09,06

Фотоупругие свойства кристаллов сульфата калия

© В.И. Стадник¹, Р.Б. Матвиив¹, П.А. Щепанский^{1,2}, М.Я. Рудиш^{1,2}, З.А. Когут³

 ¹ Львовский национальный университет им. И. Франко, Львов, Украина
 ² Университет им. Яна Длугоша в Ченстохове, Ченстохова, Польша
 ³ Национальный университет "Львовская политехника", Львов, Украина
 E-mail: vasylstadnyk@ukr.net
 Поступила в Редакцию 25 июня 2019 г.

В окончательной редакцию 25 июня 2019 г. Принята к публикации 8 июля 2019 г.

Изучены спектральные зависимости абсолютных пьезооптических коэффициентов кристаллов сульфата калия и установлена их незначительная дисперсионная зависимость. Используя значения коэффициентов упругой жесткости и абсолютных пьезооптических коэффициентов, заполнена матрица упругооптических коэффициентов p_{in} данных кристаллов. Рассчитан коэффициент акустооптической эффективности M_2 и показано, что за величиной максимальных значений он более чем на порядок выше, чем у кристаллов кварца и бората стронция. Предложено, учитывая коротковолновую границу области прозрачности кристаллов сульфата калия (~ 170 nm), использовать их для акустооптической модуляции ультрафиолетового излучения.

Ключевые слова: сульфат калия, пьезо- и упругооптические коэффициенты, акустооптическая эффективность.

DOI: 10.21883/FTT.2019.11.48421.529

1. Введение

В последнее время существенно увеличилось количество работ, посвященных изучению фотоупругости (пьезо- и упругооптический эффекты) в кристаллах, имеющих разные классы симметрии [1–9]. Это обусловлено поиском новых оптических материалов с высокой акустооптической (AO) эффективностью. Много работ посвящено также исследованию фотоупругости кристаллов группы A_2BX_4 , таких как (NH₄)₂SO₄, (NH₄)₂BeF₄, LiKSO₄, LiRbSO₄, K₂ZnCL₄ и другие [10–14]. Однако для этих кристаллов изучено, преимущественно, пьезооптические коэффициенты (ПОК), которые описывают изменение двупреломления под действием механического напряжения. На основе этих данных невозможно оценить AO эффективность оптического материала.

В данной работе исследуются фотоупругие свойства кристаллов сульфата калия (СК) K₂SO₄ с целью расчета компонент матрицы упругооптических коэффициентов (УОК) и оценки АО эффективности этих кристаллов.

Кристаллы K₂SO₄ — типичные сегнетоэластики, в которых при T = 860 К имеет место фазовый переход (ФП) из параэлектрической фазы в орторомбическую сегнетоэластическую с пространственной группой симметрии ($c_0 = 7.48$ Å, $b_0 = 10.07$ Å, $a_0 = 5.76$ Å, Z = 4 [15]). Исследование дифракции рентгеновских лучей [16] показало, что структура параэлектрической фазы кристаллов СК является центро-симметрической с пространственной группой симметрии ($c_1 = 7.90$ AA, $b_1 = 10.12$ Å, $a_1 = 5.84$ Å, Z = 2, при этом $a_0 \parallel c_1$ [17]).

Ранее измерение дисперсионных зависимостей показателей преломления $n_i(\lambda)$ и двупреломления $\Delta n_i(\lambda)$ при комнатной температуре показало, что в области спектра 250-800 нм дисперсия всех $n_i(\lambda)$ нормальная и при приближении к краю поглощения резко увеличивается [18,19]. Исследование влияния одноосных давлений вдоль главных кристаллофизических направлений на дисперсионные и температурные зависимости двулучепреломления Δn_i кристаллов К₂SO₄ показало, что давление не изменяет характера температурных и спектральных зависимостей двупреломления, а изменяет только величины $d\Delta n_i/dT$ и $d\Delta n_i/d\lambda$ [20]. Изучены спектральные и температурные зависимости комбинируемых пьезооптических коэффициентов π_{im}^0 и обнаружены их значительные аномалии при сегнетоэластическом переходе.

2. Методика исследований

Кристаллы СК принадлежат к ромбическому классу симметрии *mmm*, соответственно, матрица ПОК имеет 12 независимых компонент π_{im} : девять главных ПОК, когда индексы *i*, m = 1, 2, 3, и три диагональных поворотно-сдвиговые ПОК, когда i = m = 4, 5, 6 (тут индексы *i*, *m* обозначают направление поляризации света и действие одноосного давления, соответственно). Главные ПОК рассчитывались из ранее экспериментально полученных дисперсионных зависимостей комбинированных пьезоконстант π_{im}^0 [20], используя известные соотношения Поккельса [21]:

$$\begin{split} n_1^3 \pi_{11} &- n_2^3 \pi_{21} = 2(\pi_{31}^0 - S_{13}(n_2 - n_1)), \\ n_1^3 \pi_{11} &- n_3^3 \pi_{31} = 2(\pi_{21}^0 - S_{12}(n_3 - n_1)), \\ n_2^3 \pi_{22} &- n_3^3 \pi_{32} = 2(\pi_{12}^0 - S_{12}(n_3 - n_2)), \\ n_2^3 \pi_{22} &- n_1^3 \pi_{12} = 2(\pi_{32}^0 - S_{23}(n_1 - n_2)), \\ n_3^3 \pi_{33} &- n_2^3 \pi_{23} = 2(\pi_{13}^0 - S_{13}(n_2 - n_3)), \\ n_3^3 \pi_{33} &- n_1^3 \pi_{13} = 2(\pi_{23}^0 - S_{23}(n_1 - n_3)), \end{split}$$

$$\begin{split} n_1^3 \pi_{11} &- \frac{1}{2} \, n_4^3 (\pi_{21} + \pi_{31}) = 2(\pi_{41}^0 + (n_1 - n_4)(S_{12} + S_{13}), \\ n_2^3 \pi_{22} &- \frac{1}{2} \, n_5^3 (\pi_{32} + \pi_{22}) = 2(\pi_{52}^0 + (n_2 - n_5)(S_{12} + S_{23}), \end{split}$$

$$n_3^3\pi_{33} - \frac{1}{2}n_6^3(\pi_{13} + \pi_{23}) = 2(\pi_{63}^0 + (n_3 - n_6)(S_{13} + S_{23}))$$

(где n_1 , n_2 , n_3 — абсолютные значения показателей преломления вдоль главных кристаллофизических направлений, n_4 , n_5 , n_6 — вдоль диагональных направлений; S_{12} , S_{23} , S_{13} и т.д. — коэффициенты упругой податливости).

Поворотно-сдвиговые компоненты ПОК определялись следующим образом. Коэффициент π_{44} (описывает поворот оптической индикатрисы вокруг оси X при действии сдвиговой компоненты σ_4 тензора механических напряжений) определялся из соотношения

$$\pi_{22} + \pi_{23} + \pi_{32} + \pi_{33} + 2\pi_{44}$$

= $-\frac{4\lambda}{n_4^3 \sigma_{44}^0} + 2(S_{22} + 2S_{23} + S_{33} - S_{14})\frac{n_4 - 1}{n_4^3}.$ (2)

Коэффициенты π_{55} (описывает поворот оптической индикатрисы вокруг оси *Y* при действии сдвиговой компоненты σ_5 тензора механических напряжений) и π_{66} (поворот вокруг оси *Z* при действии сдвиговой компоненты σ_6 тензора механических напряжений) рассчитывались на основе следующих соотношений:

$$\pi_{11} + \pi_{13} + \pi_{31} + \pi_{33} + 2\pi_{55}$$

= $-\frac{4\lambda}{n_5^3 \sigma_{55}^0} + 2(S_{11} + 2S_{13} + S_{33} - S_{55}) \frac{n_5 - 1}{n_5^3}$ (3)

И

$$= -\frac{4\lambda}{n_6^3 \sigma_{66}^0} + 2(S_{11} + 2S_{12} + S_{22} - S_{66})\frac{n_6 - 1}{n_6^3}.$$
 (4)

Дисперсионные зависимости абсолютных пьезооптических коэффициентов кристаллов K₂SO₄ при комнатной температуре: $I - \pi_{32}$; $2 - \pi_{12}$; $3 - \pi_{33}$; $4 - \pi_{11}$; $5 - \pi_{31}$; $6 - \pi_{32}$; $7 - \pi_{13}$; $8 - \pi_{21}$; $9 - \pi_{23}$.

3. Результаты и их обсуждение

Для расчета ПОК π_{im} использованы следующие значения показателей преломления этих кристаллов [19] (для $\lambda = 632.8 \text{ nm}$): $n_1 = 1.4959$, $n_2 = 1.4922$, $n_3 = 1.4934$. Значения показателей преломления вдоль направлений 4, 5, и 6 рассчитаны на основе известных выражений [22]:

$$n_{4} = n_{\bar{4}} = \frac{\sqrt{2}n_{2}n_{3}}{\sqrt{n_{2}^{2} + n_{3}^{2}}}, \quad n_{5} = n_{\bar{5}} = \frac{\sqrt{2}n_{1}n_{3}}{\sqrt{n_{1}^{2} + n_{3}^{2}}},$$
$$n_{6} = n_{\bar{6}} = \frac{\sqrt{2}n_{1}n_{2}}{\sqrt{n_{1}^{2} + n_{2}^{2}}}, \quad (5)$$

которые получены методом пересечения оптической индикатрисы кристалла прямыми $x_2 = x_3$ (для m = 4), $x_1 = x_3$ (для m = 5) и $x_1 = x_2$ (для m = 6). Соответствующие показатели преломления имеют значения: $n_4 = 1.4884$, $n_5 = 1.4902$, $n_6 = 1.4896$. Необходимые для расчета ПОК π_{im} коэффициенты упругой податливости S_{km} были получены методом расчета обратной матрицы ($S = C^{-1}$). Значения коэффициентов матрицы упругих жесткостей C_{mk} были взяты из работы [23] (табл. 1). Значения констант C_{mk} и S_{km} также были использованы для расчета компонент матрицы упругих коэффициентов p_{in} .

На рисунке приведены дисперсионные зависимости абсолютных пьезооптических констант π_{im} кристаллов СК при комнатной температуре, полученные на основе приведенных соотношений (1)–(4). Видно, что они слабо зависят от длины волны, в среднем $d\pi_{im}/d\lambda \sim 0.02$ Br/nm.

В табл. 2 приведены значения абсолютных пьезооптических констант кристаллов СК при комнатной температуре и для длины волны 632.8 nm. В целом пьезооптический эффект кристаллов сульфата калия за

$C_{mk}, 10^9$	C_{11}	C_{22}	C ₃₃	C_{12}	C_{13}	C_{23}	C_{44}	C 55	C ₆₆
N/m^2 [22]	51	49	50	18	19	20	9	17	16
$S_{km}, 10^{-12}$	<i>S</i> ₁₁	S ₂₂	S ₃₃	<i>S</i> ₁₂	<i>S</i> ₁₃	S ₂₃	S ₄₄	S 55	S ₆₆
m ² /N	19.6	20.4	20.0	55.5	52.6	50.0	111.1	58.8	62.5

Таблица 1. Упругие константы кристаллов K₂SO₄

Таблица 2. Пьезооптические π_{im} (в Br) и упругооптические p_{in} коэффициенты кристаллов сульфата калия

	π_{11}	π_{12}	π_{13}	π_{21}	π_{22}	π_{23}	π_{31}	π_{32}	π_{33}	π_{44}	π_{55}	π_{66}
	2.2	2.8	0.8	-0.9	1.2	-1.8	2.1	3.3	2.7	7.5	1.8	-2.4
	p_{11}	<i>p</i> ₁₂	p_{13}	<i>p</i> ₂₁	<i>p</i> ₂₂	<i>p</i> ₂₃	<i>p</i> ₃₁	<i>p</i> ₃₂	<i>p</i> ₃₃	p_{44}	<i>p</i> 55	<i>p</i> ₆₆
	0.15	0.23	0.14	0.06	0.18	0.04	0.24	0.30	0.17	0.02	0.03	-0.08

величиной главных ПОК π_{11} , π_{22} , и π_{12} достаточно великий и соразмерный с пьезооптическим эффектом таких уникальных фотоупругих материалов как Tl₃AsS₄ [8] и триглицинсульфат [9]. В табл. 2 также приведены упругооптические коэффициенты p_{in} , рассчитанные на основе известного тензорного выражения

$$p_{in} = \pi_{im} C_{mn}, \qquad (6)$$

которое для кристалла СК можно детализировать так

$$p_{11} = \pi_{11}C_{11} + \pi_{12}C_{12} + \pi_{13}C_{13},$$

$$p_{12} = \pi_{11}C_{12} + \pi_{12}C_{22} + \pi_{13}C_{32},$$

$$p_{13} = \pi_{11}C_{13} + \pi_{12}C_{23} + \pi_{13}C_{33},$$

$$p_{44} = \pi_{44}C_{44}$$
(7)

и так далее. Подставляя в выражения типа (7) значения ПОК π_{im} из табл. 2 и значения коэффициентов упругой жесткости C_{mm} из табл. 1, получим все компоненты p_{in} тензора УОК (табл. 2).

Из табл. 2 видно, что упругооптический эффект, как и пьезооптический эффект, в кристаллах сульфата калия достаточно ощутимый — наибольшие значения УОК *p*_{in} находятся в пределах от 0.20 до 0.30. Соответственно, и акустооптическая эффективность этих кристаллов также должна быть значительной.

Оценим акустооптическую эффективность сульфата калия на основе упругооптических коэффициентов, исходя из известного выражения для АО качества

$$M_2 = \frac{n_i^6 p_{in}^2}{\rho V_n^3},$$
 (8)

где $\rho = 2660 \text{ kg/m}^3$ [24] и V_n — это плотность кристалла и скорость акустической волны, соответственно.

Наибольшие значения имеет коэффициент p_{32} , поэтому в условие для АО взаимодействия в этом случае надо подставлять значение $n_3 = 1.4934$. Скорость продольной акустической волны, которая проходит вдоль кристаллофизической оси *Y*, рассчитывалась на основе уравнений Кристоффеля [25]:

$$C_{ijkl}m_jm_k = \rho V^2 g_l. \tag{9}$$

Здесь C_{ijkl} — компоненты тензора упругой жесткости; *m_i*, *m_k* — компоненты единичного вектора нормальной составляющей волны; g_l — компоненты единичного вектора волны смещения. Из уравнения (9) следует, что вдоль данного направления может распространятся три акустических волны со взаимно перпендикулярными векторами смещения. Оцененная таким образом скорость составляла $V_2 = 4292 \text{ m/s}$. Подставляя полученные значения ρ , n_3 , p_{32} , V_2 в уравнение (8), получим $M_2 = 4.8 \cdot 10^{-15} \, \text{s}^3/\text{kg}$. Другие геометрии АО взаимодействия имеют меньшую АО эффективность. Указанные максимальные значения M_2 являются соизмеримыми с М₂ таких известных АО материалов как ниобат лития, молибдат свинца, вольфрамат кальция и более порядка выше от M_2 кварца и бората стронция [26–28], пригодных для АО модуляции света в ультрафиолетовом спектральном диапазоне. Поэтому кристаллы сульфата калия, учитывая их коротковолновую границу области прозрачности ~ 170 nm [29] могут быть использованы для АО модуляции ультрафиолетового излучения.

4. Заключение

Таким образом, используя экспериментально полученные спектральные зависимости двупреломления кристаллов сульфата калия под действием одноосного напряжения, рассчитаны спектральные зависимости абсолютных пьезооптических констант. Установлено их незначительную дисперсионную зависимость, в среднем $d\pi_{im}/d\lambda \sim 0.02$ Br/nm. Используя значения коэффициентов упругой жесткости и абсолютных пьезооптических коэффициентов, заполнена матрица упругооптических коэффициентов p_{in} данных кристаллов. Установлено, что упругооптический эффект, также как и пьезооптический эффект, в кристаллах сульфата калия достаточно ощутимый — наибольшие значения коэффициентов p_{in} находятся в пределах от 0.20 до 0.30.

Оценена акустооптическая эффективность M_2 сульфата калия на основе полученных значений упругооптических коэффициентов и скорости акустических волн, а также известных значений плотности кристалла и показателей преломления. Установлено, что величина максимальных значений коэффициента акустооптического взаимодействия кристаллов сульфата калия более чем на порядок выше кварца и бората стронция, пригодных для АО модуляции света в ультрафиолетовом спектральном диапазоне. Предложено, учитывая их коротковолновую границу области прозрачности ~ 170 nm, использовать данные кристаллы для АО модуляции ультрафиолетового излучения.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- A. Mahmoud, A. Erba, Kh.E. El-Kelany, M. Rérat, R. Orlando. Phys. Rev. B 89, 045103 (2014).
- [2] A. Erba, R. Dovesi. Phys. Rev. B 88, 045121 (2013).
- [3] M. Mollaee, M. Rezaee Roknabad, M. Razavi, M. Mollai. Opt. Quant. Electron. 15, 919 (2013).
- [4] A. Trzaskowska, S. Mielcarek, B. Mroz, Z. Trybula. Cryst. Res. Technol. 45, 48 (2010).
- [5] S. Xia, M. Mello. Exp. Mechan. 51, 652 (2011).
- [6] J. Pfeiffer, K.H. Wagner. Appl. Opt. 57, C26 (2018).
- [7] P.P. Natali, L. Montalto, F. Daví, P. Mengucci, A. Ciriaco, N. Paone, D. Rinaldi. Appl. Opt. 57, 730 (2018).
- [8] B.G. Mytsyk, Ya.P. Kost', N.M. Demyanyshyn, V.M. Gaba, O.M. Sakharuk. Opt. Matter. 39, 69 (2015).
- [9] B. Mytsyk, V. Stadnyk, N. Demyanyshyn, Ya. Kost, P. Shchepanskyi. Opt. Mater. 88, 723 (2019).
- [10] V.Yo. Stadnyk, R.S. Brezvin, M.Ya. Rudysh, P.A. Shchepanskii, V.Yu. Kurlyak. Crystallography Rep. 60, 388 (2015).
- [12] V.Y. Stadnyk, M.O. Romanjuk. Phys. Status Solidi A 158, 289 (1996).
- [13] V.Yo. Stadnyk, O.S. Kushnir, R.S. Brezvin, V.M. Gaba. Opt. Spectroscopy **106**, 614 (2009).
- [14] V.Yo. Stadnyk, V.M. Gaba, B.V. Andrievskii, Z.O. Kohut. Phys. Solid State 53, 131 (2011).
- [15] A. Jonh, M.Mc. Ginnety. Acta Crystallogr. B 28, 2845 (1972).
- [16] A.J. Berg, F. Tuinstra. Acta Crystallogr. B 34, 3177 (1972).
- [17] M. Miyake, S. Iwai. Phys. Chem. Minerals 7, 211 (1981).
- [18] B.V. Andrievskii, M. Jaskolski, V.Yo. Stadnyk, M.O. Romanyuk, O.Z. Kashuba, M.M. Romanyuk. Comp. Mater. Sci. 79, 442 (2013).
- [19] B. Andriyevsky, M. Romanyuk, V.Y. Stadnyk. J. Phys. Chem. Solids 70, 1109 (2009).
- [20] V.Y. Stadnyk, O.Z. Kashuba, R.S. Brezvin, B.V. Andrievskii, V.M. Gaba. Crystallography Rep. 59, 101 (2014).
- [21] Т. Нарасимхамурти. Фотоупругие и электрооптические свойства кристаллов. Мир, М. (1984). 586 с.
- [22] B. Mytsyk. Ukr. J. Phys. Opt. 4, 105 (2003).
- [23] R. Gaillac, P. Pullumbi, F.-X. Coudert. J. Phys.: Condens. Mater. 28, 275201 (2016).
- [24] А.Н. Винчелл, Г. Винчелл. Оптические свойства искуственных минералов. Мир, М. (1967). 526 с.
- [25] Ю.И. Сиротин, М.П. Шаскольская. Основы кристаллофизики. Наука, М. (1979). 640 с.
- [26] M. Weber. Handbook of optical materials. CRC PRESS Boca Raton, London, N.Y., Washington (2003). 512 p.
- [27] N.M. Demyanyshyn, B.G. Mytsyk, Y.P. Kost, I.M. Solskii. Appl. Opt. 54, 2347 (2015).
- [28] М.П. Шаскольская. Акустические кристаллы. Наука, М. (1982). 632 с.
- [29] Б.В. Андриевский, В.Ю. Курляк, Н.А. Романюк. Изв. АН СССР. Серия физ. **53**, 1335 (1989).

Редактор Т.Н. Василевская