Перенос тепла по немагнитным литиевым цепочкам в новом одномерном суперионике LiCuVO₄

© Л.С. Парфеньева, А.И. Шелых, И.А. Смирнов, А.В. Прокофьев*, В. Ассмус*, X. Мисиорек**, Я. Муха**, А. Ежовский**, И.Г. Васильева***

Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

* Физический институт Университета им. И.-В. Гёте Франкфурта-на-Майне,

60054 Франкфурт-на-Майне, Германия

** Институт низких температур и структурных исследований Польской академии наук,

50-950 Вроцлав, Польша

*** Институт неорганической химии Сибирского отделения Российской академии наук, 630090 Новосибирск, Россия

E-mail: igor.smirnov@pop.ioffe.rssi.ru

(Поступила в Редакцию 15 апреля 2003 г.)

В интервале температур 5–300 К измерена теплопроводность трех монокристаллических образцов квазиодномерной спиновой системы LiCuVO₄ с различной концентрацией дефектов (преимущественно вакансий в подрешетке лития) вдоль кристаллографического направления *a* (вдоль немагнитных литиевых цепочек).

При T > 150-200 К обнаружен рост теплопроводности по сравнению с теплопроводностью кристаллической решетки, который удалось объяснить, лишь предположив, что LiCuVO₄ является супериоником. Эта гипотеза подтверждена результатами измерения электропроводности LiCuVO₄ в интервале температур 300-500 К. В качестве переносчика заряда в этом соединении выступают ионы Li⁺, которые перемещаются по собственным дефектам материала (проводящим каналам) — вакансиям в подрешетке лития. Показано, что LiCuVO₄ является достаточно хорошим супериоником, перспективным для практических применений.

Работа выполнена в рамках двухсторонних соглашений между Российской академией наук, Немецким научным обществом и Польской академией наук при финансовой поддержке Российского фонда фундаментальных исследований (грант № 02-02-17657).

Повышенный интерес у экспериментаторов и теоретиков ведущих лабораторий Швейцарии, Германии, Японии, Франции и США в последние годы вызывает исследование теплопроводности \varkappa низкоразмерных объектов, особенно квазиодномерных (спиновые цепочки и спиновые лестницы) и квазидвумерных систем, в которых был обнаружен перенос тепла спинонами (см. работы [1–7] и ссылки в них).

В [1–7] в основном измерялась *х* монокристаллов купратов стронция различного состава. В настоящей работе мы провели исследование теплопроводности монокристаллов квазиодномерного антиферромагнетика LiCuVO₄.

LiCuVO₄ кристаллизуется в орторомбически искаженной обратной структуре шпинели, в которой немагнитные ионы V⁵⁺ занимают тетраэдрические пустоты, а немагнитные Li⁺ и магнитные ионы Cu²⁺ (S = 1/2) располагаются упорядоченным образом в октаэдрических пустотах анионной подрешетки [8] (рис. 1, *a*). CuO₆- и LiO₆-октаэдры образуют соответственно "магнитные" и "немагнитные" цепочки, которые располагаются в LiCuVO₄ вдоль кристаллографических направлений *b* и *a*. Для наглядности на рис. 1, *b* приведена "стержневая" модель LiCuVO₄ [8,9], иллюстрирующая расположение в нем "магнитных" и "немагнитных" непочек.

В литературе имеются сведения об основных физических параметрах LiCuVO₄: его кристаллической структуре [9,10], магнитной восприимчивости [11], теплоемкости [12], оптических инфракрасных спектрах [13], ЭПР [11,14], ЯМР [15,16]; разработана методика выращивания достаточно больших монокристаллов [17] (см. также ссылки в указанных работах). Теплопроводность LiCuVO₄ не исследовалась, хотя из анализа ее решеточной, электронной и магнонной составляющих можно получить новые полезные сведения о физической природе этого соединения.

Настоящая работа посвящена исследованию теплопроводности \varkappa^a и электропроводности σ^a LiCuVO₄ в случае, когда тепловой поток и электрический ток распространяются вдоль "немагнитных" литиевых цепочек (вдоль кристаллографического направления *a*). Изучению теплопроводности LiCuVO₄ при распространении теплового потока вдоль "магнитных" медных цепочек будет посвящена отдельная работа.

1. Приготовление образцов, методика эксперимента

Монокристаллы LiCuVO₄ для измерения теплопроводности и электропроводности были выращены по разработанной в [17] методике. Поскольку соединение

1992

Рис. 1. *а*) Структура LiCuVO₄ [8]. Одномерные (1*D*) цепочки Li-октаэдров, соединенных общими ребрами, распространяются в направлении оси *a*, 1*D*-цепочки Cu-октаэдров, также соединенных ребрами, распространяются в направлении *b*. Изолированные друг от друга V-октаэдры соединяют Cu- и Li-цепочки в 3*D*-структуру. *b*) "Стержневая" модель LiCuVO₄ [8,9]. Слои Li-стержней и Cu-стержней чередуются, их направления взаимно перпендикулярны.

LiCuVO₄ термически неустойчиво, оно не может быть расплавлено. Поэтому монокристаллы LiCuVO₄ выращивались из растворов при температуре ниже температуры разложения. Растворителями служили LiVO₃ с температурой плавления 620° C и эвтектический состав 53% LiVO₃-47% LiCl с температурой плавления 520° C. LiCuVO₄ кристаллизуестя из этих растворов при 550 и 460° C соответственно [17].

Кристаллы LiCuVO₄ выращивались при медленном охлаждении расплавов в интервале 650–580°С из раствора в LiVO₃ и в интервале 580–520°С из раствора в LiVO₃–LiCl. Полученные такими способами монокристаллы LiCuVO₄ будем в дальнейшем условно называть "высокотемпературными" и "низкотемпературными" монокристаллами соответственно.

Оказалось, что эти два типа монокристаллов различаются между собой как по химическому составу, так и по физическим свойствам. Это обстоятельство может быть связано с наличием в них различной концентрации термических дефектов, возникающих при их росте.

Проведенный нами химический анализ большой партии полученных "высокотемпературных" и "низкотемпературных" монокристаллов LiCuVO₄, несмотря на некоторый разброс данных, показал, что кристаллы первого типа имеют средний состав Li_{0.92}Cu_{1.03}VO_{4-x}, а кристаллы второго типа соответствуют усредненной формуле Li_{0.97}Cu_{1.00}VO_{4-x}. Как видно, в "высокотемпературных" кристаллах наблюдается гораздо большее отклонение от стехиометрии, чем в "низкотемпературных". При этом для них характерно отклонение как по литию (дефицит ~ 8%), так и по меди (избыток ~ 3%). Как следует из приведенных химических формул, основным типом дефектов в обоих кристаллах являются вакансии в подрешетке лития, а в "высокотемпературных" кристаллах происходит также заполнение литиевой подрешетки избыточными атомами меди.

Следует отметить, что нам не удалось получить стехиометрические составы LiCuVO₄ как в виде монокристаллов, так и в виде порошка, даже исходя из строго стехиометрического соотношения элементов в исходной смеси оксидов. Вероятно, дефицит лития является неотьемлемым (intrinsic) свойством этого соединения.

Для измерения теплопроводности и электропроводности были приготовлены три монокристаллических образца LiCuVO₄. Образцы № 1 и 2 относились к "высокотемпературным", а образец № 3 — к "никзкотемпературным" монокристаллам. Согласно проведенному нами рентгеноструктурному анализу, все три образца не испытывали структурных фазовых переходов в интервале 20 < T < 400 К, подобных наблюдаемому в сильно нестехиометрическом Li_{1-x}CuVO₄ [10].

Полученные монокристаллические образцы имели следующие размеры: $\mathbb{N} = 1 - 1 \times 2 \times 12 \,\mathrm{mm}$, $\mathbb{N} = 2 - 0.8 \times 2 \times 7 \,\mathrm{mm}$ и $\mathbb{N} = 3 - 0.7 \times 0.8 \times 6 \,\mathrm{mm}$. Тепловой поток и электрический ток направлялись вдоль длинных сторон образцов, которые соответствовали кристаллографическому направлению *a*.

Измерение теплопроводности проводилось в интервале температур 5–300 К на установке, аналогичной использованной в [18]. Электропроводность исследовалась на постоянном токе в интервале 300–500 К.

2. Полученные экспериментальные результаты и их обсуждение

Результаты измерения $\varkappa^{a}(T)$ для образцов № 1–3 представлены на рис. 2. Отметим некоторые особенности поведения $\varkappa^{a}(T)$ этих образцов. Как видно из рисунка, полученную зависимость $\varkappa^{a}(T)$ можно разбить на две температурные области: 5–150(200) К и 150(200)–300 К.

Рис. 2. Температурная зависимость χ^a вдоль кристаллографического направления *а* для "высокотемпературных" (№ 1 и 2) и "низкотемпературного" (№ 3) монокристаллических образцов LiCuVO₄. *T*₁, *T*₂ и *T*₃ — температуры начала отступления теплопроводности исследованных образцов от зависимости $\chi^a_{ph} \sim T^{-n}$. Величина χ^0_{ph} определена в тексте. Штриховая прямая соответствует условию рассеяния фононов на границах кристалла $\chi_{ph} \sim T^{-3}$. На вставке — $\chi^a(T)$ образца № 1 (область *A* основной части рисунка).

Рассмотрим сначала поведене теплопроводности в области 5–150(200) К.

1) Измеренная в этой области теплопроводность представляет собой теплопроводность кристаллической решетки $\varkappa^a_{\rm ph}$, поскольку как показано далее, σ^a при 300 K в исследованных образцах составляет $\sim 10^{-6} - 10^{-7} \, \Omega^{-1} \cdot {\rm cm}^{-1}$ (а при более низких температурах станет еще меньше); таким образом, электронная

составляющая теплопроводности будет пренебрежимо мала. Наличия других дополнительных составляющих теплопроводности для этой области температур не ожидается.

2) Теплопроводность $\varkappa^{a}_{\rm ph}$ при низких температурах ($T \leq 10$ K, ниже максимума $\varkappa^{a}_{\rm ph}(T)$) для всех трех образцов возрастает с повышением температуры (начиная с 5 K) по закону $\varkappa^{a}_{\rm ph} \sim T^{2}$, что указывает на рассеяние фононов на дислокациях [19].

3) Температурная зависимость $\varkappa^a_{\rm ph}(T)$ для температур выше максимума теплопроводности у трех исследованных образцов различна. Известно, что $\varkappa_{ph}(T)$ для этой области температур может меняться от $\varkappa_{\rm ph} = {\rm const}$ для сильнодефектных (аморфных материалов) до $\varkappa_{\rm ph} \sim T^{-1}$ для идеальных кристаллических материалов [19]. Для "высокотемпературных" монокристаллов (образцы № 1 и 2) мы получили зависимость $\kappa_{\rm ph}^a \sim T^{-n}$ со значениями n, соответственно равными 0.25 и 0.37, что подтверждает наши выводы (см. предыдущий раздел) о наличии в монокристаллах LiCuVO₄, полученных по "высокотемпературной" методике, большого количества дефектов (как отмечалось выше, преимущественно вакансий в подрешетке Li). Как видно из данных по теплопроводности, образец № 1 содержит большее количество дефектов, чем образец № 2. Для образца № 3 (монокристалла, приготовленного по "низкотемпературной" методике) $\varkappa^a_{\rm ph} \sim T^{-0.9}$, что близко к идеальному случаю $\kappa_{\rm ph} \sim T^{-1}$ и указывает на наличие значительно меньшего количества дефектов в этом монокристалле.

4) Для образца № 1 в районе 5К обнаружено заметное отклонение $\varkappa^a_{ph}(T)$ от зависимости $\varkappa^a_{ph} \sim T^2$, полученной для области температур T > 6 К (см. вставку на рис. 2). В окрестности этой температуры в [11] в LiCuVO₄ также было обнаружено резкое уменьшение магнитной восприимчивости. Аномалия в поведении \varkappa^a_{ph} при T < 5 К может быть связана с наличием при $T \sim 2.3-2.4$ К [11,12] фазового перехода, при котором LiCuVO₄ из одномерного антиферромагнетика превращается, согласно [12], в двумерный, а по мнению авторов [11] — в трехмерный антиферромагнетик.

Интересные результаты получены при анализе данных о поведении $\varkappa^a(T)$ во второй температурной области (150(200)-300 K). Оказалось, что у всех исследованных образцов при $T \sim 150-200$ K наблюдается отклонение от соответствующих зависимостей $\varkappa^a_{\rm ph} \sim T^{-n}$ в сторону увеличения теплопроводности. Наибольший эффект обнаружен для самого дефектного образца № 1 (рис. 2). Возникает вопрос: как можно объяснить появление у этих образцов дополнительной теплопроводности $\Delta \varkappa$? Как отмечалось выше, при $\sigma^a_{300 \text{ K}} \sim 10^{-6} - 10^{-7} \Omega^{-1} \cdot \text{сm}^{-1}$ не следует ожидать появления

вклада от электронной составляющей теплопроводности. Можно было бы объяснить появление дополнительного переноса тепла вкладом фотонной составляющей теплопроводности, которая $\sim T^3/\alpha$ (где α коэффициент оптического поглощения) [19]. Однако,

Рис. 3. *a*) Температурная зависимость электропроводности σ^a LiCuVO₄ для образцов № 2 и 3. *b*) Сравнение величины и температурной зависимости σ^a для образца № 3 LiCuVO₄ (*I*) с литературными данными для σ ряда литиевых супериоников [25] (2–6). 2 — Li₂TiIn(PO₄)₃, 3 — Li₂ZrIn(PO₄)₃, 4 — Li₂FeCl₄, 5 — (La_{0.6}Li₀₁)(Mg_{0.5}W_{0.5})O₃, 6 — LiZrP.

согласно нашим предварительным данным, а при длине волны $\lambda = 1.1 \, \mu m$ составляет $\sim 500\,\mathrm{cm}^{-1}$ (и трудно предположить, что он станет меньше при $\lambda > 1.1 \,\mu m$). При таком значении α величина фотонной составляющей теплопроводности будет незначительной. Появления добавочной теплопроводности можно было бы ожидать за счет вклада магнонной составляющей. Однако она в нашем случае отсутствует, так как измерения $\varkappa(T)$ проводятся вдоль "немагнитных" литиевых цепочек. Существует еще одна возможность объяснения обнаруженной дополнительной теплопроводности исследованных образцов LiCuVO₄.

В литературе имеются данные о появлении дополнительной теплопроводности при температурах выше дебаевских в суперионных проводниках Li₂B₄O₇, LaF₃ [20], α -LiIO₃ [20,21], α - и γ -AgSI [22], α -AgI [23], что связано с аномальным ростом теплоемкости в этих материалах в суперионной фазе. Необходимо отметить, что α -LiIO₃ и Li₂B₄O₇ являются квазиодномерными супериониками с катионной (Li⁺) проводимостью. Посмотрим, не является ли квазиодномерный LiCuVO₄ также супериоником. Это позволило бы объяснить рост его теплопроводности при T > 150-200 K.

В литературе нет данных об измерении ионной проводимости в LiCuVO₄. Однако в [24] при исследовании электрохимических свойств LiCuVO₄ было отмечено, что у этого соединения может быть достаточно большая ионная проводимость.

Мы провели измерения σ^a в интервале температур 300-500 К для образцов № 2 и 3. Полученные экспериментальные результаты приведены на рис. 3, *a*. На рис. 3, *b* подобраны заимствованные из [25] данные о $\sigma(T)$ для ряда литиевых супериоников. Как видно из этого рисунка, $\sigma^a(T)$ LiCuVO₄ (прямая *I*) располагается в середине "семейства" кривых, характерных для литиевых супериоников.

Значения ΔH для некоторых литиевых супериоников при $T > 300 \,\mathrm{K}$ [25]

$\Delta H, \mathrm{eV}$
0.36
0.49 (оси с)
0.37
0.38 (оси а)
0.59 (оси b)
0.43
0.30
0.46

Температурная зависимость ионной электропроводности описывается уравнением Аррениуса [25]

$$\sigma T = \sigma_0 \exp(-\Delta H/kT), \qquad (1)$$

где ΔH — энтальпия активации электропроводности. Вычисленная по формуле (1) ΔH^a для образцов № 2 и 3 LiCuVO₄ составила ~ 0.46 eV, что хорошо согласуется со значениями ΔH для литиевых супериоников (см. таблицу).

Таким образом, на основании проведенного выше анализа данных для $\sigma^a(T)$ LiCuVO₄ можно сделать заключение, что это соединение является супериоником. Наличие в нем большой концентрации вакансий в подрешетке лития обеспечивает высокую подвижность ионов Li⁺ при достаточно низких температурах.

LiCuVO₄ можно отнести к числу суперионных материалов, представляющих интерес для практических применений (рис. 4).¹

После того как было доказано, что LiCuVO₄ является хорошим супериоником, можно провести сравнение поведения $x^{a}(T)$ LiCuVO₄ с поведением теплопроводности родственных литиевых квазиодномерных супериоников α -LiIO₃ и Li₂B₄O₇ [20] (рис. 5). Как видно из рисунка, характер поведения для всех трех супериоников идентичен. Таким образом, можно заключить, что дополнительная теплопроводность, обнаруженная в LiCuVO₄ для области температур T > 150(200) К, связана с природой суперионного состояния этого материала.

Как отмечалось выше, рост \varkappa в супериониках связывается с увеличением теплоемкости в суперионной фазе C_s по сравнению с классической дебаевской решеточной теплоемкостью $C_D^{\rm ph}$ ($\Delta C = C_s - C_D^{\rm ph}$, где ΔC характеризует добавочную теплоемкость, см. вставку на рис. 6). К сожалению, мы не имели возможности измерить теплоемкость LiCuVO₄ при высоких температурах, а в литературе такие данные отсутствуют (имеются лишь данные для теплоемкости при низких температурах [12]). Поэтому мы смогли провести обсуждение интересующей нас проблемы лишь с привлечением

Рис. 4. Сравнение значений $\lg \sigma = f(10^3/T)$ для LiCuVO₄ (образец № 3) и некоторых супериоников [25]. Материалы, располагающиеся в выделенной области, относятся, согласно [25], к суперионикам, перспективным для практических применений.

Рис. 5. Сравнение поведения $\varkappa^{a}(T)$ LiCuVO₄ (образец № 1) и теплопроводности квазиодномерных супериоников Li₂B₄O₇ и α -LiO₃ [20].

¹ Мы провели также измерение $\sigma(T)$ LiCuVO₄ при распространении элекрического тока вдоль кристаллографических направлений *b* и *c*. Полученные данные будут опубликованы отдельно.

1996

Рис. 6. Температурные зависимости $\Delta \varkappa$ для образца № 1 LiCuVO₄ и ΔC_V для суперионика LaF₃ [20]. На вставке — схематическое изображение температурной зависимости теплоемкости суперионика C_s и теоретической дебаевской решеточной теплоемкости C_D^{ph} .

весьма немногочисленных сведений о теплоемкости супериоников [20].

У суперионика LaF₃ добавочная теплоемкость возрастает с температурой как $T^2 (\Delta C_V \sim T^2)$ [20], а $\Delta \varkappa = (\varkappa_{exp} - \varkappa_{ph}^0)^2$ в случае супериоников Li₂B₄O₇ [20] и α -Ag₃SI [22] изменяется соответственно как $T^{2.5}$ и T^2 . Таким образом, видно, что $\Delta \varkappa$ и ΔC_V в области суперионной проводимости подчиняются одинаковым (или близким) законам.

В случае LiCuVO₄ мы получили, что $\Delta \varkappa$ для образца № 1 при T > 150 К возрастает как T^2 ($\Delta \varkappa \sim T^2$, рис. 6). Это еще раз подтверждает наш вывод, что обнаруженная в эксперименте добавочная теплопроводность в LiCuVO₄ обусловлена природой суперионного состояния этого материала.

Список литературы

- A.V. Sologubenko, K. Gianno, H.R. Ott, U. Ammerahl, A. Revcolevschi. Physica B 284–288, 1595 (2000).
- [2] A.V. Sologubenko, K. Gianno, H.R. Ott, U. Ammerahl, A. Revcolevschi. Phys. Rev. Lett. 84, 12, 2714 (2000).
- [3] A.V. Sologubenko, E. Felder, K. Gianno, H.R. Ott, A. Vietkine, A. Revcolevschi. Phys. Rev. B 62, 10, R6108 (2000).
- [4] A.V. Sologubenko, K. Gianno, H.R. Ott, A. Vietkine, A. Revcolevschi. Phys. Rev. B 64, 054412 (2001).

- [5] C. Hess, C. Baumann, U. Ammerahl, B. Büchner, F. Heidrich-Meisner, W. Brenig, A. Revcolevschi. Phys. Rev. B 64, 184 305 (2001).
- [6] K. Kudo, S. Ishikawa, T. Noji, T. Adachi, Y. Koike, K. Maki, S. Tsuji, K. Kumagai. J. Phys. Soc. Jap. 70, 2, 437 (2001).
- [7] C. Hess, U. Ammerahl, C. Baumann, B. Büchner, A. Revcolevschi. Physica B 312–313, 612 (2002).
- [8] M.A. Lafontaine, M. Leblanc, G. Ferey. Acta Cryst. C 45, 1205 (1989).
- [9] M.O. Keeffe, S. Andersson. Acta Cryst. A 33, 914 (1977).
- [10] R. Kanno, Y. Kawamoto, Y. Takeda, M. Hasegawa, O. Yamamoto, N. Kinomura. J. Sol. Stat. Chem. 96, 397 (1992).
- [11] A.N. Vasil'ev, L.A. Ponomarenko, H. Manaka, I. Yamada, M. Isobe, Y. Ueda. Phys. Rev. B 64, 024 419 (2001).
- [12] M. Yamaguchi, T.Furuta, M. Ishikawa. J. Phys. Soc. Jap. 65, 9, 2998 (1996).
- [13] B. Gorshunov, P. Haas, M. Dressel, V.I. Torgashev, V.B. Shirokov, A.V. Prokofiev, W. Assmus. Eur. Phys. J. B 23, 427 (2001).
- [14] H.A. Krug von Nidda, L.E. Svistov, M.V. Eremin, R.M. Eremina, A. Loidl, V. Kataev, A. Validov, A. Prokofiev, W. Assmus. Phys. Rev. B 65, 134 445 (2002).
- [15] Ch. Kegler, N. Büttgen, H.A. Krug von Nidda, A. Krimmel, L. Svistov, B.I. Kochelaev, A. Loidl, A. Prokofiev, W. Assmus. Eur. Phys. J. B 22, 321 (2001).
- [16] T. Tanaka, H. Ishida, M. Matsumoto, S. Wada. J. Phys. Soc. Jap. 71, 1, 308 (2002).
- [17] A.V. Prokofiev, D. Wichert, W. Assmus. J. Cryst. Growth 220, 345 (2000).
- [18] A. Jezowski, J. Mucha, G. Pompe. J. Phys. D: Appl. Phys. 7, 1247 (1974).
- [19] В.С. Оскотский, И.А. Смирнов. Дефекты в кристаллах и теплопроводность. Наука, Л. (1972). 159 с.
- [20] А.Э. Алиев, В.Ф. Криворотов, П.К.Хабибуллаев. ФТТ 39, 9, 1548 (1997).
- [21] Я.В. Бурак, К.Я. Борман, И.С. Гирнык. ФТТ 26, 12, 3692 (1984).
- [22] F. Saito, K. Toraki, A. Kojima. J. Phys. Soc. Jap. 62, 9, 3351 (1993).
- [23] M.C. Goetz, J.A. Cowen. Solid State Commun. 41, 4, 293 (1982).
- [24] R. Kanno, Y. Kawamoto. Solid State Ion. 40/41, 576 (1990).
- [25] А.К. Иванов-Шиц, И.В. Мурин. Ионика твердого тела. Изд-во СПб ун-та, СПб (2000). Т. 1. 616 с.

² Здесь κ_{\exp} — экспериментально измеренная теплопроводность, $\kappa_{\rm ph}^0$ — теплопроводность, экстраполированная из области низких температур по закону $\kappa_{\rm ph}^2 \sim T^{-n}$, где *n* различно для каждого из исследованных образцов (см. схему выделения Δx на рис. 2).