом ВЗРW								
Тип	Частота, cm^{-1}	$I_{\rm tot}$	$I_{\rm par}$	Iperp				
$\begin{array}{c} \mathrm{F}_{2g}\\ \mathrm{E}_{g}\\ \mathrm{F}_{2g}\\ \mathrm{A}_{1g}\\ \mathrm{F}_{2g}\\ \mathrm{F}_{2g}\\ \mathrm{F}_{2g}\end{array}$	305 322 410 502 532 751	1000 221 19 50 73 21	571 126 11 50 42 12	429 95 8 0 31 9				
	Расчет с функц	ионалом Р	BE0					
Тип	Расчет с функт Частота, ст ⁻¹	ционалом Р <i>I</i> tot	BE0 I _{par}	Iperp				
Тип F_{2g} E_g F_{2g} A_{1g} F_{2g}	Расчет с функт Частота, ст ⁻¹ 308 325 413 506 536	ционалом Р <u>I</u> tot 1000 219 17 45 77 27	BE0 <i>I</i> _{par} 571 125 10 45 44 11	<i>I</i> _{perp} 429 94 7 0 33				

Таблица 4. Интенсивность КР-мод для монокристалла (отн.ед.)

Расчет с функционалом ВЗРW									
Тип	Частота, cm^{-1}	Ixx	I xy	Ixz	I yy	I yz	Izz		
F_{2g}	305	0	1000	1000	0	1000	0		
\mathbf{E}_{g}	322	441	0	0	441	0	441		
F_{2g}	410	0	19	19	0	19	0		
A_{1g}	502	70	0	0	70	0	70		
F_{2g}	532	0	73	73	0	73	0		
F_{2g}	751	0	22	22	0	22	0		
Расчет с функционалом РВЕ0									
	Расчет	с фун	кциона	лом РЕ	BE0		-		
Тип	Расчет Частота, ст ⁻¹	с фун <i>I x x</i>	кциона І ху	лом РЕ <i>I xz</i>	BEO I yy	I yz	Izz		
Тип F _{2g}	Расчет Частота, ст ⁻¹ 308	с фун <i>I x x</i> 0	кциона <i>I ху</i> 1000	лом РЕ <i>I xz</i> 1000	3E0 <i>I yy</i> 0	<i>I yz</i> 1000	<i>I z z</i>		
Тип F _{2g} E _g	Расчет Частота, ст ⁻¹ 308 325	с фун <i>I xx</i> 0 438	кциона <i>I xy</i> 1000 0	лом РЕ <i>I xz</i> 1000 0	BE0 <i>I yy</i> 0 438	<i>I yz</i> 1000 0	<i>I zz</i> 0 438		
Тип F _{2g} E _g F _{2g}	Расчет Частота, ст ⁻¹ 308 325 413	с фун <i>I xx</i> 0 438 0	кциона <i>I xy</i> 1000 0 17	лом РЕ <i>I xz</i> 1000 0 17	BE0 I yy 0 438 0	<i>I yz</i> 1000 0 17	<i>I zz</i> 0 438 0		
Тип F _{2g} E _g F _{2g} A _{1g}	Расчет Частота, ст ⁻¹ 308 325 413 506	с фун <i>I xx</i> 0 438 0 63	кциона <i>I xy</i> 1000 0 17 0	лом РЕ <i>I xz</i> 1000 0 17 0	BE0 I yy 0 438 0 63	<i>I yz</i> 1000 0 17 0	<i>I zz</i> 0 438 0 63		
Тип F_{2g} E_g F_{2g} A_{1g} F_{2g}	Расчет Частота, ст ⁻¹ 308 325 413 506 536	с фун <i>I xx</i> 0 438 0 63 0	кциона <i>I xy</i> 1000 0 17 0 77	лом РЕ <i>I xz</i> 1000 0 17 0 77	BE0 Iyy 0 438 0 63 0	<i>I yz</i> 1000 0 17 0 77	<i>I zz</i> 0 438 0 63 0		

506 сm⁻¹ структурных единиц La–O и ZrO₆ (stretching modes), сделанные в [11], согласуются с тем, что расчет предсказывает сильное смещение в этих модах кислорода O1 и участие кислорода O2 (табл. 2). Результаты расчета также согласуются с экспериментом [12], где были обнаружены интенсивные ИК моды 366 и 508 сm⁻¹, для которых расчет предсказывает сильное участие кислорода O1, т.е. изменение длины связи Zr–O.

Результаты расчета интенсивности КР-мод приведены в табл. 3, 4. Расчеты с функционалами ВЗРШ и РВЕО дают близкие результаты.

Рис. 2. Результаты моделирования ИК спектра (расчет с функционалом РВЕО). Все ИК моды — типа F_{1и}.

Таблица 5. Упругие постоянные и объемный модуль La $_2 Zr_2 O_7$ (GPa)

	Расчет B3PW	Расчет РВЕ0	Расчет в VASP [14]	Расчет в CASTEP [15]
C ₁₁	293.9	298.2	289.8	282
C ₁₂	114.7	116.9	124.8	92
C44	96.9	98.6	100.4	122
В	174.5	177.4	179.8	176

Таблица 6. Объемный модуль, модуль Юнга, модуль сдвига, соотношение Пуассона La₂Zr₂O₇ (из результатов РВЕ0 расчета)

Схема расчета	Объемный модуль, GPa	Модуль Юнга, GPa	Модуль сдвига, GPa	Соотношение Пуассона
Фойгта	177.3	242.7	95.4 05.2	0.272
Реусса Хилла	177.3	242.4 242.6	95.3 95.3	0.272

Результаты расчета упругих постоянных, объемного модуля, модуля сдвига и др. приведены в табл. 5, 6. Расчеты с функционалами ВЗРW и РВЕО дают близкие результаты, хорошо согласующиеся с расчетами упругих постоянных в базисе плоских волн [14]. Экспериментальные данные, например для модуля Юнга La₂Zr₂O₇, существенно различаются, от 141 GPa [40] до 280 GPa [6].

Расчет объемного модуля и модуля сдвига в приближениях Фойгта, Реусса и Хилла (табл. 6) дает близкие результаты, что позволяет сделать вывод о достаточно высокой изотропии химической связи и упругих свойств $La_2Zr_2O_7$, что также видно из рис. 3 (для построения зависимости модуля Юнга от направления в кристалле использовалась программа ELATE [41]).

Условия устойчивости решетки к гидростатическому сжатию для кубических кристаллов [42]:

$$C_{11} + 2C_{12} + P > 0,$$

 $C_{11} - C_{12} - 2P > 0,$
 $C_{44} - P > 0$

выполняются (расчет при P = 2 GPa с функционалом PBE0).

Рис. 3. Зависимость модуля Юнга (GPa) от направления в кристалле.

Заключение

В результате работы из единого расчета *ab initio* были определены частоты и типы фундаментальных колебаний цирконата лантана $La_2Zr_2O_7$ со структурой пирохлора ($Fd\bar{3}m$), что может быть полезным для интерпретации измеренных ИК и КР-спектров. Из анализа векторов смещений, полученных из расчета *ab initio*, определена степень участия ионов в каждой моде. Выделены моды с абсолютным или преимущественным участием иона кислорода в позиции 48f, характеризуемой смещением *x*. Показано, что в рамках подхода МО ЛКАО с гибридными функционалами, учитывающими нелокальный обмен в формализме Хартри-Фока, удается описать структуру и динамику решетки цирконата лантана.

Финансирование работы

Работа выполнена при поддержке Министерства образования и науки РФ (проект № 3.9534.2017/8.9).

Список литературы

- Hatnean M.C., Decorse C., Lees M.R., Petrenko O.A., Balakrishnan G. // Crystals. 2016. V. 6. N 7. P. 79. doi 10.3390/cryst6070079
- [2] Popov V.V., Menushenkov A.P., Gaynanov B.R., Zubavichus Ya.V., Svetogorov R.D., Yastrebtsev A.A., Pisarev A.A., Arzhatkina L.A., Ponkratov K.V. // IOP Conf. Series: J. Phys. Conf. Series. 2017. V. 941. P. 012079. doi 10.1088/1742-6596/941/1/012079
- [3] Kong L., Karatchevtseva I., Gregg D.J., Blackford M.G., Holmes R., Triani G. // J. Am. Ceram. Soc. 2013. V. 96. N 3. P. 935. doi 10.1111/jace.12060
- [4] Modeshia D.R., Walton R.I. // Chem. Soc. Rev. 2010. V. 49.
 N 11. P. 4303. doi 10.1039/B904702F
- [5] Chen A., Smith J.R., Duncan K.L., DeHoff R.T., Jones K.S., Wachsman E.D. // J. Electrochem. Soc. 2010. V. 157. N 11.
 P. B1624. doi 10.1149/1.3484092
- [6] Shimamura K., Arima T., Idemitsu K., Inagaki Y. // Int. J. Thermophysics. 2007. V. 28. N 3. P. 1074. doi 10.1007/s10765-007-0232-9
- [7] Paul B., Singh K., Jaroń T., Roy A., Chowdhury A. // J. of Alloys and Compounds. 2016. V. 686. P. 130. doi 10.1016/j.jallcom.2016.05.347
- [8] Subramanian M., Aravamudan G., Subba Rao G. // Progr. Sol. St. Chem. 1983. V. 15. P. 55. doi dx.doi.org/10.1016/0079-6786(83)90001-8
- [9] Комиссарова Л.Н., Гундобин Н.В., Спиридонов Ф.М., Петров К.И. // Журн. неорган. химии. 1975. Т. 20. С. 582.
- [10] Cheng X., Qi Z., Li T., Zhang G., Li C., Zhou H., Wang Y., Yin M. // Phys. Stat. Sol. (b). 2011. V. 249. N 4. P. 854. doi 10.1002/pssb.201147313
- [11] Tong Y, Wang Y, Yu Z, Wang X, Yang X, Lu L. // Mater. Lett. 2008. V. 62. P. 889. doi 10.1016/j.matlet.2007.07.005
- [12] Chen D., Xu R. // Mater. Res. Bull. 1998. V. 33 P. 409. doi 10.1016/S0025-5408(97)00242-0

- [13] Chartier A., Meis C., Crocombette J.-P., Corrales L.R., Weber W.J. // Phys. Rev. B. 2003. V. 67. P. 174102. doi 10.1103/PhysRevB.67.174102
- [14] Guo X., Zhang J. // Mater. Today: Proc. 2014. V. 15. P. 25. doi 10.1016/j.matpr.2014.09.006
- [15] Feng J., Xiao B., Wan C.L., Qu Z.X., Huang Z.C., Chen J.C., Zhou R., Pan W. // Acta Materialia. 2011. V. 59. P. 1742. doi 10.1016/j.actamat.2010.11.041
- [16] Zhang S., Zhang H.B., Zhao F.A., Jiang M., Xiao H.Y., Liu Z.J., Zu X.T. // Sci. Rep. 2017. V. 7. Article number: 6399. doi 10.1038/s41598-017-06725-8
- [17] Perdew J.P., Ernzerhof M., Burke K. // J. Chem. Phys. 1996.
 V. 105. P. 9982. doi 10.1063/1.472933
- [18] Becke A.D. // J. Chem. Phys. 1993. V. 98. N 7. P. 5648. doi 10.1063/1.464913
- [19] Heyd J., Scuseria G.E., Ernzerhof M. // J. Chem. Phys. 2003.
 V. 118. N 18. P. 8207. doi 10.1063/1.1564060
- [20] Benjamin G.J., Thomas M.H., Gustavo E.S. // Phys. Chem. Chem. Phys. 2009. V. 11. N 3. P. 443. doi 10.1039/b812838c
- [21] Burke K. // J. Chem. Phys. 2012. V. 136. P. 150901. doi 10.1063/1.4704546
- [22] Dovesi R., Saunders V.R., Roetti C., Orlando R., Zicovich-Wilson C.M., Pascale F., Civalleri B., Doll K., Harrison N.M., Bush I.J., D'Arco Ph., Llunel M., Causa M., Noel Y., Maschio L., Erba A., Rerat M., Casassa S. // CRYSTAL17 User.s Manual. [Электронный ресурс]. Режим доступа: http://www.crystal.unito.it/index.php
- [23] Dovesi R., Erba A., Orlando R., Zicovich, Wilson C.M., Civalleri B., Maschio L., Rérat M., Casassa S., Baima J., Salustro S., Kirtman B. // Comp. Molec. Sci. 2018. V. 8. N 4. P. e1360. doi dx.doi.org/10.1002/wcms.1360
- [24] Эварестов Р.А., Бандура А.В., Александров В.Е. // ФТТ. 2005. Т. 47. № 12. С. 2157.
- [25] Корабельников Д.В., Журавлев Ю.Н. // ФТТ. 2016. Т. 58. № 6. С. 1129.
- [26] Pierre M.L., Orlando R., Maschio L., Doll K., Ugliengo P., Dovesi R. // J. Comp. Chem. 2011. V. 32. N 9. P. 1775. doi 10.1002/jcc.21750
- [27] Medvedev M.G., Bushmarinov I.S., Sun J., Perdew J.P., Lyssenko K.A. // Science. 2017. V. 355. N 6320. P. 49. doi 10.1126/science.aah5975
- [28] Чернышев В.А., Петров В.П., Никифоров А.Е. // ФТТ. 2015. Т. 57. № 5. С. 982.
- [29] Chernyshev V.A., Petrov V.P., Nikiforov A.E., Agzamova P.A., Avram N.M. // Opt. Mater. 2017. V. 72. P. 565. doi 10.1016/j.optmat.2017.06.062
- [30] Peintinger M.F., Oliveira D.V., Bredow T. // J. Comp. Chem. 2012. V. 34. N 6. P. 451. doi 10.1002/jcc.23153
- [31] [Электронный ресурс]. Режим доступа: http://www.crystal.unito.it/index.php
- [32] Valenzano L., Civalleri B., Chavan S., Bordiga S., Nilsen M., Jakobsen S., Lillerud K.P., Lamberti C. // Chem. Mater. 2011.
 V. 23. N 7. P. 1700. doi 10.1021/cm1022882
- [33] Dolg M., Stoll H., Savin A., Preuss H. // Theor. Chim. Acta. 1989. V. 75. P. 173. doi 10.1007/BF00528565
- [34] Dolg M., Stoll H., Preuss H. // Theor. Chim. Acta. 1993. V. 85.
 P. 441. doi 10.1007/BF01112983
- [35] Yang J., Dolg M. // Theor. Chem. Acc. 2005. V. 113. P. 212. doi 10.1007/s00214-005-0629-0
- [36] Weigand A., Cao X., Yang J., Dolg M. // Theor. Chem. Acc. 2009. V. 126. P. 117. doi 10.1007/s00214-009-0584-2

- [37] Energy-consistent Pseudopotentials of the Stuttgart. [Электронный ресурс] Режим доступа: http://www.tc.uni-koeln.de/PP/clickpse.en.html
- [38] Чернышев В.А., Никифоров А.Е., Петров В.П., Сердцев А.В., Кащенко М.А., Климин С.А. // ФТТ. 2016. Т. 58. № 8. С. 1587.
- [39] Perdew J.P., Ruzsinszky A., Csonka G.I., Vydrov O.A., Scuseria G.E., Constantin L.A., Zhou X., Burke K. // Phys. Rev. Lett. 2008. V. 100. N 13. P. 136406. doi 10.1103/PhysRevLett.100.136406
- [40] Girolamo G.Di., Marra F., Schioppa M., Blasi C., Pulci G., Valente T. //Surf. Coat. Technol. 2015. V. 268. P. 298. doi 10.1016/j.surfcoat.2014.07.067
- [41] [Электронный pecypc] http://progs.coudert.name/elate
- [42] Векилов Ю.Х., Красильников О.М. // УФН. 2009. Т. 179.
 В. 8. С. 883. doi 10.3367/UFNr.0179.200908f.0883