Энергетический спектр и оптические свойства фуллерена С₃₆ в модели Хаббарда

© А.В. Силантьев

01

Марийский государственный университет, 424001 Йошкар-Ола, Россия e-mail: kvvant@rambler.ru

Поступила в редакцию 18.09.2018 г. В окончательной редакции 04.03.2019 г. Принята к публикации 15.03.2019 г.

> В рамках модели Хаббарда в приближении среднего поля получены в аналитическом виде антикоммутаторные функции Грина и энергетические спектры фуллерена C₃₆ и эндоэдрального фуллерена La@C₃₆ с группами симметрии D_{6h}. Используя методы теории групп, проведена классификация энергетических состояний, а также определены разрешенные переходы в энергетических спектрах молекул C₃₆ и La@C₃₆ с группами симметрии D_{6h}.

Ключевые слова: модель Хаббарда, фуллерен Сз6, энергетический спектр.

DOI: 10.21883/OS.2019.08.48028.275-18

Введение

В настоящее время большое число теоретических и экспериментальных исследований посвящено изучению как физических, так и химических свойств наноструктур. Среди наноструктур выделяется большой класс наносистем, который называется фуллеренами, открытие которых привело к бурному развитию нанонауки. Среди фуллеренов можно выделить так называемые малые фуллерены $C_n \, c \, n < 60$. Одним из малых фуллеренов является фуллерен C_{36} .

Фуллерен С₃₆ был обнаружен в 1998 г. в газовой фазе, полученной при помощи метода дугового разряда [1]. Измерения, проведенные при помощи ядерного магнитного резонанса, показали, что фуллерен С₃₆ обладает симметрией D_{6h} [1]. При исследовании паров, полученных в результате лазерного испарения композитов, содержащих лантан и графит, был обнаружен эндоэдральный комплекс La@C₃₆ [2]. Эндоэдральный фуллерен La@C₃₆ был также зафиксирован в газовой фазе в работах [3,4]. Изучение эндоэдрального фуллерена La@C₃₆ [5] показало, что в этой молекуле фуллерен C₃₆ также обладает симметрией D_{6h}. Исследованию свойств фуллерена C₃₆ посвящено довольно много работ [6–8].

Фуллерен C_{36} с группой симметрии D_{6h} состоит из 12 пентагонов и 8 гексагонов, как показано на рис. 1. Отметим, что из 36 атомов углерода можно построить 15 изомеров фуллерена C_{36} [9]. Из диаграммы Шлегеля, изображенной на рис. 1, видно, что фуллерен C_{36} с группой симметрии D_{6h} содержит четыре неэквивалентных связи и три группы неэквивалентных атомов углерода: $G_1 = \{1, 2, 3, 4, 5, 6, 31, 32, 33, 34, 35, 36\}, G_2 = \{7, 9, 11, 13, 15, 17, 20, 22, 24, 26, 28, 30\}, G_3 = \{8, 10, 12, 14, 16, 18, 19, 21, 23, 25, 27, 29\}.$ К множеству G_1 принадлежат атомы, которые находятся в вершинах сочленения одного гексагона и двух пентагонов, и, кроме того, каждый из них имеет двух ближайших соседей из этого же множества G_1 . К множеству G_2 принадлежат атомы, которые находятся в вершинах сочленения одного гексагона и двух пентагонов, и каждый из них не имеет ближайших соседей из этого же множества G_2 . К множеству G_3 принадлежат атомы, которые находятся в вершинах сочленения двух гексагонов и одного пентагона.

Исследование углеродных фуллеренов и нанотрубок показало, что электронные и химические свойства этих систем в основном определяют π -электроны, которые могут перескакивать с одного атома углерода на другой. Исследования углеродных систем показали [10,11], что эффективное взаимодействие двух электронов, находящихся на одном узле, составляет $\sim 5 \text{ eV}$.

Для описания электронных свойств наносистем [12– 19] широко используется модель Хаббарда [12]. В рамках этой модели были изучены электронные и оптические свойства различных наносистем [11,13–20]. Так, например, в рамках модели Хаббарда в приближении среднего поля были получены энергетические спектры и спектры оптического поглощения фуллерена C_{60} с группой симметрии I_h [16], фуллерена C_{70} с группой симметрии D_{6d} [17] и фуллерена C_{20} с группой симметрии I_h, D_{5d} и D_{3d} [18], а в работе [15] были исследованы электронные свойства углеродных нанотрубок. Полученные в работах [16,17] результаты достаточно хорошо согласуются с экспериментальными данными.

Целью данной работы является исследование энергетического спектра фуллерена C_{36} с группой симметрии D_{6h} в рамках модели Хаббарда в приближении среднего поля. При проведении численных расчетов были использованы результаты работы [16], в которой исходя

Рис. 1. Фуллерен С₃₆ с группой симметрии D_{6h} и его диаграмма Шлегеля с указанием положения атомов углерода и связей между атомами углерода.

из экспериментально наблюдаемых трех полос спектра оптического поглощения фуллерена С₆₀, находящегося в газовой фазе, были получены численные значения для параметров, входящих в гамильтониан модели Хаббарда.

Энергетический спектр фуллерена С₃₆

Для описания *л*-электронной системы фуллерена С₇₀ воспользуемся моделью Хаббарда [12]:

$$H = \sum_{\sigma,i} \varepsilon_i n_{i\sigma} + \sum_{\sigma,i\neq j} t_{ij} c^+_{i\sigma} c_{j\sigma} + \frac{1}{2} \sum_{\sigma,i} U_i n_{i\sigma} n_{i\bar{\sigma}}, \quad (1)$$

где $c_{i\sigma}^+$, $c_{i\sigma}$ — операторы рождения и уничтожения электронов со спином σ на узле i; $n_{i\sigma}$ — оператор числа частиц со спином σ на узле i; ε_i — энергия одноэлектронного атомного состояния на узле i; t_{ij} — интеграл переноса, описывающий перескоки электронов с узла iна узел j; U_i — энергия кулоновского отталкивания двух электронов, находящихся на i-м узле; $\bar{\sigma} = -\sigma$.

Найдем энергетический спектр фуллерена С₃₆ в приближении среднего поля. Для этого в гамильтониане (1) сделаем следующую замену:

$$n_{i\sigma}n_{i\bar{\sigma}} \to n_{i\sigma} \langle n_{i\bar{\sigma}} \rangle + n_{i\bar{\sigma}} \langle n_{i\sigma} \rangle, \qquad (2)$$

где $\langle n_{i\sigma} \rangle$ — среднее число электронов со спином σ на узле *i*.

Подставляя соотношение (2) в гамильтониан (1), получим гамильтониан модели Хаббарда в приближении среднего поля:

$$H = \sum_{\sigma,i} \varepsilon'_{i\sigma} n_{i\sigma} + \sum_{\sigma,i\neq j} t_{ij} c^+_{i\sigma} c_{j\sigma}, \qquad (3)$$

где

$$\varepsilon_{i\sigma}' = \varepsilon_i + U \langle n_{\bar{\sigma}} \rangle. \tag{4}$$

Используя гамильтониан (3) и рис. 1, запишем уравнения движения для всех операторов рождения $c_{f\sigma}^+(\tau)$, заданных в представлении Гейзенберга:

$$\begin{cases} \frac{dc_{1\sigma}^{-}}{d\tau} = \varepsilon_{\sigma}^{\prime} c_{1\sigma}^{+} + t_{a} (c_{2\sigma}^{+} + c_{6\sigma}^{+}) + t_{b} c_{9\sigma}^{+}, \\ \dots \\ \frac{dc_{36\sigma}^{-}}{d\tau} = \varepsilon_{\sigma}^{\prime} c_{36\sigma}^{+} + t_{a} (c_{31\sigma}^{+} + c_{35\sigma}^{+}) + t_{b} c_{28\sigma}^{+}. \end{cases}$$
(5)

Система уравнений (5) имеет точное аналитическое решение. Используя это решение, можно найти фурьеобразы антикоммутаторных функций Грина:

$$\langle \langle c_{j\sigma}^{+} | c_{j\sigma} \rangle \rangle = \frac{i}{2\pi} \sum_{m=1}^{22} \frac{Q_{j,m}}{E - E_m + ih},$$
$$E_m = \varepsilon' + e_m, \tag{6}$$

где

$$e_{1} = \frac{2t_{a} + t_{d}}{3}$$

$$-\frac{2}{3}\sqrt{12t_{c}^{2} + 4t_{a}^{2} + t_{d}^{2} - 2t_{a}t_{d} + 3t_{b}^{2}}\cos\left(\frac{\varphi_{1} - \pi}{3}\right),$$

$$e_{2} = \frac{2t_{a} - t_{d}}{3}$$

$$-\frac{2}{3}\sqrt{12t_{c}^{2} + 4t_{a}^{2} + t_{d}^{2} + 2t_{a}t_{d} + 3t_{b}^{2}}\cos\left(\frac{\varphi_{2} - \pi}{3}\right),$$

$$e_{3} = \frac{t_{a} + t_{d}}{3}$$

$$-\frac{2}{3}\sqrt{9t_{c}^{2} + t_{a}^{2} + t_{d}^{2} - t_{a}t_{d} + 3t_{b}^{2}}\cos\left(\frac{\varphi_{5} - \pi}{3}\right),$$

$$e_{4} = \frac{2t_{a} + t_{d}}{3}$$

$$-\frac{2}{3}\sqrt{12t_{c}^{2} + 4t_{a}^{2} + t_{d}^{2} - 2t_{a}t_{d} + 3t_{b}^{2}}\cos\left(\frac{\varphi_{1} + \pi}{3}\right),$$

Оптика и спектроскопия, 2019, том 127, вып. 2

 ϕ

$$\begin{split} e_{5} &= \frac{t_{a} - t_{d}}{3} \\ &\quad - \frac{2}{3} \sqrt{9t_{c}^{2} + t_{a}^{2} + t_{d}^{2} + t_{a}t_{d} + 3t_{b}^{2}} \cos\left(\frac{\varphi_{4} - \pi}{3}\right), \\ e_{6} &= \frac{-t_{a} + t_{d}}{3} \\ &\quad - \frac{2}{3} \sqrt{3t_{c}^{2} + t_{a}^{2} + t_{d}^{2} + t_{a}t_{d} + 3t_{b}^{2}} \cos\left(\frac{\varphi_{6} - \pi}{3}\right), \\ e_{7} &= \frac{2t_{a} - t_{d}}{3} \\ &\quad - \frac{2}{3} \sqrt{12t_{c}^{2} + 4t_{a}^{2} + t_{d}^{2} + 2t_{a}t_{d} + 3t_{b}^{2}} \cos\left(\frac{\varphi_{2} + \pi}{3}\right), \\ e_{8} &= \frac{t_{a} + t_{d}}{3} \\ &\quad - \frac{2}{3} \sqrt{9t_{c}^{2} + t_{a}^{2} + t_{d}^{2} - t_{a}t_{d} + 3t_{b}^{2}} \cos\left(\frac{\varphi_{5} + \pi}{3}\right), \\ e_{10} &= -\frac{t_{a} + t_{d}}{3} \\ &\quad - \frac{2}{3} \sqrt{9t_{c}^{2} + t_{a}^{2} + t_{d}^{2} - t_{a}t_{d} + 3t_{b}^{2}} \cos\left(\frac{\varphi_{3} - \pi}{3}\right), \\ e_{11} &= \frac{t_{a} - t_{d}}{3} \\ &\quad - \frac{2}{3} \sqrt{9t_{c}^{2} + t_{a}^{2} + t_{d}^{2} + t_{a}t_{d} + 3t_{b}^{2}} \cos\left(\frac{\varphi_{4} + \pi}{3}\right), \\ e_{12} &= -t_{a} - \sqrt{t_{a}^{2} + t_{b}^{2}}, \\ e_{13} &= -\frac{t_{a} + t_{d}}{3} \\ &\quad - \frac{2}{3} \sqrt{3t_{c}^{2} + t_{a}^{2} + t_{d}^{2} + t_{a}t_{d} + 3t_{b}^{2}} \cos\left(\frac{\varphi_{6} + \pi}{3}\right), \\ e_{14} &= -t_{d}, \\ e_{15} &= -\frac{t_{a} + t_{d}}{3} \\ &\quad - \frac{2}{3} \sqrt{3t_{c}^{2} + t_{a}^{2} + t_{d}^{2} - t_{a}t_{d} + 3t_{b}^{2}} \cos\left(\frac{\varphi_{3} + \pi}{3}\right), \\ e_{17} &= -\frac{t_{a} + t_{d}}{3} + \frac{2}{3} \sqrt{9t_{c}^{2} + t_{a}^{2} + t_{d}^{2} - t_{a}t_{d} + 3t_{b}^{2}} \cos\left(\frac{\varphi_{3}}{3}\right), \\ e_{18} &= \frac{2t_{a} + t_{d}}{3} \\ &\quad + \frac{2}{3} \sqrt{12t_{c}^{2} + 4t_{a}^{2} + t_{d}^{2} - 2t_{a}t_{d} + 3t_{b}^{2}} \cos\left(\frac{\varphi_{3}}{3}\right), \\ e_{19} &= -\frac{t_{a} + t_{d}}{3} + \frac{2}{3} \sqrt{3t_{c}^{2} + t_{a}^{2} + t_{d}^{2} - t_{a}t_{d} + 3t_{b}^{2}} \cos\left(\frac{\varphi_{3}}{3}\right), \\ e_{19} &= -\frac{t_{a} + t_{d}}{3} + \frac{2}{3} \sqrt{3t_{c}^{2} + t_{a}^{2} + t_{d}^{2} - 2t_{a}t_{d} + 3t_{b}^{2}} \cos\left(\frac{\varphi_{3}}{3}\right), \\ e_{19} &= -\frac{t_{a} + t_{d}}{3} + \frac{2}{3} \sqrt{3t_{c}^{2} + t_{a}^{2} + t_{d}^{2} - t_{a}t_{d} + 3t_{b}^{2}} \cos\left(\frac{\varphi_{3}}{3}\right), \\ e_{19} &= -\frac{t_{a} + t_{d}}{3} + \frac{2}{3} \sqrt{3t_{c}^{2} + t_{a}^{2} + t_{d}^{2} - t_{a}t_{d} + 3t_{b}^{2}} \cos\left(\frac{\varphi_{3}}{3}\right), \\ e_{19} &= -\frac{t_{a} + t_{d}}{3} + \frac{2}{3} \sqrt{3t_{c}^{2} + t_{a}^{2} + t_{d}^{2} - t_{a}t_{d} + 3t_{b}^{2}} \cos\left(\frac{\varphi_{3}}{3}\right), \\ e_{19} &= -\frac{t_{a} + t_$$

$$\begin{split} e_{20} &= \frac{t_a - t_d}{3} + \frac{2}{3} \sqrt{9t_c^2 + t_a^2 + t_a^2 + t_a^2 + t_a t_d + 3t_b^2} \cos\left(\frac{\varphi_4}{3}\right), \\ &e_{21} = -t_a + \sqrt{t_a^2 + t_b^2}, \\ e_{22} &= \frac{2t_a - t_d}{3} \\ &+ \frac{2}{3} \sqrt{12t_c^2 + 4t_a^2 + t_a^2 + 2t_a t_d + 3t_b^2} \cos\left(\frac{\varphi_2}{3}\right), \\ \phi_1 &= \arccos\left(\frac{18t_c^2 t_d - 9t_b^2 t_d - 72t_c^2 t_a + 9t_a t_b^2 + t_a^2 + 8t_a^2 - 3t_a^2 t_a - 6t_a t_a^2}{(12t_a^2 + 4t_a^2 + t_a^2 - 2t_a t_d + 3t_b^2)^{3/2}}\right), \\ \phi_2 &= \arccos\left(\frac{-18t_c^2 t_d - 9t_b^2 t_d - 72t_c^2 t_a + 9t_a t_b^2 - t_a^2 + 8t_a^2 - 3t_a^2 t_a - 6t_a t_a^2}{(12t_a^2 + 4t_a^2 + t_a^2 - 2t_a t_d + 3t_b^2)^{3/2}}\right), \\ \phi_3 &= \arccos\left(\frac{-9t_c^2 t_d + 18t_b^2 t_d - 72t_c^2 t_a + 9t_a t_b^2 - 2t_a^2 - 2t_a^2 + 3t_a^2 t_a + 3t_a t_a^2}{2(9t_c^2 + t_a^2 + t_a^2 - t_a t_a + 3t_b^2)^{3/2}}\right), \\ \phi_4 &= \arccos\left(\frac{-27t_c^2 t_d + 18t_b^2 t_d - 9t_a t_b^2 - 2t_a^2 - 2t_a^2 + 3t_a^2 t_a + 3t_a t_a^2}{2(9t_c^2 + t_a^2 + t_a^2 + t_a t_a + 3t_b^2)^{3/2}}\right), \\ \phi_5 &= \arccos\left(\frac{27t_c^2 t_d - 18t_b^2 t_d - 54t_c^2 t_a + 9t_a t_b^2 - 2t_a^2 - 3t_a^2 t_a - 3t_a^2 t_a - 3t_a t_a^2}{2(9t_c^2 + t_a^2 + t_a^2 + t_a^2 + t_a^2 + 2t_a^2 - 3t_a^2 t_a^2 - 3t_a^2 t_a^2 - 3t_a^2 t_a^2}}{2(9t_c^2 + t_a^2 + t_a^2 + t_a^2 + t_a^2 + t_a^2 + 2t_a^2 - 3t_a^2 t_a^2 - 3t_a^2 t_a^2 - 3t_a^2 t_a^2}}\right), \\ \phi_6 &= \arccos\left(\frac{9t_c^2 t_d - 18t_b^2 t_d + 8t_b^2 t_a - 9t_a t_a^2 + 2t_a^2 - 2t_a^2 + 3t_a^2 t_a^2 - 3t_a^2 t_a^2 - 3t_a^2 t_a^2}}{2(9t_c^2 + t_a^2 + t_a^2 + t_a^2 + t_a^2 + t_a^2 + t_a^2 + 3t_a^2 + 3t_a^2 - 3t_a^2 t_a^2 - 3t_a^2 t_a^2}}{2(9t_c^2 + t_a^2 + t$$

k = 5, 11, 20;

$$Q_{z,k} = \frac{1}{12} \frac{-t_b^2 \delta_{3,z} - 4t_c^2 \delta_{4,z} + 2t_a t_d \delta_{5,z} - (2t_a \delta_{1,z} + t_d \delta_{2,z}) e_k + e_k^2}{3e_k^2 - 2(2t_a + t_d) e_k + 2t_a t_d - 4t_c^2 - t_b^2},$$

$$k = 1, 4, 18;$$

$$\delta_{1,z} = \begin{cases} 0, & z \in G_1, \\ 1, & z \in G_3, \\ 1, & z \in G_2, \end{cases},$$

$$\delta_{3,z} = \begin{cases} 0, & z \in G_1, \\ 1, & z \in G_2, \\ 0, & z \in G_3, \\ 0, & z \in G_2, \end{cases},$$

$$\delta_{4,z} = \begin{cases} 1, & z \in G_1, \\ 0, & z \in G_1, \\ 1, & z \in G_2, \\ 0, & z \in G_2, \end{cases},$$

$$\delta_{4,z} = \begin{cases} 1, & z \in G_1, \\ 0, & z \in G_1, \\ 0, & z \in G_2, \\ 0, & z \in G_2, \end{cases},$$

$$\delta_{4,z} = \begin{cases} 1, & z \in G_1, \\ 0, & z \in G_3, \\ 0, & z \in G_2, \end{cases},$$

$$\delta_{4,z} = \begin{cases} 1, & z \in G_1, \\ 0, & z \in G_3, \\ 0, & z \in G_2, \end{cases},$$

$$\delta_{4,z} = \begin{cases} 1, & z \in G_1, \\ 0, & z \in G_2, \\ 0, & z \in G_2, \end{cases},$$

$$\delta_{4,z} = \begin{cases} 1, & z \in G_1, \\ 0, & z \in G_2, \\ 0, & z \in G_2, \end{cases},$$

$$\delta_{4,z} = \begin{cases} 1, & z \in G_1, \\ 0, & z \in G_2, \\ 0, & z \in G_2, \end{cases},$$

$$\delta_{4,z} = \begin{cases} 1, & z \in G_1, \\ 0, & z \in G_2, \\ 0, & z \in G_2, \end{cases},$$

$$\delta_{4,z} = \begin{cases} 1, & z \in G_1, \\ 0, & z \in G_2, \\ 0, & z \in G_2, \end{cases},$$

$$\delta_{4,z} = \begin{cases} 1, & z \in G_1, \\ 0, & z \in G_2, \\ 0, & z \in G_2, \end{cases},$$

$$\delta_{4,z} = \begin{cases} 1, & z \in G_1, \\ 0, & z \in G_2, \\ 0, & z \in G_2, \end{cases},$$

$$\delta_{4,z} = \begin{cases} 1, & z \in G_1, \\ 0, & z \in G_2, \\ 0, & z \in G_2, \end{cases},$$

$$\delta_{4,z} = \begin{cases} 1, & z \in G_1, \\ 0, & z \in G_2, \\ 0, & z \in G_2, \end{cases},$$

$$\delta_{4,z} = \begin{cases} 1, & z \in G_1, \\ 0, & z \in G_2, \\ 0, & z \in G_2, \end{cases},$$

$$\delta_{4,z} = \begin{cases} 1, & z \in G_1, \\ 0, & z \in G_2, \\ 0, & z \in G_2, \end{cases},$$

$$\delta_{4,z} = \begin{cases} 1, & z \in G_1, \\ 0, & z \in G_2, \\ 0, & z \in G_2, \end{cases},$$

$$\delta_{4,z} = \begin{cases} 1, & z \in G_1, \\ 0, & z \in G_2, \\ 0, & z \in G_2, \\ 0, & z \in G_2, \end{cases},$$

$$\delta_{4,z} = \begin{cases} 1, & z \in G_1, \\ 0, & z \in G_2, \\ 0, & z \in G_2, \\ 0, & z \in G_2, \end{cases},$$

Зная фурье-образ антикоммутаторной функции Грина, можно найти энергетический спектр квантовой системы, который определяется полюсами функции Грина [21]. Следовательно, энергетический спектр фуллерена C_{36} с группой симметрии D_{6h} определяется величинами E_m , которые входят в функцию Грина (6). Отметим, что величины e_m , которые определяются соотношениями (7), характеризуют энергетический спектр фуллерена C_{36} относительно энергии ε' .

Энергетические состояния фуллерена C_{36} с группой симметрии D_{6h} можно классифицировать в соответствии с неприводимыми представлениями группы D_{6h} . Как известно, группа D_{6h} имеет восемь одномерных неприводимых представлений a_{1g} , a_{2g} , b_{1g} , b_{2g} , a_{1u} , a_{2u} , b_{1u} , b_{2u} и четыре двумерных неприводимых представлений e_{1g} , e_{2g} , e_{1u} , e_{2u} [22]. Можно показать, что энергетические состояния фуллерена C_{36} , определяемые полюсами функции Грина (6), связаны следующим образом с неприводимыми представлениями группы D_{6h} :

$$\begin{split} E_1(a_{1g}), & E_2(a_{2u}), E_3(e_{1u}), E_4(a_{1g}), E_5(e_{1g}), E_6(e_{2g}), \\ & E_7(a_{2u}), E_8(e_{1u}), E_9(b_{2u}), E_{10}(e_{2u}), E_{11}(e_{1g}), \\ & E_{12,1}(b_{1u}), E_{12,2}(b_{2g}), E_{13}(e_{2g}), E_{14}(b_{1g}), E_{15}(e_{2u}), \\ & E_{16}(e_{1u}), E_{17}(e_{2g}), E_{18}(a_{1g}), E_{19}(e_{2u}), E_{20}(e_{1g}), \\ & E_{21,1}(b_{1u}), E_{21,2}(b_{2g}), E_{22}(a_{2u}). \end{split}$$

Важной физической характеристикой каждого энергетического уровня квантовой системы является степень его вырождения. Для того чтобы найти степень вырождения энергетических уровней фуллерена C₃₆, воспользуемся следующим соотношением [16]:

$$g_i = \sum_{j=1}^N \mathcal{Q}_{j,i},\tag{9}$$

где *N* — число узлов в наносистеме.

Подставляя величины $Q_{j,i}$, которые определяются соотношениями (8), в формулу (9), получим для степеней вырождения энергетических уровней фуллерена C_{36} следующие значения:

$$g_{1} = g_{2} = g_{4} = g_{7} = g_{9} = g_{12,1} = g_{12,2}$$
$$= g_{14} = g_{18} = g_{21,1} = g_{21,2} = g_{22} = 1,$$
$$g_{3} = g_{5} = g_{6} = g_{8} = g_{10} = g_{11} = g_{13}$$
$$= g_{15} = g_{16} = g_{17} = g_{19} = g_{20} = 2,$$

Таким образом, соотношения (7) и (10) описывают энергетические спектры фуллерена C_{36} с группой симметрии D_{6h} в модели Хаббарда в приближении среднего поля.

Результаты данных вычислений приведены в табл. 1, а также на рис. 2, и из них следует, что энергетический спектр фуллерена C_{36} с группой симметрии D_{6h} состоит из 22 энергетических состояний, из которых 8 энергетических состояний не вырождены, а 14 энергетических состояний являются двукратно вырожденными. Из 14 двукратно вырожденных энергетических состояний два энергетических состояния являются случайно вырожденными.

Обсуждение результатов

Исследования, выполненные в работе [5], показали, что расстояния между атомами углерода в фуллерене C_{36} с группой симметрии D_{6h} имеют следующие значения:

$$x_{1,2} = 1.415 \text{ A}, \quad x_{1,9} = 1.493 \text{ A},$$

 $x_{9,10} = 1.434 \text{ Å}, \quad x_{10,23} = 1.440 \text{ Å}.$ (11)

Для того чтобы найти численные значения для интегралов переноса, которые соответствуют фуллерену С₃₆, воспользуемся следующим соотношением [17,18]:

$$t_s = -8957.33 \exp(-6.0207 x_s). \tag{12}$$

Подставляя (11) в соотношение (12), мы получим численные значения для интегралов переноса для фуллерена С₃₆ с группой симметрии D₆h:

$$t_{1,2} = -1.78778 \text{ eV}, \quad t_{2,3} = -1.11780 \text{ eV},$$

 $t_{3,4} = -1.59453 \text{ eV}, \quad t_{3,12} = -1.53796 \text{ eV}.$ (13)

Подставляя численные значения для интегралов переноса (13) в соотношение (7), получим для фуллерена C_{36} численные значения для величин e_k , которые приведены в табл. 1.

Теперь, как это следует из (6), для того чтобы получить энергетический спектр фуллерена С₃₆, следует воспользоваться следующей формулой:

$$E_k = \varepsilon' + e_k. \tag{14}$$

Рис. 2. Энергетический спектр фуллерена С₃₆ с группой симметрии D_{6h}.

Для того чтобы найти численное значение для параметра ε' , поступим следующим образом. Как следует из соотношения (4), численное значение для параметра ε' не должно зависеть от типа фуллерена. В работе [17] исходя из экспериментально наблюдаемого оптического спектра поглощения фуллерена C₇₀ в рамках модели Хаббарда в приближении среднего поля было вычислено $\varepsilon' = -4.979$ eV. Теперь, подставляя численные значения для e_k из табл. 1, а также численное значение для ε' в соотношение (14), получим энергетический спектр фуллерена С₃₆ с группой симметрии D_{6h}. Результаты вычислений приведены в табл. 1, а также на рис. 2.

Рассмотрим теперь структуру энергетического спектра фуллерена C_{36} , который изображен на рис. 2. Как видно из соотношения (14) и рис. 2, в энергетической зоне фуллерена C_{36} энергетические уровни сосредоточе-

N₂	e_j , eV	E_j , eV	g j	$E(\Gamma_j)$	N₂	e_j , eV	E_j , eV	<i>g</i> _j	$E(\Gamma_j)$
1	-4.582	-9.561	1	$E_1(a_{1g})$	12	-0.321	-5.300	1 + 1	$E_{12,1}(b_{1u}), E_{12,2}(b_{2g})$
2	-4.115	-9.094	1	$E_2(a_{2u})$	13	0.405	-4.574	2	$E_{13}(e_{2g})$
3	-3.870	-8.849	2	$E_3(e_{1u})$	14	1.538	-3.441	1	$E_{14}(b_{1g})$
4	-3.168	-8.147	1	$E_4(a_{1g})$	15	1.699	-3.280	2	$E_{15}(e_{2u})$
5	-2.876	-7.855	2	$E_5(e_{1g})$	16	2.296	-2.683	2	$E_{16}(e_{1u})$
6	-2.624	-7.603	2	$E_{6}(e_{2g})$	17	2.469	-2.510	2	$E_{17}(e_{2g})$
7	-2.035	-7.014	1	$E_7(a_{2u})$	18	2.637	-2.342	1	$E_{18}(a_{1g})$
8	-1.751	-6.730	2	$E_8(e_{1u})$	19	2.927	-2.052	2	$E_{19}(e_{2u})$
9	-1.538	-6.517	1	$E_9(b_{2u})$	20	3.721	-1.258	2	$E_{20}(e_{1g})$
10	-1.300	-6.279	2	$E_{10}(e_{2u})$	21	3.896	-1.083	1 + 1	$E_{21,1}(b_{1u}), E_{21,2}(b_{2g})$
11	-1.095	-6.074	2	$E_{11}(e_{1g})$	22	4.113	-0.866	1	$E_{22}(a_{2u})$

Таблица 1. Энергетический спектр фуллерена С₃₆ с группой симметрии D_{6h}: значения энергии уровней, кратность их вырождения и неприводимые представления группы D_{6h}, к которым они относятся

Таблица 2. Энергетический спектр эндоэдрального фуллерена La@C₃₆ с группой симметрии D_{6h}: значения энергии уровней, кратность их вырождения и неприводимые представления группы D_{6h}, к которым они относятся

N₂	e_j , eV	E_j , eV	g j	$E(\Gamma_j)$	N₂	e_j , eV	E_j , eV	g j	$E(\Gamma_j)$
1	-4.207	-9.187	1	$E_1(a_{1g})$	12	-0.425	-5.405	1 + 1	$E_{12,1}(b_{1u}), E_{12,2}(b_{2g})$
2	-3.879	-8.859	1	$E_2(a_{2u})$	13	0.103	-4.877	2	$E_{13}(e_{2g})$
3	-3.464	-8.443	2	$E_3(e_{1u})$	14	1.448	-3.531	1	$E_{14}(b_{1g})$
4	-2.714	-7.694	2	$E_{5}(e_{1g})$	15	1.542	-3.438	2	$E_{15}(e_{2u})$
5	-2.712	-7.691	1	$E_4(a_{1g})$	16	1.971	-3.008	2	$E_{16}(e_{1u})$
6	-2.345	-7.325	2	$E_{6}(e_{2g})$	17	2.204	-2.775	1	$E_{18}(a_{1g})$
7	-1.589	-6.569	2	$E_8(e_{1u})$	18	2.428	-2.551	2	$E_{17}(e_{2g})$
8	-1.494	-6.473	1	$E_7(a_{2u})$	19	2.750	-2.229	2	$E_{19}(e_{2u})$
9	-1.448	-6.428	1	$E_{9}(b_{2u})$	20	3.245	-1.735	2	$E_{20}(e_{1g})$
10	-1.211	-6.190	2	$E_{10}(e_{2u})$	21	3.554	-1.425	1	$E_{22}(a_{2u})$
11	-0.716	-5.695	2	$E_{11}(e_{1g})$	22	3.692	-1.287	1 + 1	$E_{21,1}(b_{1u}), E_{21,2}(b_{2g})$

ны вблизи энергии

$$\varepsilon' = \varepsilon + U \langle n_{\bar{\sigma}} \rangle. \tag{15}$$

Из соотношений (14), (7), рис. 2 и табл. 1 следует, что в основном состоянии у фуллерена С36 с группой симметрии D_{6h} энергетический уровень, который соответствует энергии Е12, двукратно вырожден и содержит два электрона. Тогда согласно правилу Хунда [23], у этого фуллерена электроны, находящиеся на энергетическом уровне Е12, должны располагаться на разных орбиталях $E_{12,1}(b_{1u}), E_{12,2}(b_{2g})$. Таким образом, у фуллерена C₃₆ на орбиталях $E_{12,1}(b_{1u}), E_{12,2}(b_{2g})$ находятся два неспаренных электрона. Наличие двух неспаренных электронов должно приводить к тому, что данная молекула будет обладать довольно высокой химической активностью. В результате химических реакций неспаренные электроны фуллерена С₃₆ спариваются с валентными электронами других молекул и образуются устойчивые молекулы, например (C₃₆)₂, C₃₆F₂. Стабилизацию фуллерена C₃₆ за счет связывания двух неспаренных электронов можно осуществить еще при помощи образования эндофуллеренов М@С₃₆ с элементами, которые помещаются внутрь фуллерена и способны принимать электронные

конфигурации М²⁺. В качестве таких элементов могут выступать, например, La, Y, Sc. При образовании эндоэдральных фуллеренов М@С36 два валентных электрона атома металла переходят в оболочку фуллерена Сз6. Считается, что внедрение атома металла внутрь фуллерена не приводит к существенному изменению его энергетических уровней. Поэтому в первом приближении можно считать, что влияние внедренного атома приводит лишь к добавлению лишних электронов в остов фуллерена [24]. Два электрона, перешедшие с атома металла на фуллерен С₃₆, займут уровни $E_{12,1}(b_{1u})$, $E_{12,2}(b_{2g})$. Проведенные исследования показали [5], что эндоэдральный фуллерен La@C₃₆, как и фуллерен C₃₆, обладает группой симметрии D_{6h}. Исследования эндоэдрального фуллерена La@C₃₆ также показали [5], что расстояния между атомами углерода в этой молекуле имеют следующие значения:

$$x_{1,2} = 1.430 \text{ Å}, \quad x_{1,9} = 1.474 \text{ Å},$$

 $x_{9,10} = 1.467 \text{ Å}, \quad x_{10,23} = 1.450 \text{ Å}.$ (16)

Рис. 3. Энергетический спектр La@C₃₆ с группой симметрии D_{6h}.

Подставляя (16) в соотношение (12), мы получим численные значения для интегралов переноса у La@C₃₆:

$$t_{1,2} = -1.63340 \,\text{eV}, \quad t_{2,3} = -1.25327 \,\text{eV},$$

 $t_{3,4} = -1.32305 \,\text{eV}, \quad t_{3,12} = -1.44810 \,\text{eV}.$ (17)

Подставляя численные значения для интегралов переноса (17) в соотношение (7), получим для фуллерена C_{36}

численные значения для величин e_k , которые приведены в табл. 2.

Из соотношения (15) следует, что при помещении атома металла внутрь фуллерена происходит смещение энергии ε' :

$$\varepsilon' = \begin{cases} \varepsilon'_{C_n}, & \text{для } \mathcal{C}_n \\ \varepsilon'_{C_n} + qU/n, & \text{для } \mathcal{M}^{+q} @ \mathcal{C}_n^{-q} \end{cases},$$
 (18)

где ε'_{C_n} — это ε' , который соответствует фуллерену C_n , q — число электронов, перешедших с атома металла на фуллерен C_n .

Из соотношения (18) следует, что при помещении атома лантана внутрь фуллерена C_{36} параметр ε' смещается на десятые доли электрон-вольта, а из табл. 1,2 видно, что ширины энергетических зон молекул C_{36} и La@ C_{36} отличаются на десятые доли электрон-вольта:

$$\varepsilon'_{La@C_{36}} - \varepsilon'_{C_{36}} = \frac{2 \cdot 5.662}{36} = 0.315 \,\mathrm{eV},$$

 $w_{C_{36}} - w_{La@C_{36}} = (8.695 - 7.899) \,\text{eV} = 0.796 \,\text{eV}, \quad (19)$

где U = 5.662 eV [11], w — ширина энергетической зоны молекулы.

Из рис. 2, рис. 3, табл. 1, 2 видно, что энергетические спектры молекул С₃₆ и La@C₃₆ отличаются друг от друга относительным расположением энергетических состояний $E_7(a_{2u})$, $E_8(e_{1u})$, $E_{21,1}(b_{1u})$, $E_{21,2}(b_{2g})$ и $E_{22}(a_{2u})$.

Одной из важнейших характеристик квантовой системы является ее спектр оптического поглощения. Используя полученные выше энергетические спектры молекул C_{36} и La@ C_{36} с группой симметрии D₆, можно найти переходы, которые обусловливают оптические спектры этих молекул. С помощью теории групп [25] найдем, какие переходы у молекул C_{36} и La@ C_{36} разрешены, а какие запрещены с точки зрения симметрии.

Можно показать, что в энергетическом спектре молекулы с группой симметрии D_{6h} разрешены следующие переходы:

(20)

Из энергетических спектров (27), (9), (11) и (13) молекул C_{36} и La@ C_{36} с группой симметрии D_{6h} и соотношений (32)–(34) следует, что у фуллерена C_{36} имеется 43 разрешенных перехода, а у молекулы La@ C_{36} имеется 41 разрешенный переход. Разрешенные переходы молекул C_{36} и La@ C_{36} приведены на рис. 2 и рис. 3 соответственно. Остальные переходы являются запрещенными. Из рис. 2, 3 видно, что в результате внедрения атома лантана в фуллерен C_{36} два разрешенных перехода $e_{2u} \rightarrow b_{2g}$, $e_{2g} \rightarrow b_{1u}$ исчезают, так как два электрона, перешедших с атома лантана на фуллерен C_{36} , заполняют два свободных энергетических состояния.

Заключение

Исследование фуллерена C_{36} с группой симметрии D_{6h} в рамках модели Хаббарда в приближении среднего поля показало, что в основном состоянии в этом фуллерене энергетический уровень E_{12} дважды вырожден и содержит два неспаренных электрона, которые располагаются на разных орбиталях $E_{12,1}(b_{1u})$, $E_{12,2}(b_{2g})$. Это приводит к тому, что фуллерен C_{36} с группой симметрии D_{6h} является неустойчивой молекулой. Образование эндофуллерена La@C₃₆ приводит к образованию устойчивой молекулы за счет перехода двух электронов от атома лантана на фуллерен C_{36} . Кроме того, данные исследования показали, что в формировании оптических спектров поглощения молекул C_{36} и La@C₃₆ участвуют 43 и 41 разрешенных переходов соответственно.

Отметим также, что исследования оптических свойств фуллеренов C_{60} и C_{70} , выполненные в рамках модели Хаббарда в работах [16,17], показали хорошее соответствие между экспериментальными данными и теоретическими результатами. Это позволяет считать, что модель Хаббарда в приближении среднего поля достаточно хорошо описывает электронные свойства углеродных наносистем.

Конфликт интересов

Автор заявляет, что у него нет конфликта интересов.

Список литературы

- [1] Piskoti C., Yarger J., Zettl A. // Nature. 1998. V. 393. P. 771.
- [2] Shelimov K.V., Clemmer D.E., Jarrold M.F. // J. Phys. Chem. 1994. V. 98. P. 12819.
- [3] Klingeler R., Bechthoid P.S., Neeb M., Eberhardt W. // J. Chem. Phys. 2000. V. 113. P. 1420.
- [4] Dunk P.W., Mulet-Gas M., Nakanishi Y., Kaiser N.K., Rodriguz-Fortea A. // Nat. Commun. 2014. V. 5. P. 5844.
- [5] Miralrio A., Sansores L.E. // Int. J. Quantum Chem. 2016.
 V. 10. P. 1.
- [6] Grishakov K.S., Katin K.P., Maslov M.M. // Diamond & Rel. Mater. 2018. V. 84. P. 112.
- [7] Ke X.Z., Zhu Z.Y., Wang F. // Phys. Lett. A. 1999. V. 255.
 P. 294.
- [8] Collins P.G., Grossman J.C., Cote M. // Phys. Rev. Lett. 1998.
 V. 82. P. 165.
- [9] Fowler P.W., Manolopoulous D.E. An atlas of fullerenes. Oxford: Clarendon, 1995. 256 p.
- [10] *Harris R.A., Falicov L.M.* // J. Chem. Phys. 1969. V. 51. P. 5034.
- [11] Силантьев А.В. // ЖЭТФ. 2015. Т. 148. № 4. С. 749.
- [12] Hubbard J. // Proc. Roy. Soc. London A. 1963. V. 276. P. 238.
- [13] Иванченко Г.С., Лебедев Н.Г. // ФТТ. 2007. Т. 49. № 1. С. 183.
- [14] Силантьев А.В. // Известия вузов. Поволжский регион. Физико-математические науки. 2016. № 1. С. 102.
- [15] Силантьев А.В. // Известия вузов. Поволжский регион. Физико-математические науки. 2016. № 3. С. 103.

- [16] Силантьев А.В. // Физика металлов и металловедения. 2017. Т. 118. № 1. С. 3.
- [17] Силантьев А.В. // Опт. и спектр. 2018. Т. 124. В. 2. С. 159.
- [18] Силантьев А.В. // Физика металлов и металловедения. 2018. Т. 119. № 6. С. 541.
- [19] Силантьев А.В. // Известия вузов. Физика. 2014. Т. 57. № 11. С. 37.
- [20] Силантьев А.В. // Известия вузов. Поволжский регион. Физико-математические науки. 2015. № 1. С. 168.
- [21] *Тябликов С.В.* Методы квантовой теории магнетизма. М.:Наука, 1975. 527 с.
- [22] Каплан И.Г. Симметрия многоэлектронных систем. М.:Наука, 1969. 407 с.
- [23] Собельман И.И. Введение в теорию атомных спектров. М.:Наука, 1977. 527 с.
- [24] Елецкий А.В. // УФН. 2000. Т. 170. № 2. С. 113.
- [25] Вигнер Е.П. Теория групп и ее приложения к квантовомеханической теории спектров. М.: ИЛ, 1961. 564 с.