02

Влияние неравновесных условий синтеза на структуру и оптические свойства аморфных углеродных пленок

© А.П. Рягузов¹, Р.Р. Немкаева^{1,2}, О.И. Юхновец¹, Н.Р. Гусейнов¹, С.Л. Михайлова³, Ф. Бекмурат³, А.Р. Асембаева^{1,4}

 ¹ Национальная нанотехнологическая лаборатория открытого типа, Казахский национальный университет им. аль-Фараби, 050040 Алматы, Казахстан
 ² Лаборатория инженерного профиля, Казахский национальный университет им. аль-Фараби, 050040 Алматы, Казахстан
 ³ Кафедра физики твердого тела и нелинейной физики, Казахский национальный университет им. аль-Фараби, 050040 Алматы, Казахстан
 ⁴ Казахский национальный технический университет им. Сатпаева, 050040 Алматы, Казахстан

e-mail: ryaguzov_a@mail.ru

Поступила в редакцию 29.01.2019 г. В окончательной редакции 29.01.2019 г. Принята к публикации 09.04.2019 г.

Аморфные углеродные (a-C) тонкие пленки синтезированы неравновесным методом ионно-плазменного распыления графитовой мишени в атмосфере аргона при постоянном значении тока плазмы. Методом рамановской спектроскопии проведены исследования локальной структуры углеродных пленок. Используя нормальное распределение в разложении рамановских спектров, выявили, что при температурах синтеза менее 150° C появляется пик в области частоты 1260 cm^{-1} , характерный для фононной плотности состояний с sp^3 -гибридизацией связей. Кроме этого, показано влияние размеров наноструктур из sp^2 -узлов на оптическую ширину запрещенной зоны и их корреляцию с результатами рентгеновской фотоэлектронной спектроскопии (XPS) в a-C-пленках.

Ключевые слова: углеродные пленки, синтез, оптические свойства.

DOI: 10.21883/OS.2019.08.48037.33-19

Введение

Существуют различные аллотропные формы углерода как в кристаллическом, так и в неупорядоченном состояниях [1]. Разнообразие аллотропных форм углерода определяется пространственным расположением sp^1 -, sp^2 - и sp^3 -гибридизированных связей. Степень гибридизации и ориентации химической связи влияет на распределение плотности энергетических состояний π - и σ -электронов, что и является причиной отличия электронных свойств вещества.

Последние три десятилетия особое внимание уделяется изучению тонких аморфных алмазоподобных углеродных (DLC) пленок [2–7]. Существует много способов синтеза DLC-пленок в качестве покрытий, обладающих лучшими антифрикционными, прочностными и химически инертными свойствами [8–10]. Условия конденсации атомов определяют формирование атомной структуры пленок. В отличие от многих других методов синтеза магнетронный ионно-плазменный метод позволяет в широких пределах кинетических и термодинамических параметров синтеза выращивать аморфные DLC-пленки с заданной структурной модификацией. Неравновесные условия конденсации атомов углерода позволяют создавать различные кластерные структуры из $s p^2$ - и $s p^3$ -узлов в аморфной углеродной матрице, и, таким образом, появляется возможность формировать наногетероморфные углеродные пленки с разными электронными свойствами.

Для корректировки условий синтеза и стабилизации процесса роста а-С-пленок использовали магнетрон с электромагнитом. Использование электромагнита позволяет регулировать плотность силовых линий магнитного поля на поверхности мишени, и это, как следствие, дает возможность корректировать ток плазмы и напряжение на катоде. Появление возможности контроля состояния плазмы позволяет фиксировать процесс распыления и конденсации и формирование структуры углеродных пленок в процессе синтеза. Таким образом, появляется возможность получать аморфные DLC-пленки с заданной структурной конфигурацией из $s p^2$ - и $s p^3$ -узлов.

Для оценки соотношения sp^2/sp^3 -узлов и выявления размеров кластерных образований из sp^2 -узлов использовали рамановскую спектроскопию (RS). RS можно отнести к относительно щадящим методам исследования локальной атомной структуры. Используя накопленный материал спектральных данных по RS, можно проводить оценку процентного соотношения sp^2/sp^3 -связей как, например, в работах [11–14]. В рамановских спектрах а-С-пленок полуширина основного *G*-пика, отношение интенсивностей пиков I(D)/I(G), положение G-пика и его дисперсия [12] характеризуются вибрационными модами молекулярных групп из sp^2 -узлов. Это связано с сечением рассеяния sp^2 -узлов в видимом диапазоне возбуждающего излучения, которое в 50–250 раз больше, чем у sp^3 -узлов, и характеризуется резонансными переходами между $\pi - \pi^*$ -состояниями [12,15,16]. Энергия видимого излучения гораздо меньше, чем возбуждение более глубоко лежащих σ -состояний. Тем не менее, RS-исследования структуры аморфных алмазоподобных углеродных пленок могут быть полезны в определении формирования sp^3 -узлов в DLC-пленках.

Одним из важных критериев оценки результатов RS является оптическая ширина запрещенной зоны. Рассчитанная из спектров пропускания и отражения оптическая ширина запрещенной зоны относится к структурно-чувствительным параметрам, и поэтому может являться определенной оценкой соотношения $s p^2/s p^3$ -гибридизированных связей [1,12]. Это связано с отличием в энергетическом состоянии π -и σ -электронов, формирующих зонную структуру. Энергетические состояния π -и σ -электронов определяются конфигурацией связей между ближайшими соседями $s p^2$ -и $s p^3$ -узлов [17].

Проведены исследования влияния температуры подложки, давления газа и удельной мощности разряда на структуру и оптические свойства. Результаты исследований коррелируют со значениями соотношения $s p^2/s p^3$ -узлов, определенными из спектров XPS.

Выяснение влияния условий синтеза на формирование атомной структуры и соотношение $s p^2/s p^3$ -узлов является основной задачей в исследовании электронных свойств наногетероморфных углеродных сред. Особенно это важно для формирования тонких структур в нанотехнологических процессах. Знание зависимости структуры и свойств от условий синтеза а-С-пленок позволит расширить понимание природы их формирования и возможности управления электронными процессами в новых устройствах наноэлектроники.

Описание эксперимента

Для синтеза углеродных пленок был использован охлаждаемый магнетрон с несбалансированной плазмой и регулируемой по величине индукцией (**B**) магнитного поля. Подаваемое напряжение (U) от источника постоянного тока и электрон-ионный ток (I) в плазме разряда дополнительно корректировались изменением **B** в процессе синтеза пленок. **B** менялась в пределах 25-40 mT. Устойчивость ионно-плазменного разряда и стабильность процесса плазменного распыления определяются отношением E/p, где E — напряженность электрического поля между анодом и катодом магнетрона, p — давление газа Ar в камере синтеза пленок. Корректировка индукции **B** магнитного поля позволяет

при определенных условиях синтеза (U и I разряда) поддерживать E/p = const. Благодаря постоянству значения отношения E/p в процессе синтеза стало возможно детальное изучение влияния термодинамических и кинетических параметров на структуру и оптические свойства синтезируемых аморфных углеродных пленок. Все образцы в работе были получены при одном значении силы тока (DS) в плазме.

При синтезе пленок удельная мощность (P_d) ионноплазменного разряда принимала значения 2.1, 2.4 и 2.6 W/cm². Рост углеродных пленок осуществлялся при трех температурах (T_{sub}) 50, 150 и 250°С и давлениях газа аргон в интервале 0.5-1.2 Ра на кварцевых и кремниевых подложках. Чистота газа аргона и графитовой мишени составляло 99.999 at.%. Время синтеза всех а-С-пленок было постоянно и равнялось 40 min со средней скоростью роста ~ 15 Å/min. Толщина пленок определялась на грани свежего скола кремниевой пластины в растровом электронном микроскопе Quanta 200i 3D и изменялась от 50 до 70 nm в зависимости от условий синтеза. Конденсация атомов углерода на подложку осуществлялась в интервале углов от 15 до 30°С между нормалью к поверхности подложки и направлением их движения. Данные условия синтеза мало изучены и представляют определенный интерес в технологии получения тонкопленочных структур в наноэлектронике.

Исследования локальной структуры аморфных углеродных пленок проводились методом RS на установке NTegraSpectra (NT-MDT, Россия). В методе RS использовался твердотельный лазер с длиной волны 473 nm (2.62 eV). Диаметр пятна на образце возбуждающего лазерного излучения был равен 2μ m, что определяло достаточно большую площадь облучения на поверхности пленки. Точность определения частот излучений фононов ± 4 сm⁻¹. Время экспозиции измерений спектров составляла 30 s. Кроме этого, во избежание воздействия лазерного излучения мощностью 1.5 mW на атомную структуру пленок экспонирование осуществлялось в движении со скоростью ~ 10 μ m/s.

Оптическую ширину запрещенной зоны рассчитывали из спектров пропускания и отражения, полученных на приборе UV3600 (Shimadzu, Япония). Все измерения структуры и оптических свойств были выполнены на свежеприготовленных образцах.

Измерения XPS проводились на установке KRATOS AXIS 165 XPS (в Миссурийском университете науки и технологии). Спектры регистрировали электронный поток с поверхностного слоя пленки толщиной 10 nm. Измерения проводились в вакууме $(2 \cdot 10^{-8}$ Torr) с использованием монохроматического излучения AI $K_{\alpha} = 1486.71$ eV. Инструментальная погрешность измерения составляла ± 0.05 eV. Важно отметить, что при измерениях пленок на кремниевых подложках происходила зарядка поверхности. Поэтому при обработке данных учитывалось "зарядовое смещение".

Рис. 1. Рамановские спектры а-С-пленок синтезированных при (*a*) $T_{sub} = 50^{\circ}$ С, (*b*) $T_{sub} = 250^{\circ}$ С и удельной мощности DC-разряда 2.1 W/cm² на кварцевых подложках.

Результаты и обсуждение

Рамановская спектроскопия

Согласно работам [1,12–16], рамановские спектры углеродных пленок с неупорядоченной структурой могут быть охарактеризованы двумя резкими максимумами, колебательные моды которых обозначаются как D-пик (Disordered) и G-пик (Graphitic) в областях частот 1350–1400 сm⁻¹ и 1575–1600 сm⁻¹ соответственно. Изменение положения D- и G-пиков, отношение их интенсивностей определяют уровень гибридизации C–C связей и изменение аллотропических форм в синтезируемых а-C-пленках от графитоподобной до алмазоподобной структуры.

Как известно, появление G-пика обусловлено модой центральной зоны E_{2g} -симметрии растягивающих колебаний гексагональных углеродных колец [1]. В то же время присутствие G-пика в рамановских спектрах аморфных углеродных пленок с неупорядоченной структурой может быть связано с модами растяжения пар атомов С–С $s p^2$ -узлов. Отсутствие шестигранных молекул C₆ не исключает существование пар атомов

С-С sp^2 -связей. Поэтому положение G-пика меняется в интервале от 1500 до $1630 \,\mathrm{cm}^{-1}$ в неупорядоченных структурах углеродных пленок [15].

Появление *D*-пика связывают с дыхательной модой шестигранных молекул углерода. Это возможно благодаря структурному беспорядку с участием фононов вблизи границы *K*-зоны [15,16]. Отсутствие колец приводит к отсутствию *D*-пика [12,14–16]. В пиролитическом графите *D*-пик также отсутствует. Структуру пленки можно отнести к алмазоподобной или графитоподобной, сравнивая значения интенсивностей и положение *D*- и *G*-пиков.

На рис. 1 представлены рамановские спектры аморфных углеродных пленок, синтезированных при удельной мощности плазменного разряда 2.1 W/cm² и температуре подложек 50 и 250°С. Рамановский спектр DLC-пленок характеризуется одним *G*-пиком и плечом в низкочастотной области. Форма этих спектров типична для аморфных углеродных пленок, полученных при других условиях синтеза в данной работе.

Как видно из рис. 1, *a*, положение *G*-пика при $T_{\rm sub} = 50^{\circ}$ С не зависит от давления газа аргона в рабочей камере и составляет 1545 сm⁻¹. В спектрах,

Рис. 2. Положение *G*-пика в зависимости от условия синтеза аморфных углеродных пленок на кварцевых подложках.

представленных на рис. 1, *b*, при $T_{\rm sub} = 250^{\circ}$ С положение *G*-пика существенно изменяет свое положение с увеличением давления и при $p_{\rm Ar} = 1.2$ Ра принимает значение 1570 сm⁻¹. Кроме этого, наблюдаем увеличение *D*-полосы в области 1360 сm⁻¹. Смещение в высокочастотную область *G*-пика при $T_{\rm sub} = 250^{\circ}$ С и увеличение интенсивности *D*-полосы свидетельствуют об увеличении *s* p^2 С–С-узлов и шестигранных колец C₆.

Зависимость положения *G*-пика (PosG) от условий синтеза (T_{sub} , давление газа *p* и удельной мощности плазменного разряда P_d) показана на рис. 2. Можно заметить, что функции PosG(*p*) для 150 и 250°С представляют собой почти параллельные линии с небольшим отклонением ~ 4 сm⁻¹ в зависимости от значений P_d . Таким образом, можно предположить, что при данных температурах давление газа влияет на формирование структуры одинаковым образом. Однако при $T_{sub} = 50^{\circ}$ С положение *G*-пика не зависит от параметров синтеза (*p* и P_d) и остается постоянным при 1545 сm⁻¹.

Ранее мы исследовали влияние температуры подложки на структурные свойства а-С-пленок при других условиях синтеза и наблюдали положение *G*-пика при 1555 сm⁻¹ для температуры $T_{\rm sub} = 50^{\circ}$ C [11]. Таким образом, следует отметить, что стабилизация отношения E/p в процессе синтеза позволяет получать а-С пленки с большим процентным содержание G-пика в низкочастотную область указывает на увеличение содержания $s p^3$ -узлов. Как следует из работы [16], углеродные пленки с пиком G при 1545 сm⁻¹ более чем на 60% состоят из $s p^3$ -узлов.

Авторы работы [18], используя метод синтеза а-Спленок с фильтрацией ионов катодной дуги в вакууме (FCVA), обнаружили, что существует определенная активационная температура T_1 , при которой происходит резкое изменение процесса формирования ближнего порядка атомной структуры. При этом было установлено, что процентное содержание $s p^3$ резко уменьшается при температуре синтеза > 200° С. Кроме того, показано, что значение T_1 зависит от энергии конденсируемых атомов.

В нашей работе увеличение температуры синтеза приводит к изменению положения G-пика и его зависимости от давления газа при T_{sub} 150 и 250°С. Следовательно, существует температура синтеза T_1 между 50 и 150°С, при которой происходит переключение характера формирования структуры и ее зависимости от дополнительных кинетических и термодинамических параметров. Как видно из рис. 1, *a* и 2, при $T_{sub} = 50^{\circ}C$ положение G-пика сохраняется при $1545 \,\mathrm{cm}^{-1}$ и не зависит от мощности разряда и давления газа. Кроме того, важно отметить, что изменение удельной мощности ионноплазменного разряда (в пределах от 2.1 до 2.6 W/cm²) при $T_{sub} = 50^{\circ}$ C не оказывает значительного влияния на формирование ближнего порядка структуры. Увеличение температуры синтеза приводит к смещению G-пика, и его положение начинает зависеть от давления газа (рис. 1, b и 2). Как видно из полученных результатов, изменение температуры подложки на 200°С приводит к смещению положения пика на $20 \pm 5 \,\mathrm{cm}^{-1}$, что определяет существенное изменение соотношения sp^2/sp^3 и соответственно изменение в формировании структуры.

Для более детального понимания влияния условий синтеза на структуру аморфных углеродных пленок провели разложение спектров КРС на составляющие по методу Гаусса. Разложение по методу Гаусса представленных на рис. 3 спектров комбинационного рассеяния света характерно для всех аморфных углеродных пленок, синтезированных в данной работе. Разложение проводилось на минимальное количество составляющих гауссовых пиков, при которых их результирующая кривая описывала экспериментальную кривую с достоверностью > 0.99% [11].

Перед разложением была проведена операция вычитания фона. Экспериментальные кривые представлены черной линией, гауссовы пики распределения обозначены зеленой линией, результирующая разложения показана красной линией. Из рис. 3 видно, что спектры RS раскладывались на 2 и на 3 пика в соответствии с максимальным значением достоверности.

В работах [15,19,20] приведены спектры фононной плотности состояний (VDOS) графита и алмаза. Основные полосы VDOS алмаза находятся в диапазоне частот 1000–1335 сm⁻¹, у графита — в диапазоне 1350–1600 сm⁻¹.

Согласно работам [1,14–16], пик 3 в диапазоне частот 1500–1600 сm⁻¹ можно отнести к G-пику (рис. 3). Пик 2 в области частот 1350–1400 сm⁻¹ соответствует положению D-пика. Разложение рамановских спектров а-С пленок, синтезированных при температурах 50 и 150°С, показывает, что на спектрах проявляется пик в области частоты 1260 сm⁻¹ (пик 1), что соответствует фононной плотности состояний алмаза [15]. Таким образом, можно предположить, что синтезируемые аморфные углеродные пленки при температурах подложки менее 150°С структурированы алмазоподобными наночастицами. На

Рис. 3. Спектры КРС аморфных углеродных пленок, синтезированных при p = 1.2 Ра и $P_d = 2.1$ W/cm² и разных температурах синтеза с применением разложения по методу Гаусса.

рис. 3, c пик I отсутствует, что согласуется с результатами работы [18], где показано резкое уменьшение содержания $s p^3$ -узлов при $T_{sub} > 200^{\circ}$ С.

Важно отметить, что в работе [18] а-С пленки синтезировались методом FCVA при фиксированной энергии конденсации 90 eV в широком интервале температур подложки (от 100 до 200°С) и содержали до 85% s p³-связей. Магнетронный ионно-плазменный метод синтеза, используемый в нашей работе, относится к неравновесным условиям для формирования структуры, т.е. такие условия синтеза характеризуются большим разбросом конденсируемых атомов, молекул и ионов углерода по энергии. Конденсируемые частицы с различной энергией создают условия для формирования структуры, которые существенно отличаются от условий в методе FCVA. Именно поэтому появление пика 1 в наших пленках существенно зависит от температуры подложки. Кроме этого, как отмечено в работе [21], алмазоподобные зерна с размерами $\sim 10\,{
m \AA}$ и менее могут иметь более "мягкие" фононы в отличие от объемного алмаза, что приводит к появлению VDOS в области $1260 \,\mathrm{cm}^{-1}$. Как видно, на рис. 3 пик 1 смещается в низкочастотную область к полосе 1230 cm⁻¹ с увеличением температуры синтеза $(T_{\rm sub} = 150^{\circ}{\rm C})$ и полностью исчезает при $T_{\rm sub} = 250^{\circ}$ С. Такое поведение пика 1 показывает, что концентрация *sp*³-узлов в аморфной углеродной пленке значительно уменьшилась. В этом случае приоритет в формировании структуры пленок переходит к *s p*²-гибридизированным связям.

Как видно из рис. 3, интенсивность и полуширина пика 2 возрастают с увеличением температуры синтеза. Рамановские спектры а-С-пленок при $T_{\rm sub} = 250^{\circ}$ С раскладываются только на 2 составляющие — пик 2 и пик 3. Таким образом, как определили выше, структура описывается только *D*- и *G*-пиками, т. е. вибрационными модами шестигранных молекул и sp^2 -С-С-связями. Подобная картина изменения структуры, выявленная разложением спектров на гауссовы составляющие, наблюдается для всех режимов синтеза а-С в данной работе. Размер структурных единиц, формирующих матрицу углеродной пленки, оценивают согласно правилу Туинстра и Коинга:

$$I_d/I_G \propto 1/L_a,\tag{1}$$

где L_a — размер нанокластера. Однако в сильно неупорядоченных структурах дальнейшее увеличение беспорядка в атомной структуре приводит к уменьшению числа шестигранных молекул, что, в свою очередь, приводит к уменьшению интенсивности *D*-пика [15]. Поэтому отношение интенсивностей *D*- и *G*-пиков I_D/I_G начинает уменьшается с увеличением степени разупорядоченности структуры, и в этом случае уравнение Туинстра и Коинга неприменимо [15,22].

Появление колец в аморфной матрице указывает на возникновение определенной упорядоченности в аморфной структуре, что приводит к увеличению интенсивности *D*-пика. В этом случае I_D/I_G пропорционально числу колец в кластере. Когда размер нанокластера, состоящий из шестигранных колец, не превышает 20 Å, необходимо использовать выражение

$$\frac{I_D}{I_G} = c'(\lambda) \times L_a^2.$$
(2)

При этом правильно использовать отношение не ширины на полувысоте пиков, а отношение их интенсивностей I_D/I_G [11,22]. Это объясняется тем, что интенсивность излучения рамановских спектров определяется фононными модами молекул, участвующих в наиболее вероятных резонансных процессах комбинационного рассеяния света. Подобные рассуждения можно провести и для кластеров пространственно-структурированных из $s p^3$ -узлов. В [21] авторы обсудили интенсивность колебательных мод и их зависимость от волнового вектора и правил отбора. В данной работе утверждалось, что "запрет" фонона допускает участие фононов с волновым вектором $q = 2\pi/d$, где d — размер кластера, а не отдельных $s p^2$ - или $s p^3$ -структурных единиц.

Расчет коэффициента пропорциональности в уравнении (2), согласно работе [15], для лазера с длиной волны 473 нт примерно равен $C'(473) \approx 0.00376$. Таким

образом, проведенная оценка в соответствии с соотношением I_D/I_G показала, что размер графитоподобных кластеров увеличивается от ~ 6 Å до ~ 12 Å с повышением температуры.

Для алмазоподобной фазы, как показано и в работе [21], существование пика I обусловлено более мягкими кластерами из sp^3 -узлов, размеры которых составляют ~ 10 Å и меньше. Кроме того, как следует из рис. 3, увеличение температуры синтеза приводит к уменьшению размеров этих кластеров. При температуре синтеза 250°С sp^3 -узлы не организуются в кластеры, а формируются как связывающие мостики между sp^2 -структурно упорядоченными областями. В этом случае неупругое рассеяние света происходит на области, структурированной из sp^2 -узлов, поэтому фононный спектр sp^3 -узлов подавлен, и пик I исчезает.

Разложение на составляющие рамановских спектров а-С пленок, синтезированных при других значениях давления аргона и удельной мощности DC-разряда при температуре подложки 50°С, примерно одинаковое и похоже на разложение, показанное на рис. 3, *а*. Оценка размеров кластеров из sp^2 -узлов выявила, что они имеют общую тенденцию к увеличению в интервале от 6 до 10 Å с ростом удельной мощности. В то же время уменьшаются с повышением давления газа в том же диапазоне изменения L_a при $T_{sub} = 50°$ С. Обратная картина наблюдается с кластерами из sp^3 -узлов.

Таким образом, применение нормального распределения при разложении рамановских спектров позволяет выявить зависимость изменения формируемой структуры а-С от условий конденсации и получить дополнительную информацию о размерах структурных единиц.

Нужно дополнительно отметить, как установлено авторами [23], что энергия сублимации алмазоподобных фаз меньше, чем энергия сублимации алмаза, что говорит об их меньшей термодинамической устойчивости. Поэтому такие фазы не могут быть получены в равновесных термодинамических условиях [23].

Оптическая спектроскопия

Как определили выше, термодинамические параметры существенно влияют на формирование атомной структуры аморфной углеродной пленки. Это влияние сказывается на соотношении sp^2/sp^3 -связей и соответственно на размерах областей с квазиупорядоченной структурой. Оценка упорядоченности структуры показала, что при температурах менее 150°C в аморфной матрице присутствуют области из sp^3 -узлов. Но с увеличением температуры синтеза наблюдается рост графитоподобных структур из sp^2 -узлов.

В работе [17] наиболее подробно рассмотрен вопрос зонной структуры аморфного углерода. Было показано, что ширина запрещенной зоны обратно пропорциональна размерам нанокластеров из $s p^2$ -узлов. Согласно модели неупорядоченных графитовых слоев с размерами около 15 Å в диаметре, ограниченных $s p^3$ -узлами,

оптическая ширина запрещенной зоны соответствует $\sim 0.5 \,\text{eV}$. Авторы [17] определили, что в основе формирования зонной структуры лежат *п*-взаимодействия между *п*-состояниями ближайших соседей первой и второй координационной сфер, которые составляют ближний порядок атомной структуры. Поэтому учли вклад каждого из *р*π- и *р*σ-состояний в формирование краев зоны. В зависимости от процентного соотношения $s p^2 / s p^3$ -связей изменяется долевое участие π и σ -электронов в формировании краев зоны и электронной плотности состояний (EDOS) вблизи уровня Ферми (*E*_F). При этом потолок валентной зоны, дно зоны проводимости и EDOS как внутри запрещенной зоны, так и вблизи E_F будут формироваться низкоэнергетическими электронами *л*-*л*^{*}-состояний. Как было отмечено авторами [15,17], величина энергетического зазора между краями полос σ - σ^* порядка 6 eV, поэтому уровни σ-состояний лежат далеко от уровня Ферми. Если в аморфной пленке концентрация $s p^3$ -узлов более 20%, то уменьшение доли *п*-электронов существенно влияет на EDOS вблизи уровня Ферми и на границах зоны [17,18]. Именно по этой причине Е_g увеличивается. В работах [17,18] показано, что количество *s p*²-узлов и их ориентация существенно влияют на оптическую ширину запрещенной зоны.

Оптическая ширина запрещенной зоны является структурно чувствительным параметром, который дает существенный вклад в понимание зоной структуры и в ее формирование. Из спектров пропускания и отражения было определено, что зависимость коэффициента поглощения (а) от длины волны света в диапазоне значений $\alpha \sim 10^3 - 10^5 \,\mathrm{cm}^{-1}$ подчиняется квадратичному закону $\alpha h \nu = B(h \nu - E_g)^2$ Тауца [18,24] для разрешенных прямозонных переходов. Ширина запрещенной зоны определялась в области значений $\alpha \sim 10^5 \, {\rm cm}^{-1}$ и $\alpha d \sim 1$. Зависимость Е_g от температуры подложки и давления газа Ar приведены на рис. 4. Как видно из рис. 4, a, изменение Eg существенно зависит от температуры, и при $\Delta T_{sub} = 200^{\circ}$ С изменение $\Delta E_g \sim 1 \text{ eV}$. Подобная картина изменения зависимости $E_g(T_{sub})$ наблюдается и при других давлениях синтеза и P_d.

Из рис. 4, *а* видно, что увеличение температуры синтеза приводит к уменьшению E_g . Как было установлено выше, с увеличением температуры синтеза размеры графитоподобных нанокластеров из $s p^2$ -узлов увеличиваются от 6 до 12 Å. То есть наблюдаем увеличение области с квазиупорядоченной структурой, размеры которой можно отнести к среднему порядку атомной структуры. Изменение размеров нанокластеров из $s p^2$ -узлов коррелирует с изменением величины E_g .

Как показано выше (рис. 2), при $T_{sub} = 50^{\circ}$ С положение *G*-пика постоянно для трех значений P_{d} . И это постоянство положения *G*-пика говорит об одинаковом ближнем порядке атомной структуры. На рис. 4, *b* при данных значениях синтеза пленок а-С мы наблюдаем зависимость E_{g} как от удельной мощности DC-разряда, так

Рис. 4. Зависимость оптической ширины запрещенной зоны от (*a*) температуры синтеза DLC-пленок и (*b*) давления аргона для трех значений *P*_d.

и от давления газа Ar. C увеличением $P_{\rm d}$ на $0.5 \,{\rm W/cm^2}$ E_g уменьшается в среднем на ~ 0.47 eV. Помимо этого видно, что изменение Е_g прямо пропорционально изменению давления газа, т.е. при $P_{\rm d} = 2.1 \, {\rm W/cm}^2 E_g$ увеличивается на 0.15 eV с увеличением p, и при $P_{\rm d} = 2.6 \, {\rm W/cm}^2 \Delta E_g = 0.1 \, {\rm eV}$. Такое изменение зоны говорит о существенном влиянии удельной мощности ионно-плазменного разряда и давления газа на формирование структуры. Как было определено выше, при $T_{sub} = 50^{\circ}$ С кластеры из *s p*²- и *s p*³-узлов, формирующие а-С-пленку, имеют размеры больше радиуса второй координационной сферы. Размеры кластеров достигают 10 Å и, как показывают расчеты, изменение среднего размера областей с *s p*²-узлами примерно на 1 Å приводит к изменению оптической ширины запрещенной зоны. Таким образом, это подтверждает предположение [17], что за формирование зонной структуры и распределение электронной плотности в зонах отвечает как ближний порядок, так и средний порядок атомной структуры в аморфном углероде, что возможно уникально и присуще только для а-С углерода.

Авторы работ [1,15] утверждают, что если энергия запрещенной зоны a-C пленок принимает значения в интервале от 0.2 до 1 eV, то такие пленки относят к графитоподобному аморфному углероду a-C. Если значения E_g в диапазоне от 1 до 2.5 eV, то такие пленки по структуре относятся к тетрагональным аморфным углеродным пленкам ta-C, или их еще называют алмазоподобными [1,14].

XPS-спектроскопия

Для изучения соотношения гибридизаций $s p^2/s p^3$ -связей на поверхности пленок провели исследования методом XPS. На рис. 5 приведен общий спектр XPS, характерный для всех исследуемых

Рис. 5. XPS а-С-пленки, синтезированной при 2.1 W/cm².

образцов, откуда видно, что в углеродной пленке присутствует определенное количество кислорода (≤ 10 at.%) и гораздо в меньшей степени азота (< 1.3 at.%). Появление кислорода и азота в а-С-пленке связано с адсорбцией из атмосферы. Углеродный пик C1s лежит в области с энергией ~ 285.2 eV и характерен для всех образцов, полученных при температуре меньше 50°С.

Для определения концентрации sp^3 -связей провели разложение C1s-пика на составляющие (рис. 6). Фон вычитался методом Ширли. Положение пика в области 284.9 eV соответствует sp^2 -C–C-связям, в области 285.25 eV соответствует sp^3 -С–C-связям, максимумы гауссовых пиков, лежащие в области более 286 eV, соответствуют связям С–О и С–N. Как видно, доля sp^3 -связей с увеличением удельной мощности уменьшается, при этом доля sp^2 -связей увеличивается. Оценку концентрации sp^2 - и sp^3 -С–C-связей проводили по площадям гауссовых пиков с учетом влияния связей

Рис. 6. XPS а-С-пленок, синтезированных при $T_{sub} = 50^{\circ}$ С и разной удельной мощности: (*a*) 2.1 W/cm², (*b*) 2.4 W/cm², (*c*) 2, 6 W/cm².

С-О и С-N. Процентное содержание sp^3 -связей для каждой мощности синтеза приведены на рис. 6. Увеличение концентрации sp^2 -связей с увеличением удельной мощности разряда соответственно равно 30, 50 и 53%. Сопоставляя результаты, приведенные на рис. 4, *b* и 6, можно видеть определенную корреляцию в изменении оптической ширины запрещенной зоны и соотношения sp^2/sp^3 -связей.

Заключение

Использование электромагнита в магнетроне позволяет поддерживать отношение Е/р постоянным в процессе синтеза. Напряжение и ток плазмы DC-разряда корректировались величиной магнитного поля магнетрона, что позволило детально провести исследование влияния термодинамических и кинетических параметров синтеза на структуру и свойства наногетероморфных углеродных пленок. При этом появилась возможность при одинаковом значении тока DC-разряда провести исследование влияния давления газа для трех различных удельных мощностей плазменного разряда на формирование структуры, а так же выявить влияние структуры на оптическую ширину запрещенной зоны. Методами рамановской, XPS и оптической спектроскопии показано существование определенных закономерностей между условиями синтеза, структурой и оптической запрещенной зоной в аморфных углеродных пленках.

Углеродные пленки, синтезированные в неравновесных условиях, имеют неупорядоченную структуру, состоящую из графитоподобных и алмазоподобных нанокластеров. Размеры этих нанокластеров зависят от термодинамических и кинетических параметров синтеза и варьируются от 6 до 12 Å. Размеры кристаллоподобных частиц соизмеримы со средним порядком структуры, и, как показано в данной работе, изменение размеров областей среднего порядка приводит к изменению ширины запрещенной зоны.

Оптическая ширина запрещенной зоны принимает значение меньше 1 eV в а-С-пленках, синтезированных

при 50°С и удельной мощности плазменного разряда 2.6 W/cm². Такие углеродные пленки в большей степени состоят из графитоподобной структуры. При этом положение *G*-пика определяется при 1545 cm⁻¹, что указывает на формирование структур из $s p^3$ -узлов, т.е. алмазоподобной структуры. Однако общепринято, что к алмазоподобным пленкам нужно относить а-С-пленки, значения E_g которых больше 1 eV. Таким образом, видим неоднозначность в характеризации атомной структуры при температуре синтеза 50°С.

Из сказанного можно заключить, что изучение структуры аморфных углеродных пленок RS существенно дополняется оптическими методами исследования и рентгеновской фотоэлектронной спектроскопией. Параметр E_g определяется распределением EDOS краев разрешенных зон, которая формируется относительной концентрацией $s p^2$ - и $s p^3$ -узлов, что было подтверждено данными XPS-анализа.

Финансирование работы

Работа выполнена в рамках грантового финансирования № АР05131495 комитета науки МОН Республики Казахстан.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Robertson J. // Mater. Sci. Eng. 2002. R37. P. 129.
- Juan Manuel Mendez, Stephen Muhl, Contreras-Puente G., Aguilar-Hernandez J. // Thin Solid Films. 1992. V. 220. P. 125.
- [3] Equer B., Drevillon B., French I., Kallfass T. Thin Film Materials for Large Area Electronics. Elsevier Science. 1999.
 V. 80. 1st Edition. Hardcover, 978-0-08-043607-4
- [4] Grierson D.S., Carpick R.W. // Nano Today. 2007. V. 2. N 5. P. 12.
- [5] Nilgün Doğan Baydoğan // Materials Science and Engineering, 2004. B. 107. P. 70.

- [6] Wang H., Guo J.Q., Zhou Y.S. // Carbon. 2013. V. 64. P. 67.
- [7] Hevia S.A., Bejide M., Duran B., Rosenkranz A., Ruiz H.M., Favre M., del Rio R. // J. Solid State Electrochemistry. 2018.
 V. 22. N 9. P. 2845.
- [8] Gangopadhyay A. // Tribology Letters. 1998. V. 5. N 1. P. 25.
- [9] Shum P.W., Zhou Z.F., Li K.Y., Chan C.Y. // Thin Solid Films. 2004. V. 458. P. 203.
- [10] Yongjun Wanga, Hongxuan Lia, Li Jia, Fei Zhaoc, Qinghua Konga, Yongxia Wanga, Xiaohong Liua, Weilong Quana, Huidi Zhoua, Jianmin Chena // Surface and Coatings Technology. 2011. V. 205. N 8–9. P. 3058.
- [11] Ryaguzov A.P., Yermekov G.A., Nemkayeva R.R., Guseinov N.R., Aliaskarov R.K. // J. Mater. Res. 2016. V. 31. N 1. P. 127.
- [12] Ferrari A.C., Robertson J. // Phil. Trans. R. Soc. Lond. A. 2004. V. 362. P. 2477.
- [13] Casiraghi C., Piazza F., Ferrari A.C., Grambole D., Robertson J. // Diamond & Related Materials. 2005. V. 14. P. 1098.
- [14] Ferrari A.C. // Diamond and Related Materials. 2002. V. 11. P. 1053.
- [15] Ferrari A.C., Robertson J. // Phys. Rev. B. 2000. V. 61 (20).
 P. 14095.
- [16] Ferrari A.C., Robertson J. // Phys. Rev. B. 2001. V. 64. P. 075414.
- [17] Robertson J., O'Reilly E.P. // Phys. Rev. B. 1987. V. 35. N 6.
 P. 2946.
- [18] Chhowalla M., Robertson J., Chen C.W., Silva S.R.P., Davis C.A., Amaratunga G.A.J., Milne W.I. // J. Appl. Phys. 1997. V. 81. P. 139.
- [19] Knight D.S., White W.B. // J. Mater. Res. Society. 1989. V. 4. N 2. P. 385.
- [20] Tuinstra F., Koening J.L. // J. Chem. Phys. 1970. V. 53. P. 1126.
- [21] Ferrari A.C., Robertson J. // Phys. Rev. B. 2001. V. 63.
 P. 121405R.
- [22] Cancado L.G., Jorio A., Martins Ferreira E.H., Stavale F., Achete C.A., Capaz R.B., Moutinho M.V.O., Lombardo A., Kulmala T.S., Ferrari A.C. // Nano Lett. 2011. V. 11. P. 3190.
- [23] Беленков Е.А., Грешняков В.А. // ФТТ. 2013. Т. 55. № 8. С. 1640; (Belenkov E.A., Greshnyakov V.A. // Physics of the Solid State. 2013. V. 55. N 8. P. 1754.)
- [24] Tauc J. // Prog. Semicond. 1965. V. 9. P. 89.