Динамика решетки кристаллов корунда с вакансиями в различных зарядовых состояниях

© А.Н. Кислов, В.Г. Мазуренко, К.Н. Корзов, В.С. Кортов

Уральский государственный технический университет, 620002 Екатеринбург, Россия

E-mail: ank@dpt.ustu.ru

(Поступила в Редакцию 20 ноября 2002 г.)

На основе рекурсивного метода в модели оболочек проведено моделирование динамики решетки кристаллов α -Al₂O₃ с вакансиями в различных зарядовых состояниях. Получены данные о частотах резонансных колебаний, индуцируемых дефектами, в различных направлениях. Проанализированы и объяснены основные особенности в колебательных спектрах анионно-нестехиометрических кристаллов α -Al₂O₃, связанные в основном с изменениями эффективного силового взаимодействия вакансии с ближайшим окружением.

Работа выполнена в рамках гранта INTAS № 01-0458.

Многие физические свойства анионно-нестехиометрических кристаллов корунда (сапфира) *α*-Al₂O₃ существенным образом определяются дефектами кислородной подрешетки. В связи с этим актуальным является изучение особенностей колебательной структуры спектров атомов, расположенных вблизи анионных вакансий, которые могут находиться в разных зарядовых состояниях: вакансия, захватившая один электрон (F^+ -центр), и вакансия, захватившая два электрона (*F*-центр). Исследования динамики решетки кристаллов корунда с вакансиями до сих пор не проводились. Известны работы, посвященные экспериментальным и теоретическим исследованиям динамики решетки идеальных кристаллов корунда [1-3]. Кроме того, в работах [4-7] представлены результаты модельных и ab initio расчетов энергии образования и особенностей электронной структуры анионных вакансий в различных зарядовых состояниях в кристаллах α -Al₂O₃.

Целью настоящей работы является исследование динамики решетки кристаллов α -Al₂O₃ с анионными вакансиями в различных зарядовых состояниях на основе компьютерного моделирования.

1. Структура, межатомные потенциалы и методика расчета

Кристалл α -Al₂O₃ принадлежит к ромбоэдрической системе с пространственной группой симметрии $R\bar{3}c$ (D_{3d}^6) ; примитивная ячейка содержит две формульные единицы (десять атомов). Параметры кристаллической решетки кристалла α -Al₂O₃ и его структура приведены в [2,4]. Каждый ион кислорода O²⁻ окружен искаженным тетраэдром из четырех ближайших ионов Al³⁺, два из которых находятся на расстоянии 1.86 Å (Al(1)) от иона O²⁻, а два других — на расстоянии 1.97 Å (Al(2)). Ближайшее октаэдрическое окружение иона Al³⁺ образовано ионами кислорода O²⁻, три из которых находятся на расстоянии 1.86 Å от иона Al³⁺, остальные три — на расстоянии 1.97 Å.

При моделировании локальной атомной структуры и динамики решетки кристаллов α-Al₂O₃ использовалась модель оболочек, в которой короткодействующее взаимодействие оболочка–оболочка описывается выражением вида

$$V(r_{ij}) = A_{ij} \exp(-r_{ij}/\rho_{ij}) - C_i/r_{ij}^6,$$
(1)

где A_{ij} , ρ_{ij} , C_i — постоянные, зависящие от типа иона. В качестве стартовых при моделировании локальной атомной структуры и динамики решетки кристаллов α -Al₂O₃ использовались параметры межатомных потенциалов из работ [5,8].

Влияние вакансии на колебательные спектры кристаллов α -Al₂O₃ исследовалось путем расчета локальных плотностей фононных состояний (ЛПС) в идеальном и дефектном кристаллах рекурсивным методом [9]. В этом случае ЛПС фононов $g^k_{\alpha}(\omega)$ в позиции *k*-го иона для α -го декартового направления вычисляется в соответствии с выражением

$$g_{\alpha}^{lk}(\omega) = -\frac{2\omega}{\pi} \operatorname{Im} G_{\alpha}(lk, \omega), \qquad (2)$$

где $G_{\alpha}(k, \omega)$ — диагональные элементы Фурье-образа запаздывающей функции Грина,

$$G_{\alpha}(k,\omega) = \langle k\alpha | \frac{I}{I(\omega^2 + i \cdot 0) - D} | k\alpha \rangle, \qquad (3)$$

I — единичная матрица, *D* — динамическая матрица кластера ионов, используемого в расчетах.

Более детальное описание алгоритма расчета ЛПС и методики выделения локализованных колебаний, индуцируемых дефектами, приведено в работах [10,11].

Расчет дисперсионных кривых и полной плотности фононных состояний идеального кристалла α-Al₂O₃

С целью проверки корректности используемого межатомного потенциала и размеров кластера, моделирующего кристалл, нами были рассчитаны дисперсионные

Рис. 1. Рассчитанные дисперсионные кривые кристаллов *α*-Al₂O₃. Точки — экспериментальные значения частот фононов [1,2].

Рис. 2. Вычисленная полная плотность состояний фононов в идеальных кристаллах *α*-Al₂O₃. Точки — экспериментальные значения [3].

кривые и полная плотность фононных состояний (ППС) идеального кристалла *α*-Al₂O₃.

Расчет дисперсионных кривых с использованием стартовых параметров потенциала межатомного взаимодействия из работ [5,8] дал заниженные по сравнению с экспериментальными данными [1,2] значения частот колебаний для первой оптической ветви в трех высокосимметричных направлениях (Δ , Λ , Σ) зоны Бриллюэна. Для улучшения согласия расчетных и экспериментальных данных при исследовании параметров межатомного потенциала из работы [5] мы при неизменных параметрах A_{ij} , ρ_{ij} , C_i (1) варьировали заряды ионов и константы связи. Окончательные значения этих параметров имеют следующие значения: $Z_0 = -1.98|e|$, $k_{\rm O} = 73.07 \,{\rm eV/\AA^2}, Z_{\rm Al} = 2.97 |e|, k_{\rm Al} = 192.49 \,{\rm eV/\AA^2}.$ Вычисленные на их основе дисперсионные кривые приведены на рис. 1. Полученные расчетные кривые значительно лучше описывают экспериментальные данные. Отметим, что эти параметры дают также удовлетворительное описание других характеристик идеального кристалла α-Al₂O₃ (упругих постоянных и диэлектрических проницаемостей).

С использованием полученных параметров межатомного потенциала и кластера, состоящего из 1000 атомов, были рассчитаны ППС фононов в идеальных кристаллах корунда (рис. 2). Расчетные и экспериментальные данные качественно хорошо согласуются по числу пиков. Наблюдается небольшой сдвиг (в среднем на 2 THz) всего спектра в низкочастотную область. Обрезание спектра ППС в низкочастотной области спектра обусловлено ограниченными размерами кластера.

Таким образом, удовлетворительное согласие полученных теоретически и экспериментальных дисперсионных кривых и ППС фононов идеального кристалла α -Al₂O₃ позволяет использовать найденные параметры межатомного взаимодействия и размеры кластера (1000 атомов) для моделирования динамики решетки дефектных кристаллов α -Al₂O₃.

Расчет ЛПС фононов и обсуждение результатов

По описанной выше методике были рассчитаны ЛПС фононов в идеальном и дефектном кристаллах α -Al₂O₃. Описание используемых моделей *F*- и *F*⁺-центров (координаты атомов в дефектной области, эффективный заряд вакансии) приведено в [6,7]. В соответствии с этими работами локализация электронной плотности в центре вакансии составляет около 90 и 80% для F⁺- и F-центров в основном состоянии соответственно. Остальной заряд размазан по ближайшим соседям. Изменение заряда вакансии и ближайших к вакансии атомов алюминия учитывалось при вычислении кулоновской части динамической матрицы кластера. Особенности ЛПС дефектного кристалла, не совпадающие с особенностями ЛПС идеального кристалла, соответствуют локализованным (резонансным) колебаниям, индуцируемым дефектами.

На рис. 3 в качестве примера приведены ЛПС фононов в позиции атома Al(1) в направлении Z в идеальном корунде (кривая 1) и этого же атома вблизи анионной вакансии в дефектном кристалле корунда (кривая 2). Видно, что введение вакансии в кристалл α -Al₂O₃ приводит к появлению резонансных колебаний на частотах 5.7 и 22.5 THz.

В таблице приведены значения частот локализованных колебаний, индуцируемых в кристаллах α -Al₂O₃ вакансиями в различных зарядовых состояниях, при различных направлениях в позициях ионов Al из ближайшего окружения вакансии. Наблюдаются различия в числе и количественных значениях частот резонансных колебаний, индуцируемых вакансией, F^+ и F-центрами.

Рис. 3. ЛПС фононов в направлении Z в позиции иона Al^{3+} , ближайшего к иону кислорода O^{2-} в идеальном кристалле α -Al₂O₃ (1) и ближайшего к анионной вакансии (2).

Рис. 4. Суммарная плотность фононных состояний атомов, находящихся в сферической области радиуса 2.7 Å, окружающей анионную вакансию (1), F^+ -центр (2) и F-центр (3).

Значения частот локализованных колебаний, индуцируемых дефектами на ближайших к ним ионах

Дефект	Ион	Расстояние до дефекта, Å	Частота, THz		
			X	Y	Ζ
Анионная вакансия	Al(1) Al(2)	2.12 2.24	5.7, 22.5 5.4	6.0, 22.5 8.4	5.7, 22.0 6.6
<i>F</i> ⁺ -центр	Al(1) Al(2)	1.97 2.07		3.0, 9.6 2.0, 7.8, 14.0	8.2 3.3, 11.7
<i>F</i> -центр	$Al(1) \\ Al(2)$	1.89 2.02	16.0	8.2, 12.0 14.0	14.7 13.0

На рис. 4 представлены рассчитанные суммарные плотности состояний (СПС) фононов всех атомов сферической области радиуса 2.7 Å вблизи атома кислорода (включающей в себя четыре иона Al^{3+} и четыре иона O^{2-}) в кристалле с вакансией (кривая 1), F^+ -центром (кривая 2) и F-центром (кривая 3). Отметим, что аналогичная кривая СПС фононов для идеального кристалла с учетом нормировки совпадает с ППС идеального кристалла (рис. 2).

Перечислим основные закономерности, которые следуют из анализа рис. 2 и 4.

1) Наиболее близки кривые СПС, соответствующие идеальному кристаллу α -Al₂O₃ и кристаллу с F^+ -центром.

2) Наблюдается перераспределение плотности состояний в области ниже 19 THz при переходе от *F*-центра к вакансии.

3) При переходе от F-центра к вакансии увеличивается плотность состояний в области ниже 10 THz; в области от 10 до 19 THz кривые СПС для F- и F-центров близки, а СПС для вакансии существенно уменьшается.

Эти изменения в колебательных спектрах можно объяснить, используя понятие эффективного взаимодействия вакансии с ближайшим окружением, включающего в себя короткодействующую и кулоновскую части.

В случае вакансии происходит ослабление эффективного взаимодействия, что приводит к существенному увеличению СПС в низкочастотной части спектра. В случае F⁺-центра происходит частичная компенсация кулоновского взаимодействия. Это приводит к усилению эффективного взаимодействия по сравнению с нейтральной вакансией и перераспределению плотности состояний в области до 19 THz. При захвате центром двух электронов (F-центр) полностью восстанавливается кулоновская часть взаимодействия, что еще больше усиливает эффективное взаимодействие и приводит к сдвигу плотности состояний, расположенной в области ниже 10 THz, в высокочастотную зону спектра.

Полученные данные о дефектных колебаниях будут использованы при интерпретации процессов делокализации электронов с F- и F⁺-центров кристаллов α -Al₂O₃.

Список литературы

- [1] H. Bialas, H.J. Stolz. Z. Phys. B 21, 4, 319 (1975).
- [2] W. Kappus. Z. Phys. B 21, 4, 325 (1975).
- [3] C.-K. Loong. J. Eur. Cer. Soc. 19, 13–14, 2241 (1999).
- [4] G.J. Dienes, D.O. Welch. Phys. Rev. B 11, 8, 3060 (1975).
- [5] C.R.A. Catlow, R. James, W.C. Mackrodt, R.F. Stewart. Phys. Rev. B 25, 2, 1006 (1982).
- [6] A. Stashans, E.K. Kotomin, J.L. Calais. Phys. Rev. B 49, 21, 14854 (1994).
- [7] Xu Yong-Nain, Gu Zhong-Quan, Zhong Xue-Fu, W.Y. Ching. Phys. Rev. B 56, 12, 7277 (1997).
- [8] G.V. Lewis, C.R.A. Catlow. J. Phys. C: Solid State Phys. 18, 6, 1149 (1985).
- [9] C. Herscovici, M. Fibish. J. Phys. C: Solid State Phys. 13, 9, 1635 (1980).
- [10] В.Г. Мазуренко, А.Н. Кислов. ФТТ 33, 11, 3433 (1991).
- [11] В.Г. Мазуренко, А.Н. Кислов. ФТТ 34, 11, 3403 (1992).