06;07

© В.Н. Бессолов, М.Е. Компан, Е.В. Коненкова, В.Н. Пантелеев, С.Н. Родин, М.П. Щеглов

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия E-mail: bes.triat@mail.ioffe.ru

Поступило в Редакцию 26 февраля 2019г. В окончательной редакции 6 марта 2019г. Принято к публикации 7 марта 2019г.

Экспериментально продемонстрированы два разных подхода при эпитаксии слоев толщиной 4 μ m полярного GaN(0001) или полуполярного GaN(10Ī1) на V-образной наноструктурированной подложке Si(100) с нанометровыми буферными слоями SiC и AlN. Слои GaN(0001) были синтезированы методом хлоридгидридной газофазной эпитаксии, а GaN(10Ī1) — методом газофазной эпитаксии из металлоорганических соединений с последующим доращиванием путем хлорид-гидридной газофазной эпитаксии. Показано, что слои полярного GaN(0002) имеют величину продольных упругих напряжений -0.45 GPa и минимальную полуширину кривой качания рентгеновской дифракции $\omega_{\theta} \sim 45$ агстіп, а для полуполярного GaN(10Ī1) эти величины составляют -0.29 GPa и $\omega_{\theta} \sim 22$ агстіп соответственно. Сделан вывод о перспективности комбинированной технологии полуполярного нитрида галлия на подложке кремния ориентации (100).

Ключевые слова: полуполярный нитрид галлия, комбинационное рассеяние света, газофазная эпитаксия.

DOI: 10.21883/PJTF.2019.11.47813.17756

Кремниевая интегральная электроника, продолжающая следовать закону Мура, приближается к физическому пределу [1], дальнейшее развитие технологии для полупроводниковых интегральных схем становится все сложнее [2]. Вероятно, перспектива развития интегральной электроники связана с синтезом прежде всего нитрида галлия и кремния ориентации (100). Первая попытка интеграции транзисторов GaN на Si-пластине "кремний на изоляторе" включала в себя механическое соединение подложки Si(111) и приборного слоя Si(100), в которых на поверхности Si(111) выращивалась эпитаксиальная структура GaN-транзисторов, а на Si(100) интегральная схема [3]. Попытки синтезировать гексагональный нитрид галлия непосредственно на подложке Si(100) показали, что эпитаксия GaN(0001) на Si(100) в отличие от Si(111) приводит к низкокачественной структуре [4].

Это связано прежде всего с тем, что при эпитаксии гексагональной структуры GaN на планарной кубической структуре Si(100) слои растут в двух кристаллографических ориентациях, развернутых относительно друг друга [4]. Чтобы избежать этого негативного явления, для эпитаксии GaN(0001) предложено использовать подложки Si(100), разориентированные на $3-7^{\circ}$ в направлении (110). Так, методом молекулярно-пучковой эпитаксии (MBE) на подложке Si(100), разориентированной на 4°, был синтезирован слой GaN(0002) толщиной 400 nm с полушириной кривой рентгеновской дифракции $\omega_{\theta} = 45 \operatorname{arcmin} [5]$. Методом хлорид-гидридной газофазной эпитаксии (HVPE) на разориентированной на 4-7° подложке синтезировался полуполярный GaN(2023) с $\omega_{\theta} \sim 24$ arcmin [6]. Известен метод синтеза гексагонального нитрида галлия на подложке Si(100), в котором буферный слой Аl был получен методом

пульсирующего лазерного напыления, а слой GaN выращен методом MBE. Такая технология позволила получить 300-нанометровый слой GaN(0002) с полушириной кривой рентгеновской дифракции $\omega_{\theta} = 0.45^{\circ}$ [7]. В последнее время для снижения деформаций в слое нитрида галлия используют наноструктурированные подложки Si(001), на поверхности которых сформированы канавки [8]. Однако все упомянутые подходы не дают удовлетворительного результата для решения проблемы интеграции GaN на специально неразориентированную подложку Si(100), которая в основном применяется в электронике, и дальнейший поиск в этом направлении необходим.

Настоящая работа посвящена сравнению эпитаксии GaN(0001) и $GaN(10\overline{1}1)$ на наноструктурированной подложке Si(100) и структурных свойств слоев.

Для выполнения поставленной цели на подложке Si(100) толщиной $400 \,\mu$ m с точностью ориентации поверхности $\pm 0.5^{\circ}$ синтезировались два типа слоев: GaN(0001) либо GaN(1011). Для всех типов слоев по технологии Wostec [9] формировалась V-образная наноструктурированная поверхность подложки — NP-Si(100). В результате поверхность Si(100) имела "нанохребты" с величиной периода между ними 110 nm и высотой "хребта" 55 nm. Видно, что NP-Si(100) имеет грани, которые соответствуют плоскости с углом наклона около 54°, — Si(111) (рис. 1, *a*). Перед эпитаксией слоев нитридов алюминия и галлия подложки NP-Si(100) покрывались слоем SiC толщиной около 50 nm (аналогично [10]).

Эпитаксиальный рост полярных слоев осуществлялся методом HVPE в соответствии с технологией GaN для разориентированной подложки Si(100) [6]. Эпитаксиальный рост полуполярных слоев GaN(1011) осуществлял-

a

Рис. 1. РЭМ-изображения поверхности подложки NP-Si(100) (*a*) и поверхностей GaN(0001) (*b*) и GaN(1011) (*c*), синтезированных на подложке NP-Si(100).

ся сначала методом газофазной эпитаксии из металлоорганических соединений (MOCVD) аналогично [10], а затем слой GaN толщиной 4μ m синтезировался методом HVPE по технологии [6]. Структурные характеристики слоев GaN определялись методами рентгеновской дифрактометрии (РД), растровой электронной микроскопии (РЭМ), комбинационного рассеяния света (КРС). КРС изучалось с помощью рамановского спектрометра MRS 320. Источником света являлся гелийнеоновый лазер с длиной волны излучения 632.8 nm. Исследования проводились при комнатной температуре аналогично [11].

Экспериментальные результаты для слоев GaN(0001) таковы: РД-анализ показал, что полярный GaN(0002), синтезированный на подложке *NP*-Si(100), имеет полуширину кривой качания $\omega_{\theta} \sim 45$ агстіп. Следует отметить, что полярный слой GaN(0002), синтезированный для сравнения на подложке Si(111) в таком же температурно-временном режиме, имеет $\omega_{\theta} \sim 15$ агстіп. Согласно данным РД-анализа, для полуполярного GaN(1011) толщиной 1 μ m, синтезированного методом MOCVD, полуширина кривой рентгеновской дифракции $\omega_{\theta} \sim 45$ агстіп, а выращенный на этом слое уже методом HVPE GaN(1011) толщиной 4 μ m имеет $\omega_{\theta} \sim 22$ arcmin.

Изображения, полученные при помощи РЭМ, позволили выявить (рис. 1, *b*, *c*), что поверхность GaN(0001) на *NP*-Si(100) имеет существенно меньшую шероховатость, чем поверхность GaN(1011), однако GaN(0001) содержит на поверхности трещины (рис. 1, *b*).

Спектры КРС, измеренные в области фононной моды $E_2(high)$, для слоев GaN, выращенных на NP-Si(100) методом HVPE, приведены на рис. 2. Спектры КРС слоев GaN(0001) и GaN(10Ī1) в целом соответствовали тому, что можно было ожидать: содержали линии, принадлежащие кремниевой подложке, линии, характерные для SiC, аналогичные опубликованным в [11], и пики $E_2(high)$, обусловленные GaN. Положение пика $E_2(high)$ зависит от подложки и кристаллографической плоскости поверхности структуры: 566.1 сm⁻¹ для GaN(0001)/NP-Si(100) и 566.8 сm⁻¹ для GaN(10Ī1)/NP-Si(100) (рис. 2). Для сравнения пик $E_2(high)$ для структуры GaN(0001)/Si(111) располагался при 566.2 сm⁻¹.

Процесс синтеза GaN(0001) и GaN($10\overline{1}1$) на одинаковых наноструктурированных подложках *NP*-Si(100) можно представить следующим образом.

Рис. 2. Спектры КРС структур GaN(1011)/*NP*-Si(100) (1) и GaN(0001)/*NP*-Si(100) (2).

Рис. 3. Схема формирования слоев GaN(0001) (*a*) и $GaN(10\overline{1}1)$ (*b*) на подложке *NP*-Si(100).

Как известно [12], слои AlN на подложке Si(100) с буферным слоем SiC зарождаются в виде столбчатых доменов. При эпитаксии AlN на SiC/Si(100) в методе HVPE из-за больших скоростей синтеза размеры гексагональных блоков AlN становятся крупнее, чем рельеф поверхности *NP*-Si(100), а сплошной эпитаксиальный слой формируется при толщинах около 80 nm. Такой толстый по сравнению с рельефом слой AlN приводит к росту монокристаллических слоев полярного нитрида галлия GaN(0001) (рис. 3, *a*) с полушириной кривой качания $\omega_{\theta} \sim 45$ arcmin.

При эпитаксии AlN и GaN методом MOCVD на подложках SiC/NP-Si(100) происходит формирование сплошного слоя AlN при скоростях, существенно меньших, чем при HVPE, и это сохраняет "нанохребты" на поверхности слоя. В дальнейшем растет уже полуполярный GaN(1011) аналогично [10] (рис. 3, b). Последующий синтез GaN(1011) методом HVPE показал рост слоя в том же кристаллографическом направлении, но величина полуширины кривой рентгеновской дифракции уменьшалась до $\omega_{\theta} \sim 22$ arcmin.

Из данных по КРС хорошо видно, что положение пика линии $E_2(high)$ для слоев GaN сдвинуто в низкочастотную сторону по отношению к его положению в недеформированном слое (при оценке принималось, что для ненапряженной структуры положение $E_2(high) = 568 \text{ cm}^{-1}$ [13]). Этот факт свидетельствует в пользу наличия деформации растяжения GaN в плоскости, параллельной плоскости подложки, а различная величина сдвига максимума пика $E_2(high)$ указывает на разную величину остаточной деформации. Для слоев GaN(0001) и GaN(1011) исходя из спектров KPC оценивалась величина продольных упругих напряжений, которая составила -0.45 и -0.29 GPa соответственно.

Таким образом, сравнение свойств слоев GaN(0001) и GaN(1011), синтезированных на подложке NP-Si(100), показывает, что эпитаксия полуполярного нитрида галлия предпочтительнее для интеграции с подложкой Si(100).

Благодарности

Авторы благодарят компанию ООО "Квантовый кремний" (Москва, Россия) за предоставление образцов подложек *NP*-Si(100), наноструктурированных по технологии Wostec, а также С.А. Кукушкина и В.В. Лундина за стимулирование работы в данном направлении.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Lin Q, Wu H, Jia G. // Circuits and Systems. 2018. V. 9. P. 9–21.
- [2] *Cui Z.* Nanofabrication: principles, capabilities and limits. 2nd ed. Springer, 2017. 432 p.
- [3] Chung J.W., Ryu K., Lu B., Palacios T. // Proc. European Solid-State Device Research Conf. (ESSDERC). Sevilla, Spain, 2010. P. 52–56.
- [4] Бессолов В.Н., Гущина Е.В., Коненкова Е.В., Коненков С.Д., Львова Т.В., Пантелеев В.Н., Щеглов М.П. // ЖТФ. 2019. Т. 89. В. 4. С. 574–577.
- [5] Joblot S., Semond F., Natali F., Vennégués P., Laügt M., Cordier Y., Massies J. // Phys. Status Solidi C. 2005. V. 2. P. 2187–2190.
- [6] Bessolov V., Kalmykov A., Konenkova E., Kukushkin S., Myasoedov A., Poletaev N., Rodin S. // J. Cryst. Growth. 2017. V. 457. P. 202–206.
- [7] Wang W., Wang H., Yang W., Zhu Y., Li G. // Sci. Rep. 2016.
 V. 6. P. 1–11.
- [8] Huang C.C., Chang S.J., Kuo C.H., Wu C.H., Ko C.H., Wann Cl.H., Cheng Y.C., Lin W.J. // J. Electrochem. Soc. 2011. V. 158. P. H626–H629.
- [9] Smirnov V.K., Kibalov D.S., Orlov O.M., Graboshnikov V.V. // Nanotechnology. 2003. V. 14. P. 709–715.
- [10] Bessolov V., Zubkova A., Konenkova E., Konenkov S., Kukushkin S., Orlova T., Rodin S., Rubets V., Kibalov D., Smirnov V. // Phys. Status Solidi B. 2019. V. 256. P. 1800268.
- [11] Аксянов И.Г., Компан М.Е., Кулькова И.В. // ФТТ. 2010. Т. 52. В. 9. С. 1724–1728.
- [12] Bessolov V., Kalmykov A., Konenkov S., Konenkova E., Kukushkin S., Myasoedov A., Osipov A., Panteleev V. // Microelectron. Eng. 2017. V. 178. P. 34–37.
- [13] Freitas J.A., Culbertson J.C., Mastro M.A., Kumagai Y., Koukitu A. // J. Cryst. Growth. 2012. V. 350. P. 33–37.