04

Подвижность носителей заряда в монокристалле и нанокерамике суперионного проводника $Pb_{1-x}Sn_xF_2$ (x = 0.2)

© Н.И. Сорокин

Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия

E-mail: nsorokin1@yandex.ru

Поступила в Редакцию 14 марта 2019 г. В окончательной редакции 14 марта 2019 г. Принята к публикации 10 июня 2019 г.

Предложена кристаллофизическая модель ионного переноса в суперионном проводнике Pb_{1-x}Sn_xF₂ со структурой флюорита (CaF₂). Проанализирована концентрационная зависимость ионной проводимости для моно-, поли- и нанокристаллов Pb_{1-x}Sn_xF₂. Максимальной проводимостью обладает монокристаллическая форма суперионного проводника. На основании структурных и электрофизических данных рассчитаны подвижность и концентрация анионных носителей заряда в монокристалле и нанокерамике Pb_{1-x}Sn_xF₂ (x = 0.2). Подвижность носителей $\mu_{mob} = 2.5 \cdot 10^{-6}$ cm²/sV (при 293 K) в монокристалле выше в 7 раз, чем в нанокерамике. Концентрация носителей составляет $n_{mob} = 1.7 \cdot 10^{21}$ и $3.6 \cdot 10^{21}$ сm³ (4.5 и 9.5% от общего числа анионов) для монокристалла и нанокерамики соответственно. Сравнение изоструктурных монокристаллов Pb_{0.8}Sn_{0.2}F₂, Pb_{0.67}Cd_{0.33}F₂ и Pb_{0.9}Sc_{0.1}F_{2.1} показывает, что анионные носители обладают максимальной подвижность ю твердом растворе на основе β -PbF₂ и SnF₂.

Ключевые слова: суперионная проводимость, фториды, структура флюорита, монокристаллы, нанокерамика.

DOI: 10.21883/FTT.2019.11.48406.419

1. Введение

Олово Sn и свинец Pb принадлежат к главной подгруппе 4 группы Периодической системы элементов и имеют электронную конфигурацию [Kr] $5s^25p^2$ и [Xe] $6s^26p^2$ соответственно. В дифторидах олова и свинца катионы имеют нетипичную для этих элементов валентность 2+. Особенностью электронной структуры катионов Sn²⁺ и Pb²⁺ является наличие неподеленной пары электронов, что приводит к их высокой поляризуемости ($\alpha_{\rm el} = 3-5$ Å³ [1]). Химическая связь в соединениях SnF₂ и PbF₂ является преимущественно ионной.

Высокотемпературная кубическая модификация β -PbF₂ (тип флюорита — CaF₂) является основным компонентом для синтеза большого числа супериоников Pb_{1-x}R_xF_{2+(m-2)x}, образующихся в бинарных системах PbF₂ – RF_m ($m \le 5$) [2–4]. К их числу относятся кристаллы Pb_{1-x}Sn_xF₂ (x — мольная доля SnF₂), обладающие аномально высокой униполярной анионной (по ионам фтора) проводимостью.

Введение SnF₂ в матрицу β -PbF₂ приводит к образованию в системе PbF₂ – SnF₂ [5] флюоритовой фазы (изовалентного твердого раствора) Pb_{1-x}Sn_xF₂ с постоянным числом атомов в элементарной ячейке и предельной концентрацией 33 mol.% SnF₂ (x = 0.33) при эвтектической температуре 565°C. Исследования ионного транспорта в суперионном проводнике Pb_{1-x}Sn_xF₂ выполнены на поликристаллических образцах [6,7], монокристаллах [8,9] и нанокерамике [10–13]. Также в работах [9,12] были определены частоты перескоков

ионных носителей заряда в монокристаллах (x = 0.1 и 0.2) и нанокерамике (x = 0.2-0.5).

Ранее [14,15] нами предложена кристаллофизическая модель ионного переноса, рассчитаны подвижность и концентрация носителей заряда в супериониках $Pb_{1-x}Cd_xF_2$ и $Pb_{1-x}Sc_xF_{2+x}$, изоструктурных кристаллам $Pb_{1-x}Sn_xF_2$.

Целью работы является рассмотрение кристаллофизической модели ионного переноса в суперионном проводнике $Pb_{1-x}Sn_xF_2$ (тип CaF_2), расчет подвижности μ_{mob} носителей заряда в монокристалле и нанокерамике $Pb_{0.8}Sn_{0.2}F_2$, сравнение значений μ_{mob} для изоструктурных супериоников $Pb_{0.8}Sn_{0.2}F_2$, $Pb_{0.67}Cd_{0.33}F_2$ и $Pb_{0.9}Sc_{0.1}F_{2.1}$ (монокристаллы).

Краткая история исследований по синтезу и ионной проводимости твердых растворов Pb_{1-x}Sn_xF₂ со структурой флюорита

Кристаллы твердого раствора $Pb_{1-x}Sn_xF_2$ являются ярким примером влияния на ион-проводящие характеристики фторидов изовалентного изоморфизма, который переводит их анионную подрешетку в суперионное состояние. Твердые растворы $Pb_{1-x}Sn_xF_2$ могут быть получены различными методами, однако их синтез связан с преодолением значительных экспериментальных трудностей. К ним относятся: высокая упругость паров и гигроскопичность дифторидов олова и свинца, переменная

2045

валентность катионов, большая разница в температурах плавления PbF_2 (825°C) и SnF_2 (~ 215°C).

В работах [6,7] поликристаллы $Pb_{1-x}Sn_xF_2$ ($0 \le x \le 0.25$) были получены сплавлением смесей дифторидов Pb и Sn в закрытых Au-ампулах при 250–300°C в течение 2–15 h. Обнаружено, что параметры решетки твердых растворов $Pb_{1-x}Sn_xF_2$ уменьшаются с ростом содержания SnF₂: от 5.94 Å (x = 0) до нижнего в эксперименте значения 5.922 Å (x = 0.23) по данным [6] и до 5.91 Å (x = 0.25) по данным [7].

В работе [9] методом сплавления в закрытых Рt-ампулах в атмосфере N₂ удалось синтезировать небольшие монокристаллы Pb_{1-x}Sn_xF₂ (x = 0.1 и 0.2) размером $\sim 1 \times 1 \times 1$ mm. Для этого сначала смеси дифторидов Pb и Sn отжигали при 880°C в течение 3 h, затем охлаждали до 385°C и вновь отжигали в течение 72 h Оказалось, что параметры решетки для монокристаллов Pb_{1-x}Sn_xF₂ увеличиваются с ростом содержания SnF₂: 5.934 Å (x = 0), 5.946 Å (x = 0.1) и 5.957 Å (x = 0.2), что находится в противоречии с данными [6,7].

В работах [10,11] нанокристаллические (25–29 nm) порошки Pb_{1-x}Sn_xF₂ получены механохимическим синтезом со скоростью помола 200–800 грт в течение 8 h в атмосфере N₂. Синтезированные неравновесные флюоритовые порошки Pb_{1-x}Sn_xF₂ содержали 20–50 mol.% SnF₂, что превышает верхнюю границу (33 mol.% SnF₂) равновесной области гомогенности из фазовой диаграммы системы PbF₂-SnF₂ [5]. Параметры решетки нанокристаллических Pb_{1-x}Sn_xF₂ (x = 0.2-0.5) практически не менялись: $a = 5.936 \pm 0.003$ Å [11]. Для проведения электрофизических исследований из нанокристаллических порошков прессовались керамические

Концентрационная зависимость проводимости $\sigma_{dc}(x)$ при 293 К для суперионика $Pb_{1-x}Sn_xF_2$: 1 — монокристаллы [9], 2 — поликристаллы [6], 3 — поликристаллы [7], 4 — нанокерамика [12].

Таблица 1. Статическая проводимость σ_{dc} при 293 К, энтальпия активации ионного транспорта ΔH_{σ} и энтальпия активации прыжков носителей ΔH_h в разных технологических формах суперионика Pb_{0.8}Sn_{0.2}F₂

Форма	$\sigma_{ m dc}, m S/cm$	ΔH_{σ} , eV	ΔH_h , eV	Литература
Поликристалл	$\frac{1.8 \cdot 10^{-4}}{1.6 \cdot 10^{-4}}$	0.35 ^{<i>a</i>} 0.34 ^{<i>a</i>}		[6] [7]
Монокристалл	$6.8\cdot10^{-4}$	0.332 ⁶	0.327	[9]
Нанокерамика	$\begin{array}{c} 1\cdot 10^{-4} \\ 2\cdot 10^{-4} \\ 2\cdot 10^{-4} \end{array}$	- 0.33 ^{<i>a</i>} 0.32 ^{<i>a</i>}	0.36 	[10] [11] [12]

Примечание. ^{*a*} из уравнения Аррениуса $\sigma_{dc} = \sigma_0 \exp(-\Delta H_{\sigma}/kT)$, ⁶ из уравнения Аррениуса–Френкеля $\sigma_{dc}T = A \exp(-\Delta H_{\sigma}/kT)$, экстраполяция.

таблетки. Их отжиг при 300° С в атмосфере N₂ в течение 6 h приводил к росту размера кристаллических зерен [10].

На рисунке показана построенная по экспериментальным данным [6,7,9,12] концентрационная зависимость проводимости $\sigma_{dc}(x)$ при 293 К для поли- нанои монокристаллов из равновесной области гомогенности твердого раствора Pb_{1-x}Sn_xF₂. Максимальной величиной проводимости обладает монокристаллическая форма суперионного проводника. С увеличением концентрации SnF₂ до 20 mol.% (x = 0.2) наблюдается рост проводимости σ_{dc} . При более высокой концентрации SnF2 (x > 0.2) кривая $\sigma_{\rm dc}(x)$ выходит на насыщение. В табл. 1 для сравнения приведены характеристики ионной проводимости твердого раствора Pb_{0.8}Sn_{0.2}F₂, синтезированного в разных технологических формах. При комнатной температуре (293 К) ионная проводимость $\sigma_{\rm dc} = 6.8 \cdot 10^{-4} \, {
m S/cm}$ монокристалла $Pb_{0.8}Sn_{0.2}F_2$ превышает в $\sim 10^5$ раз собственную ионную электропроводность флюоритовой матрицы β-PbF₂ $(1.0 \cdot 10^{-8} \text{ S/cm } [16], 1.5 \cdot 10^{-8} \text{ S/cm } [17]).$

Кристаллофизическая модель фтор-ионного транспорта в суперионном проводнике Pb_{1-x}Sn_xF₂

В кристаллах простых фторидов β -PbF₂ и MF_2 (M =Ca, Sr, Ba, Cd) со структурой флюорита точечные дефекты образуются в анионной подрешетке по механизму Френкеля (антифренкелевские дефекты) [18]:

$$\beta \text{-PbF}_2 \to F_i^- + V_F^+, \tag{1}$$

где F_i^- — межузельный ион фтора и V_F^+ — вакансия фтора. При охлаждении кристалла β -PbF₂ "термические" антифренкелевские дефекты аннигилируют. При охлаждении твердых растворов Pb_{1-x}Sn_xF₂ концентрация "кристаллохимических" дефектов в них сохраняется, в

отличие от антифренкелевских дефектов во флюоритовой матрице β -PbF₂. Ионные радиусы катионов Pb²⁺ (1.43 Å) и Sn²⁺ (1.41 Å) близки (система "кристаллических радиусов" Шеннона для координационного числа 8 [19]). Поэтому различие электронных конфигураций катионов Pb²⁺ и Sn²⁺ (а не размерный фактор) является, по-видимому, основной причиной сильного структурного разупорядочения анионной подрешетки, приводящего к образованию "кристаллохимических" дефектов и к появлению высокой фтор-ионной проводимости у кристаллов Pb_{1-x}Sn_xF₂.

Ионная проводимость кристаллов определяется произведением концентрации $n_{\rm mob}$ и подвижности $\mu_{\rm mob}$ носителей заряда

$$\sigma_{\rm dc} = q n_{\rm mob} \mu_{\rm mob} = (q n_0 \mu_0 / T) \exp[-\Delta H_\sigma / kT], \quad (2)$$

где q — заряд, n_0 и μ_0 — предэкспоненциальные множители концентрации и подвижности соответственно. В случае кристаллов со структурой флюорита энтальпия активации ионной проводимости равна

$$\Delta H_{\sigma} = \Delta H_f / 2 + \Delta H_h, \tag{3}$$

где ΔH_f — энтальпия образования анионных носителей и ΔH_h — энтальпия активации прыжков v_h анионных носителей.

Для кристаллов $Pb_{1-x}Sn_xF_2$ в пределах экспериментальной точности наблюдается [9,12]:

$$\Delta H_{\sigma} \approx \Delta H_h. \tag{4}$$

Из (3) и (4) следует, что концентрация "кристаллохимических" носителей заряда является температурно-независимой величиной ($\Delta H_f = 0$) и определяется структурным механизмом замещений катионов Pb²⁺ на Sn²⁺. Замена Pb²⁺ на Sn²⁺ приводит к смещению ионов фтора из решеточных позиций в межузельные, переводя "жесткую" анионную подрешетку кристаллов Pb_{1-x}Sn_xF₂ в структурно-разупорядоченное состояние. При охлаждении разупорядоченное состояние анионной подсистемы сохраняется, что приводит к высоким значениям ионной проводимости при комнатной температуре.

Согласно структурным исследованиям [9,20] во флюоритовых кристаллах $Pb_{1-x}M_xF_2$ (M = Sn, Cd) наблюдается недозаселенность основных позиций фтора 8cпр. гр. $Fm\bar{3}m$. Дефицит ионов фтора в основных позициях 8c компенсируется появлением подвижных ионов фтора в межузельных позициях (носители заряда F_i^-) вблизи позиции 4b. Наличие ионов F_i^- в межузельных позициях флюоритовой структуры $Pb_{1-x}Sn_xF_2$ подтверждено рентгеноструктурным анализом [9].

В кристаллах Pb_{1-x}Sn_xF₂ (тип CaF₂) в условиях тепловой активации в прыжковом механизме проводимости участвуют носители заряда (ионы фтора), расположенные в кристаллографических межузельных позициях анионной подрешетки. Величина энтальпии активации ионной проводимости $\Delta H_{\sigma} = 0.33$ eV для кристалла

 $Pb_{0.8}Sn_{0.2}F_2$ близка к $\Delta H_{\sigma} = 0.39 - 0.40$ eV для кристаллов $Pb_{0.67}Cd_{0.33}F_2$ [14,21,22] и $Pb_{0.9}Sc_{0.1}F_{2.1}$ [2,15,23],

лов Pb_{0.67}Cd_{0.33}F₂ [14,21,22] и Pb_{0.9}Sc_{0.1}F_{2.1} [2,15,23], в которых реализуется междоузельный механизм ионного транспорта. Теоретические расчеты методом молекулярной динамики [24] показывают, что в анионизбыточных (содержащих межузельные анионы) кристаллах $M_{1-x}R_xF_{2+x}$ наиболее вероятными являются прыжки подвижных ионов фтора по неколлинеарному межузельному механизму. При этом межузельный анион F_i^- , находящийся в кристаллографической позиции 4b пр. гр. $Fm\bar{3}m$, вытесняет ближайший анион, расположенный в основной позиции 8c, в соседнее незанятое межузельное положение (в элементарном акте ионного переноса участвуют два иона фтора).

4. Подвижность носителей заряда в монокристалле и нанокерамике $Pb_{1-x}Sn_xF_2$ (x = 0.2)

В работах [9,12] были получены данные по частотам прыжков v_h носителей заряда в монокристалле и нанокерамике $Pb_{1-x}Sn_xF_2$ (x = 0.2) из зависимости динамической проводимости [25]:

$$\sigma(\nu) = \sigma_{\rm dc} [1 + (\nu/\nu_h)^n]. \tag{5}$$

При $v < v_h$ — ионные носители участвуют в электропроводности, а при $v > v_h$ — в диэлектрической релаксации. Подвижность μ_{mob} носителей заряда задается соотношением Нернста—Эйнштейна и, в основном, определяется их частотой прыжков v_h и длиной прыжка d:

$$\mu_{\rm mob} = q \nu_h d^2 / 6kT, \tag{6}$$

где q — заряд, T — температура. Для межузельного механизма проводимости с неколлинеарными прыжками ионов фтора расстояние прыжка во флюоритовом кристалле (в первом приближении в качестве межузельной позиции взята позиция 4b) равно

$$d = (a/2)\sqrt{3},\tag{7}$$

где *а* — параметр элементарной ячейки. С учетом кристаллохимических данных это позволяет рассчитать из (2), (6) и (7) подвижность μ_{mob} и концентрацию n_{mob} носителей заряда. В рамках такого подхода нами ранее проведены исследования [14, 15] микроскопики ионного переноса в супериониках Pb_{0.67}Cd_{0.33}F₂ и Pb_{0.9}Sc_{0.1}F_{2.1}, изоструктурных (тип флюорита) кристаллам Pb_{1-x}Sn_xF₂.

Значения $\mu_{\rm mob}$ (при 293 K) и $n_{\rm mob}$ для монокристаллического и нанокерамического твердого раствора Pb_{0.8}Sn_{0.2}F₂ приведены в табл. 2. Можно видеть, что подвижность носителей в монокристаллической форме суперионика ($\mu_{\rm mob} = 2.5 \cdot 10^{-6} \, {\rm cm}^2/{\rm sV}$) по сравнению с нанокерамической выше в 7 раз.

Кристалл	<i>a</i> , Å	$\sigma_{ m dc},$ S/cm	$ \nu_h, $ Hz	$\mu_{ m mob},\ { m cm}^2/{ m sV}$	$n_{mob},$ cm ³
Pb _{0.8} Sn _{0.2} F ₂ ^{<i>a</i>}	5.957 [5]	$6.8\cdot 10^{-4}$ [5]	$1.4 \cdot 10^8$ [5]	$2.5 \cdot 10^{-6}$	$1.7\cdot 10^{21}$
$Pb_{0.8}Sn_{0.2}F_{2}{}^{\delta}$	5.935 [7]	$2\cdot 10^{-4}$ [7,8]	$2.0\cdot 10^{-7}$ [8]	$3.5 \cdot 10^{-7}$	$3.6\cdot 10^{21}$
$Pb_{0.67}Cd_{0.33}F_2^{\ a}$ [10]	5.7575	$1.6\cdot 10^{-4}$	$2.7 \cdot 10^7$	$2.0\cdot 10^7$	$5.1\cdot10^{21}$
$Pb_{0.9}Sc_{0.1}F_{2.1}^{a}$ [11]	5.87	$1.5 \cdot 10^{-4}$	$1.5 \cdot 10^7$	$4.5 \cdot 10^{-7}$	$2.0 \cdot 10^{21}$

Таблица 2. Статическая проводимость σ_{dc} , частота прыжков v_h , подвижность μ_{mob} при 293 К и концентрация n_{mob} носителей заряда в супериониках на основе β -PbF₂

 Π римечание.
 a монокристалл, $^{\delta}$ нанокерамика.

Значение μ_{mob} в монокристалле $Pb_{0.8}Sn_{0.2}F_2$ выше подвижности межузельных ионов фтора F_i^- ($\mu_i = 8.9 \cdot 10^{-9} \text{ cm}^2/\text{sV}$ [16]), но ниже подвижности вакансий фтора V_F^+ ($\mu_v = 2.0 \cdot 10^{-5} \text{ cm}^2/\text{sV}$ [16]) в монокристалле флюоритовой матрицы β -PbF₂.

Сравнение ион-проводящих свойств монокристаллов изоструктурных твердых растворов $Pb_{0.8}Sn_{0.2}F_2$, $Pb_{0.67}Cd_{0.33}F_2$ и $Pb_{0.9}Sc_{0.1}F_{2.1}$ показывает, что анионные носители обладают максимальной подвижностью в твердом растворе на основе β -PbF₂ и SnF₂ (табл. 2). Значение μ_{mob} для суперионика $Pb_{0.8}Sn_{0.2}F_2$ выше подвижности носителей в кристаллах $Pb_{0.67}Cd_{0.33}F_2$ и $Pb_{0.9}Sc_{0.1}F_{2.1}$ в 12.5 и 5.5 раз соответственно.

Величина концентрации носителей $n_{\rm mob}$ для монокристалла ${\rm Pb}_{0.8}{\rm Sn}_{0.2}{\rm F}_2$ превышает в $4\cdot 10^5$ раз концентрацию анти-френкелевских дефектов во флюоритовой матрице β -PbF₂ ($n_{\rm mob} = 4.3\cdot 10^{15}\,{\rm cm}^{-3}$ [17]), что является прямым доказательством сильного структурного разупорядочения в анионной подсистеме кристаллов Pb_{1-x}Sn_xF₂.

5. Заключение

Суперионная проводимость твердых растворов Pb_{1-x}Sn_xF₂ обусловлена появлением высокой подвижности у ионов F^{-} вследствие структурного разупорядочения анионной подрешетки при изоморфных замещениях катионов Pb²⁺ на Sn²⁺. Предложена кристаллофизическая модель фтор-ионного переноса в суперионном проводнике $Pb_{1-x}Sn_xF_2$. Ионная проводимость $Pb_{1-x}Sn_xF_2$ обусловлена непрямыми прыжковыми перемещениями подвижных межузельных ионов F_i по флюоритовой решетке. Рассчитаны параметры носителей заряда в монокристаллической ($\mu_{\rm mob} =$ $= 2.5 \cdot 10^{-6} \,\mathrm{cm}^2/\mathrm{sV}$, $n_{\mathrm{mob}} = 1.7 \cdot 10^{21} \,\mathrm{cm}^{-3})$ и нанокерамической ($\mu_{\text{mob}} = 3.5 \cdot 10^{-7} \text{ cm}^2/\text{sV}, n_{\text{mob}} = 3.6 \cdot 10^{21} \text{ cm}^{-3}$) формах суперионика $Pb_{1-x}Sn_xF_2$ с x = 0.2. Подвижность носителей заряда в монокристалле Pb_{0.8}Sn_{0.2}F₂ выше в 12.5 и 5.5 раз, чем в изоструктурных супериониках Рb_{0.67}Cd_{0.33}F₂ и Pb_{0.9}Sc_{0.1}F_{2.1}.

Финансирование работы

Работа выполнена при поддержке Министерства науки и высшего образования в рамках выполнения работ по Государственному заданию Федерального научно-исследовательского центра "Кристаллография и фотоника" РАН.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] C.K. Jorgensen. Topics Current Chem. 56, 1 (1975).
- [2] Н.И. Сорокин, П.П. Федоров, Б.П. Соболев. Неорган. материалы **33**, 5 (1997).
- [3] L.N. Patro, K. Hariharan. Solid State Ionics 239, 41 (2013).
- [4] M.A. Reddy, M. Fichtner. Fluoride-Ion Conductors/ Eds W.C. West, J. Nanda. World Scientific Publ., Singapore (2016). P. 277.
- [5] П.П. Федоров, В.К. Гончарук, И.Г. Масленникова, И.А. Телин, Т.Ю. Глазунова. Журн. неорган. химии 61, 252 (2016).
- [6] C. Lucat, A. Rhandour, L. Cot, J.M. Reau. Solid State Commun. 32, 167 (1979).
- [7] S. Vilminot, G. Perez, W. Granier, L. Cot. Solid State Ionics 2, 91 (1981).
- [8] Y. Ito, T. Mukoyama, K. Ashio, K. Yamamoto, Y. Suga, S. Yoshikado, C. Julien, T. Tanaka. Solid State Ionics 106, 291 (1998).
- [9] S. Yoshikato, Y. Ito, Y.M. Reau. Solid State Ionics 154–155, 503 (2002).
- [10] M. Uno, M. Onitsuka, Y.Ito, S. Yoshikado. Solid State Ionics 176, 2493 (2005).
- [11] M.M. Ahmad, Y. Yamane, K. Yamada, S. Tanaka. J. Phys. D 40, 6020 (2007).
- [12] M.M. Ahmad, K. Yamada. J. Chem. Phys. 127, 124507 (2007).
- [13] M.M. Ahmad. J. Mater. Sci.: Mater. Electron. 25, 4398 (2014).
- [14] Н.И. Сорокин. ФТТ 57, 1325 (2015).
- [15] Н.И. Сорокин. ФТТ 60, 710 (2018).
- [16] R.W. Bonne, J. Schoonman. J. Electrochem. Soc. 124, 28 (1977).

- [17] И.В. Мурин, А.В. Глумов, О.В. Глумов. Электрохимия 15, 1119 (1979).
- [18] A.B. Lidiard. Crystals with the fluorite structure/ Ed. W. Hayes. Clarendon Press, Oxford (1974). P. 101.
- [19] R.D. Shannon. Acta Cryst. A 32, 751 (1976).
- [20] V. Trnovcova, P.P. Fedorov, M. Ozvoldova, I.I. Buchinskaya, E.A. Zhurova. J. Optoelectron. Adv. Mater. 5, 627 (2003).
- [21] И.В. Мурин, С.В.Чернов. Изв. АН СССР. Неорган. материалы **8**, 168 (1982).
- [22] Н.И. Сорокин, И.И. Бучинская, Б.П. Соболев. Журн. неорган. химии **37**, 2653 (1992).
- [23] Н.И. Сорокин, Б.П. Соболев, М. Брайтер. ФТТ 44, 1506 (2002).
- [24] И.Ю. Готлиб, И.В. Мурин, И.В. Пиотровская, Е.Н. Бродская. Неорган. материалы **38**, 358 (2002).
- [25] D.P. Almond, C.C. Hunter, A.R. West. J. Mater. Sci. 19, 3236 (1984).

Редактор Д.В. Жуманов