Структурная трактовка изменения свойств нанокомпозитов полимер/углеродные нанотрубки у порога перколяции нанонаполнителя

© Г.В. Козлов, И.В. Долбин¶

06

Кабардино-Балкарский государственный университет им. Х.М. Бербекова, 360004 Нальчик, Россия ¶ e-mail: i dolbin@mail.ru

Поступило в Редакцию 20 марта 2019 г. В окончательной редакции 20 марта 2019 г. Принято к публикации 22 апреля 2019 г.

> Структура нанонаполнителя в полимерной матрице нанокомпозитов полимер/углеродные нанотрубки может быть охарактеризована размерностью каркаса нанонаполнителя, которая служит прямым показателем уровня его агрегации. Процесс формирования такого каркаса рассмотрен как результат взаимодействия матричного полимера и углеродных нанотрубок, что позволяет определить его размерность в рамках фрактального анализа. Обнаружено, что размерность каркаса углеродных нанотрубок изменяется как качественно, так и количественно у их порога перколяции, отражая разный уровень агрегации. Указанная размерность однозначно определяет степень усиления рассматриваемых нанокомпозитов и их структурное состояние как системы.

> Ключевые слова: нанокомпозит, углеродные нанотрубки, структура, каркас нанонаполнителя, уровень агрегации, степень усиления, фрактальная размерность.

DOI: 10.21883/JTF.2019.10.48176.101-19

Введение

В настоящее время углеродные нанотрубки [1] и графены [2] рассматриваются как наиболее перспективные нанонаполнители для полимерных нанокомпозитов. Этот постулат базируется на исключительно высоких механических свойствах и большой степени анизотропии этих нанонаполнителей [3]. Однако свойства нанокомпозитов, наполненных этими нанонаполнителями, не всегда оправдывают оптимистические ожидания. Это обусловлено хорошо известным фактом: нанокомпозиты представляют собой структурно сложные системы, чьи свойства определяются значительным числом факторов, часто взаимосвязанных между собой — агрегацией (структурой) нанонаполнителя в полимерной матрице, его ориентацией межфазными эффектами и т.п. [4].

Как хорошо известно [5,6], для упомянутых выше анизотропных нанонаполнителей наблюдается общий эффект: при очень малых содержаниях нанонаполнителя реализуется сильное улучшение механических свойств, которое далее сменяется их резким дискретным снижением. Обычно этот эффект связывается с достижением нанонаполнителем своего порога перколяции φ_c [6,7]. Однако количественная структурная модель этого эффекта еще не разработана. С физической точки зрения достижение φ_c означает переход структуры нанонаполнителя от системы отдельных его агрегатов к их непрерывному каркасу [8]. Кроме того, следует учитывать еще один очень важный структурный аспект, а именно все основные структурные компоненты полимерных нанокомпозитов (полимерная матрица [9], агрегаты нанонаполнителя [1], каркас частиц нанонаполнителя [10] и т.д.) являются фрактальными объектами, что делает обязательным их описание в рамках фрактального анализа [11]. Поэтому целью настоящей работы является количественное описание в рамках фрактального анализа структурного перехода нанонаполнителя (углеродных нанотрубок) у порога перколяции и моделирование влияния этого перехода на модуль упругости нанокомпозитов.

Методика эксперимента

В настоящей работе выполнен анализ результатов, полученных авторами работы [5], где в качестве нанонаполнителя были использованы многослойные углеродные нанотрубки (МУНТ), имеющие диаметр 16.6 ± 3.9 nm и длину $1.20 \pm 0.6 \,\mu$ m. Указанные МУНТ функционализировались группами –ОН для получения смеси с полиметилметакрилатом (ПММА). Содержание МУНТ в рассматриваемых нанокомпозитах варьировалось в пределах 0.065 - 1.30 wt.% [5].

Нанокомпозиты ПММА/УНТ синтезированы методом радикальной полимеризации *in situ*. Пленки нанокомпозитов толщиной 75 μ m получены методом полива их растворов в толуоле на поверхность тефлона. Для испытаний использовались образцы в виде полос размером 10 × 2.5 mm [5].

Механические испытания на одноосное растяжение пленочных образцов нанокомпозитов ПММА/УНТ выполнены на приборе для растяжения Zwick модели Z100 при температуре 293 K и скорости деформации $\sim 10^{-3}\,s^{-1}$ [5].

Результаты и их обсуждение

Как хорошо известно [1,4,12,13], углеродные нанотрубки в полимерной матрице нанокомпозитов формируют кольцеобразные структуры (или их фрагменты) радиуса $R_{\rm CNT}$, которые являются фрактальными объектами. Величину $R_{\rm CNT}$ можно определить с помощью следующего уравнения [14]:

$$b_{\alpha} = 56(R_{\rm CNT}^2 - 0.022),\tag{1}$$

где b_a — безразмерный параметр, который является характеристикой уровня межфазной адгезии, а $R_{\rm CNT}$ определяется в μ m.

Параметр b_{α} определен с помощью перколяционного соотношения [15]

$$\frac{E_n}{E_m} = 1 + 11(2.8b_\alpha \varphi_n)^{1.7},$$
(2)

где E_n и E_m — модули упругости нанокомпозита и матричного полимера соответственно (отношение E_n/E_m принято называть степенью усиления нанокомпозита), φ_n — объемное содержание нанонаполнителя, принятое для рассматриваемых нанокомпозитов согласно данным работы [5].

Формирование каркаса частиц (агрегатов частиц) нанонаполнителя ниже и выше порога перколяции существенно различается. В первом случае указанный каркас формируется как результат взаимодействий агрегатов (кольцеобразных структур углеродных нанотрубок) и полимерной матрицы, а во втором — как результат взаимодействий агрегатов углеродных нанотрубок между собой. Это обстоятельство позволяет определить размерность каркаса частиц нанонаполнителя D_N следующим образом [16]:

$$D_N = \frac{d(2D_1 - D_2)}{d + 2(D_1 - D_2)},\tag{3}$$

где d — размерность евклидова пространства, в котором рассматривается фрактал (очевидно, в нашем случае d = 3), D_1 и D_2 — размерности взаимодействующих при формировании каркаса нанонаполнителя структурных компонент.

Как следует из приведенного выше краткого обсуждения, ниже порога перколяции углеродных нанотрубок $(\varphi_n < \varphi_c) \ D_1 = d_f$ и $D_2 = D_f$, где d_f и D_f — фрактальные размерности структуры полимерной матрицы и агрегатов (кольцеобразных структур) углеродных нанотрубок соответственно, а выше порога перколяции $(\varphi_n \ge \varphi_c) \ D_1 = D_2 = D_f$.

Рассмотрим методы расчета размерностей d_f и D_f . Величину d_f можно определить, согласно уравнению [9]:

$$d_f = (d-1)(1+\nu_n),$$
(4)

где v_n — коэффициент Пуассона, оцениваемый по результатам механических испытаний с помощью соотно-

Рис. 1. Зависимость размерности каркаса углеродных нанотрубок D_N от объемного содержания нанонаполнителя φ_n для нанокомпозитов ПММА/МУНТ. Вертикальная штриховая линия 2 указывает порог перколяции углеродных нанотрубок φ_c .

шения [9]:

$$\frac{\sigma_Y}{E} = \frac{1-2\nu}{6(1+\nu_n)},\tag{5}$$

где σ_Y и *E* — предел текучести и модуль упругости полимерного материала.

Размерность D_f определена применением следующего уравнения, полученного в рамках модели необратимой агрегации [17]:

$$R_{\rm CNT} = 3.4 \varphi_n^{-1/(d-D_f)},\tag{6}$$

где $R_{\rm CNT}$ задается в nm.

На рис. 1 приведена зависимость размерности каркаса углеродных нанотрубок в полимерной матрице D_N от объемного содержания нанонаполнителя φ_n для нанокомпозитов ПММА/МУНТ. Как можно видеть, при $\varphi_n = \varphi_c$ происходит резкий спад размерности D_N , обусловленный изменением взаимодействий углеродные нанотрубки—полимерная матрица на взаимодействия углеродных нанотрубок между собой. Величину порога перколяции φ_c наиболее просто можно оценить следующим образом [18]:

$$\varphi_c = \frac{\pi}{12} \left(\frac{d_{\rm CNT}}{2L_{\rm CNT}} \right),\tag{7}$$

где d_{CNT} и L_{CNT} — диаметр и длина углеродных нанотрубок, а значение φ_c при указанных выше величинах d_{CNT} и L_{CNT} равно 0.0018 (указано вертикальной штриховой линией 2 на рис. 1).

Авторы [7,10] показали, что в случае перколяционных кластеров их критические индексы для первого, второго и третьего подмножеств связаны с размерностью этих

Рис. 2. Зависимость критического индекса a в уравнении (11) от размерности каркаса углеродных нанотрубок D_N для нано-композитов ПММА/МУНТ (I) и ПА-6/УНТ (2).

кластеров d_f следующими соотношениями:

$$\beta = \frac{1}{d_f},\tag{8}$$

$$\nu = \frac{2}{d_f},\tag{9}$$

$$t = \frac{4}{d_f}.$$
 (10)

Из уравнений (8)-(10) следует, что универсальность критических индексов перколяционной системы связана с ее фрактальной размерностью [7]. В работе [7] были конкретизированы указанные выше подмножества применительно к структуре полимерных нанокомпозитов следующим образом: первым подмножеством (n = 1) являются межфазные области, вторым (n = 2) — совокупность межфазных областей и нанонаполнителя и третьим (n = 4) — собственно наполнитель. В соответствии с этой градацией можно рассматривать истинные, промежуточные нанокомпозиты и микрокомпозиты соответственно [19].

Общее перколяционное соотношение для определения степени усиления E_n/E_m нанокомпозитов имеет следующий вид [7]:

$$\frac{E_n}{E_m} = 1 + 11(\varphi_n)^a,$$
 (11)

где перколяционный индекс *а* близок (не обязательно равен) к критическим индексам перколяционной системы β , ν и *t* в зависимости от армирующей компоненты нанокомпозитов. В рамках такой трактовки $a = 1/d_f$ при $\varphi_n < \varphi_c$ и $a = 2/d_f$ при $\varphi_n \ge \varphi_c$ [7].

На рис. 2 приведена зависимость индекса а, определенного указанным способом, от размерности каркаса углеродных нанотрубок D_N , рассчитанной согласно

Сравнение значений фрактальной размерности структуры нанокомпозитов ПММА/МУНТ, определенных двумя методами

φ_n	d_f , уравнение (4)	d_f , уравнение (15)
0.0003	2.703	2.704
0.0005	2.727	2.711
0.0010	2.769	2.726
0.0015	2.805	2.734
0.0030	2.631	2.533
0.0060	2.702	2.590

уравнению (3). Как следует из данных рис. 2, наблюдается линейное снижение *a* по мере роста D_N , предполагающее рост степени усиления E_n/E_m нанокомпозитов при прочих равных условиях. Для проверки общности приведенной на рис. 2 корреляции $a(D_N)$ использованы данные работы [20] для нанокомпозитов полиамид-6/углеродные нанотрубки (ПА-6/УНТ), которые подтверждают предполагаемую общность, по крайней мере, для нанокомпозитов полимер/углеродные нанотрубки. Представленную на рис. 2 корреляцию $a(D_N)$ можно выразить следующим эмпирическим уравнением:

$$a = 1.6 - (D_f - 1) \tag{12}$$

или

$$a = 2.6 - D_f.$$
 (13)

Сочетание уравнений (11) и (13) позволяет получить формулу для определения степени усиления нанокомпозитов полимер/углеродные нанотрубки:

$$\frac{E_n}{E_m} = 1 + 11(\varphi_n)^{2.60 - D_f}.$$
(14)

Отметим, что уравнение (14) подтверждает постулат авторов [21], которые предположили, что свойства полимерных нанокомпозитов контролируются структурой нанонаполнителя, формируемой в полимерной матрице. Кроме того, авторы [10] показали взаимосвязь размерностей d_f и D_N , определяемую следующим соотношением:

$$d_f = 1.86 + 0.38D_N. \tag{15}$$

Сравнение величин фрактальной размерности d_f структуры нанокомпозитов ПММА/МУНТ, рассчитанных согласно уравнениям (4) и (15), приведено в таблице. Как следует из данных таблицы, указанные методы расчета d_f дали хорошее соответствие (их среднее расхождение составляет ~ 2%). Уравнение (15) предполагает, что формирование каркаса частиц (агрегатов частиц) нанонаполнителя приводит к росту d_f и в интервале типичных значений $D_N = 1-3$ величина d_f варьирует в пределах 2.24–3.0. Отсутствие указанного каркаса ($D_N = 0$) может привести к формированию пористой полимерной матрицы нанокомпозита ($d_f < 2$) и резкому снижению его степени усиления.

Рис. 3. Сравнение рассчитанной, согласно уравнению (14), (1) и полученной экспериментально (2) зависимостей степени усиления E_n/E_m от объемного содержания нанонаполнителя φ_n для нанокомпозитов ПММА/МУНТ.

На рис. 3 приведено сравнение рассчитанной согласно уравнению (14) и полученной экспериментально зависимостей $E_n/E_m(\varphi_n)$ для нанокомпозитов ПММА/МУНТ, которое показало хорошее соответствие предложенной модели и эксперимента (их среднее расхождение составляет ~ 3%).

И в заключение рассмотрим физический смысл размерности D_N , наиболее общим определением которой является следующее соотношение [10]:

$$D_N = \frac{\ln N}{\ln \rho},\tag{16}$$

где N — число частиц размером ρ .

Из уравнения (16) следует, что при фиксированном содержании частиц увеличение D_N определяет повышение N при одновременном снижении/уменьшении степени агрегации нанонаполнителя ρ . Именно величина ρ является наиболее важным фактором, определяющим свойства полимерных нанокомпозитов [15].

Заключение

Таким образом, результаты работы продемонстрировали, что структура углеродных нанотрубок в полимерной матрице, характеризуемая фрактальной размерностью их каркаса, контролирует свойства нанокомпозитов полимер/углеродные нанотрубки. Достижение порога перколяции нанонаполнителя приводит к существенным как качественным, так и количественным изменениям указанной размерности. Размерность каркаса углеродных нанотрубок определяет структурное состояние нанокомпозита как системы.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Schaefer D.W., Justice R.S. // Macromolecules. 2007. Vol. 40. N 24. P. 8501–8517. DOI: 10.1021/ma070356w
- [2] Kim H., Abdala A.A., Macosko C.W. // Macromolecules. 2010.
 Vol. 43. N 16. P. 6515–6530. DOI: 10.1021/ma100572e
- [3] Sun X., Sun H., Li H., Peng H. // Adv. Mater. 2013. Vol. 25. N 37. P. 5153–5177. DOI: 10.1002/adma.201301926
- [4] Omidi M., Hossein Rokni D.T., Milani A.S., Seethaler R.J., Arasteh R. // Carbon. 2010. Vol. 48. N 11. P. 3218–3228. DOI: 10.1016/j.carbon.2010.05.007
- Blond D., Barron V., Ruether M., Ryan K.P., Nicolosi V., Blau W.J., Coleman J.N. // Adv. Funct. Mater. 2006. Vol. 16. N 15. P. 1608–1614. DOI: 10.1002/adfm.200500855
- [6] Khan U, May P, O'Neill A, Bell A.P., Boussac E., Martin A., Semple J, Coleman J.N. // Nanoscale. 2013. Vol. 5. N 3. P. 581–587. DOI: 10.1039/c2nr33049k
- [7] Микитаев А.К., Козлов Г.В. // ФТТ. 2015. Т. 57. Вып. 5. С. 961–964. [Mikitaev A.K., Kozlov G.V. // Physics Solid State. 2015. Vol. 57. N 5. P. 974–977. DOI: 10.1134/S1063783415050224]
- [8] Vermant J., Ceccia S., Dolgovskij M.K., Maffettone P.L., Macosko C.W. // J. Rheology. 2007. Vol. 51. N 3. P. 429– 450. DOI: 10.1122/1.2516399
- [9] Козлов Г.В.Фрактальная механика полимеров. М.: Изд-во Спутник +, 2016. 356 с.
- [10] Козлов Г.В., Долбин И.В. // Известия вузов. Физика. 2018.
 Т. 61. Вып. 6. С. 151–154. [Kozlov G.V., Dolbin I.V. // Russ. Phys. J. 2018. Vol. 61. N 5. P. 974–978.
 DOI: 10.1007/s11182-018-1485-4]
- [11] Rammal R., Toulouse G. // J. Phys. Lett. 1983. Vol. 44.
 N 1. P. L13–L22. DOI: 10.1051/jphyslet:0198300440101300
- Shady E., Gowayed Y. // Composites Sci. Tech. 2010. Vol. 70.
 N 10. P. 1476–1481. DOI: 10.1016/j.compscitech.2010.04.027
- [13] Martone A., Faiella G., Antonucci V., Giordano M., Zarrelli M. // Composites Sci. Tech. 2011. Vol. 71. N 8. P. 1117–1123. DOI: 10.1016/j.compscitech.2011.04.002
- [14] Yanovsky Yu.G., Kozlov G.V., Zhirikova Z.M., Aloev V.Z., Karnet Yu.N. // Intern. J. Nanomechan. Sci. Technol. 2012.
 Vol. 3. N 2. P. 99–124.
 DOI: 10.1615/NanomechanicsSciTechnolIntJ.v3.i2.10
- [15] Микитаев А.К., Козлов Г.В., Заиков Г.Е. Полимерные нанокомпозиты: многообразие структурных форм и приложений. М.: Наука, 2009. 278 с.
- [16] Hentschel H.G.E., Deutch J.M. // Phys. Rev. A. 1984. Vol. 29.
 N 3. P. 1609–1611. DOI: 10.1103/PhysRevA.29.1609
- [17] Микитаев А.К., Козлов Г.В. // ДАН. 2015. Т. 462. Вып. 1.
 С. 41–44. [Mikitaev A.K., Kozlov G.V. // Doklady Physics. 2015. Vol. 60. N 5. P. 203–205.
 DOI: 10.1134/S102833581505002X]
- [18] Bridge B. // J. Mater. Sci. Lett. 1989. Vol. 8. N 2. P. 102–103. DOI: 10.1007/BF00720265
- [19] Микитаев А.К., Козлов Г.В. // ФТТ. 2017. Т. 59. Вып. 7. С. 1418–1421. [Mikitaev A.K., Kozlov G.V. // Phys. Solid State. 2017. Vol. 59. N 7. P. 1446–1449. DOI: 10.1134/S1063783417070149]
- [20] Gao J., Itkis M.E., Yu A., Bekyarova E., Zhao B., Haddon R.C. // J. Amer. Chem. Soc. 2005. Vol. 127. N 11.
 P. 3847–3854. DOI: 10.1021/ja0446193
- [21] Schaefer D.W., Zhao J., Dowty H., Alexander M., Orler E.B. // Soft. Matter. 2008. Vol. 4. N 10. P. 2071–2079. DOI: 10.1039/b805314f