12 мая

Мессбауэровские исследования структуры наночастиц Fe₃O₄/γ-Fe₂O₃ типа ядро/оболочка

© А.С. Камзин¹, І.М. Obaidat², А.А. Валлиулин³, В.Г. Семенов⁴, І.А. Al-Omari⁵, С. Nayek²

¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия

² Department of Physics, United Arab Emirates University, Al-Ain, United Arab Emirates

³ Казанский (Приволжский) федеральный университет, Казань, Россия

⁴ Санкт-Петербургский государственный университет, Санкт-Петербург, Россия

⁵ Department of Physics, Sultan Qaboos University, Muscat, Sultanate of Oman

E-mail: ASKam@mail.ioffe.ru

05

Поступило в Редакцию 24 декабря 2018 г. В окончательной редакции 24 декабря 2018 г. Принято к публикации 5 февраля 2019 г.

На основании данных мессбауэровских исследований магнитных наночастиц (МНЧ) Fe_3O_4/γ - Fe_2O_3 типа ядро/оболочка, в которых ядро (Fe_3O_4) было одного размера (8 nm), а оболочка (γ - Fe_2O_3) имела различную толщину (1, 3 и 5 nm), установлены фазовый состав МНЧ, структура ядра и оболочки, зависимости толщины оболочки от технологии получения наночастиц. Обнаружено, что на поверхности МНЧ существует слой, в котором магнитное состояние отличается от такового для внутренней части, а между ядром и оболочкой, возможно, существует спин-стекольное состояние. Исследованные МНЧ Fe_3O_4/γ - Fe_2O_3 типа ядро/оболочка перспективны для применения в различных областях, в том числе в биомедицине.

DOI: 10.21883/PJTF.2019.09.47703.17652

В последнее десятилетие развитие способов получения магнитных наночастиц (МНЧ) и высокоточных методов регистрации физических параметров низкоразмерных систем позволили разработать методы синтеза МНЧ новых структур, например типа ядро/оболочка (Я/О). МНЧ типа Я/О могут обладать синергетическими свойствами ядра и оболочки и/или приобретать новые в зависимости от взаимодействий между ядром и оболочкой [1,2]. Достижения в области нанотехнологий позволяют создавать многофункциональные МНЧ для тераностики: от визуализации очага болезни, доставки лекарственных средств к очагу до терапии [1,3].

Наиболее перспективными для биомедицинских приложений являются МНЧ Fe_3O_4/γ - Fe_2O_3 типа Я/О, состоящие из биологически совместимых компонентов, а именно магнетита (Fe_3O_4) и маггемита (γ - Fe_2O_3) [4,5]. Однако магнитные свойства, природа обменного смещения и другие эффекты в МНЧ типа Я/О полностью еще не поняты, хотя исследованиям таких МНЧ посвящено много публикаций (см., например, работы [1,4,6,7] и ссылки в них).

В настоящей работе изучены магнитная структура, свойства и фазовый состав МНЧ Fe_3O_4/γ - Fe_2O_3 типа Я/О. При исследованиях оксидов железа важнейшей проблемой является идентификация фаз гематита (α - Fe_2O_3), магнетита (Fe_3O_4), маггемита (γ - Fe_2O_3) и др. Использованная для изучения свойств МНЧ Fe_3O_4/γ - Fe_2O_3 мессбауэровская спектроскопия обладает уникальной чувствительностью к локальному окружению атомов Fe в кристаллической решетке, что позволяет различить фазы оксидов железа [8].

Исследуемые МНЧ Fe₃O₄/γ-Fe₂O₃ были синтезированы методом соосаждения [6,7]. В процессе синтеза МНЧ поддерживалась температура 80°C при атмосферном давлении. При выдержке в данных условиях в течение 1, 2 и 3h были получены МНЧ Fe_3O_4/γ - Fe_2O_3 , имеющие одинаковый диаметр ядра 8 nm, но разную толщину оболочки (1, 3 и 5 nm). Образцы обозначены 1Н, 2Н и 3Н соответственно [7]. Полученные с использованием мессбауэровского спектрометра [8] экспериментальные мессбауэровские спектры (МС) МНЧ Fe_3O_4/γ - Fe_2O_3 представлены на рисунке. Видно, что МС МНЧ Fe₃O₄/γ-Fe₂O₃ состоят из уширенных линий зеемановского расщепления. Для обработки экспериментальных МС МНЧ Fe₃O₄/γ-Fe₂O₃ и определения параметров сверхтонких взаимодействий (СТВ) была использована программа SpectrRelax [9]. При обработке экспериментальных MC MHЧ Fe₃O₄/γ-Fe₂O₃ основывались на двух кристаллографически неэквивалентных позициях ионов Fe как для магнетита, так и для маггемита [10].

В магнетите при комнатной температуре ионы железа Fe^{3+} и Fe^{2+} в октаэдрических позициях находятся в состоянии электронного обмена, поэтому можно говорить о катионах $Fe^{2.5+}$, которым в МС соответствует один парциальный секстиплет, суммирующий линии этих двух секстиплетов, а ионы Fe^{3+} в тетраэдрической позиции дают второй секстиплет [11]. Поэтому при расшифровке МС МНЧ Fe_3O_4/γ - Fe_2O_3 при 300 K фазе магнетита приписывались два парциальных секстиплета. При температурах ниже точки Вервея ($T_V = 119$ K) [10] электронное состояние катионов железа в октапозициях в магнетите меняется, электронный обмен исчезает

Мессбауэровские спектры исследуемых МНЧ Fe_3O_4/γ - Fe_2O_3 типа ядро/оболочка при температуре 80 K (*a*) и восстановленные из спектров распределения сверхтонких магнитных полей $P(H_{eff})$ (*b*). Над каждым спектром показана разность между экспериментальными и модельными значениями. Обозначения *1H*, *2H* и *3H* относятся к образцам с временами синтеза 1, 2 и 3 h соответственно. Цифрами *1* и *2* обозначены секстиплеты, относящиеся к γ - Fe_2O_3 , 3-5 — к Fe_3O_4 , 6 — к поверхностному слою оболочки γ - Fe_2O_3 .

и в МС магнетита наблюдается суперпозиция трех секстиплетов [12]. Поэтому компонента магнетита в МС МНЧ Fe_3O_4/γ - Fe_2O_3 при температуре 80 K была описана тремя секстиплетами. В магтемите ионы Fe^{3+} в соотношении 1:2 распределяются между двумя подрешетками [13], и МС магтемита в магнитоупорядоченной области температур представляют собой суперпозицию двух секстиплетов [14]. Поэтому в МС МНЧ Fe_3O_4/γ - Fe_2O_3 компонента магтемита описывалась двумя секстиплетами.

МС МНЧ Fe₃O₄/γ-Fe₂O₃, полученные при температуре 80 K (см. рисунок, *a*), были обработаны с использованием пяти секстиплетов: трех присущих магнетиту Fe₃O₄ при 80 K [12] и двух присущих магнетиту [14]. Однако такая модель плохо согласовывалась с экспериментальными данными, поэтому был введен еще один (шестой) секстиплет. Восстановленные из МС МНЧ Fe_3O_4/γ - Fe_2O_3 (см. рисунок, *a*) распределения эффективных магнитных полей ($P(H_{eff})$) для шестого секстиплета представлены на рисунке, *b*.

Наилучшее соответствие использованных моделей экспериментальным спектрам МНЧ Fe_3O_4/γ - Fe_2O_3 подтверждается минимальными величинами разности между модельными и экспериментальными значениями, показанными над каждым спектром. Параметры СТВ, рассчитанные из МС МНЧ Fe_3O_4/γ - Fe_2O_3 , полученных при 300 и 80 K, представлены в табл. 1 и 2 соответственно. Суммарные площади линии фазы магнетита по сравнению с суммарными площадями линий фазы магтемита (табл. 1 и 2) увеличиваются по мере возрастания времени температурной обработки МНЧ Fe_3O_4/γ - Fe_2O_3 , что означает рост толщины оболочки из

Образец	Компо- ненты МНЧ	G, mm/s	δ , mm/s	QS, mm/s	<i>H_{eff}</i> , kOe	<i>S</i> , %	ΣSi
1H	γ-Fe ₂ O ₃	0.240 ± 0.050	0.219 ± 0.060	0.046 ± 0.070	468.6 ± 3.0	20 ± 1	30
		0.447 ± 0.160	0.199 ± 0.090	0.298 ± 0.260	468.6 ± 3.0	10 ± 3	
	Fe ₃ O ₄	0.528 ± 0.060	0.473 ± 0.040	-0.092 ± 0.040	454.7 ± 5.0	51 ± 9	70
		0.240 ± 0.060	0.397 ± 0.028	0.038 ± 0.020	473.9 ± 12.2	19 ± 9	
2H	γ -Fe ₂ O ₃	0.245 ± 0.120	0.399 ± 0.060	0.025 ± 0.070	459.0 ± 5.0	35 ± 3	53
		0.240 ± 0.240	0.300 ± 0.140	0.112 ± 0.140	459.0 ± 5.0	18 ± 6	
	Fe ₃ O ₄	0.245 ± 0.210	0.605 ± 0.060	-0.195 ± 0.060	434.0 ± 12.0	25 ± 6	47
		0.247 ± 0.220	0.051 ± 0.060	0.200 ± 0.060	438.1 ± 6.0	22 ± 6	
3 <i>H</i>	γ -Fe ₂ O ₃	0.286 ± 0.090	0.379 ± 0.100	0.032 ± 0.090	481.6 ± 1.1	43 ± 2	65
		0.240 ± 0.130	0.273 ± 0.160	0.067 ± 0.170	481.6 ± 1.1	22 ± 4	
	Fe ₃ O ₄	0.240 ± 0.230	0.636 ± 0.050	0.264 ± 0.060	439.7 ± 12.0	12 ± 5	35
		0.240 ± 0.180	0.232 ± 0.050	-0.102 ± 0.040	478.1 ± 2.0	24 ± 6	

Таблица 1. Параметры СТВ, рассчитанные из мессбауэровских спектров МНЧ Fe₃O₄/γ-Fe₂O₃ типа ядро/оболочка при 300 К

Примечание. G — ширина первой линии секстиплетов, δ — изомерный сдвиг, QS — квадрупольное расщепление, H_{eff} — эффективное магнитное поле, S — площадь линии каждого секстиплета (в процентах от общей площади спектра), ΣSi — суммарные площади линии фазы Fe₃O₄ и фазы γ -Fe₂O₃ (в процентах от общей площади спектра). Изомерные сдвиги приведены относительно α -Fe.

Образец	Компо- ненты МНЧ	G, mm/s	δ , mm/s	QS, mm/s	<i>H_{eff}</i> , kOe	<i>S</i> , %	ΣSi
1H	γ-Fe ₂ O ₃	0.447 ± 0.040	0.412 ± 0.016	0.011 ± 0.016	507.8 ± 1.9	18 ± 1	27
		0.404 ± 0.040	0.447 ± 0.012	0.005 ± 0.011	529.6 ± 1.9	9 ± 3	
	Fe ₃ O ₄	0.606 ± 0.040	0.722 ± 0.030	-0.042 ± 0.023	474.9 ± 4.0	20 ± 3	62
		0.606 ± 0.040	0.248 ± 0.025	0.064 ± 0.020	492.4 ± 2.4	21 ± 1	
		0.606 ± 0.040	0.349 ± 0.030	0.025 ± 0.020	496.8 ± 5.0	21 ± 1	
	Surface	0.855 ± 0.340	0.595 ± 0.090	0.035 ± 0.060	449.2 ± 13.0	11 ± 3	11
2H	γ-Fe ₂ O ₃	0.535 ± 0.034	0.426 ± 0.016	0.006 ± 0.014	502.1 ± 1.8	27 ± 1	40
		0.442 ± 0.026	0.468 ± 0.010	0.012 ± 0.008	523.8 ± 1.5	14 ± 3	
	Fe ₃ O ₄	0.752 ± 0.140	0.723 ± 0.100	0.005 ± 0.040	476.7 ± 5.0	16 ± 3	48
		0.752 ± 0.140	0.320 ± 0.060	0.025 ± 0.040	485.4 ± 7.0	16 ± 1	
		0.752 ± 0.140	0.303 ± 0.130	-0.095 ± 0.070	492.1 ± 7.0	16 ± 1	
	Surface	1.071 ± 0.340	0.622 ± 0.080	0.005 ± 0.050	423.0 ± 15.0	12 ± 3	12
3 <i>H</i>	γ-Fe ₂ O ₃	0.512 ± 0.015	0.436 ± 0.005	0.002 ± 0.005	506.6 ± 1.0	42 ± 1	63
		0.501 ± 0.020	0.467 ± 0.010	0.019 ± 0.010	526.4 ± 1.4	21 ± 2	
	Fe ₃ O ₄	0.560 ± 0.080	0.879 ± 0.050	-0.245 ± 0.040	469.8 ± 4.0	9 ± 1	27
		0.560 ± 0.080	0.425 ± 0.031	-0.095 ± 0.021	472.9 ± 4.0	9 ± 2	
		0.560 ± 0.080	0.238 ± 0.040	0.144 ± 0.050	487.1 ± 4.0	9 ± 1	
	Surface	1.298 ± 0.500	0.558 ± 0.110	0.090 ± 0.090	424.0 ± 12.0	10 ± 3	10

Таблица 2. Параметры СТВ, рассчитанные из мессбауэровских спектров МНЧ Fe₃O₄/γ-Fe₂O₃ типа ядро/оболочка при температуре 80 K (обозначения те же, что в табл. 1)

магнетита в этих МНЧ. Из таблиц видно, что поля H_{eff} для компонентов МНЧ Fe₃O₄/ γ -Fe₂O₃ ниже, чем для объемных кристаллов или наночастиц магнетита [14] и маггемита [14,15], что связано с меньшими размерами компонентов исследуемых МНЧ. Величины изомерных сдвигов (δ) и H_{eff} (табл. 1 и 2) согласуются с данными для наночастиц магнетита размером от 10 до 20 nm (см., например, [12,15]). Величина δ для ядер ⁵⁷Fe тетраэдрической подрешетки магнетита при 300 K характерна для ионов Fe³⁺, тогда как для ядер ⁵⁷Fe в

октаэдрическом окружении она существенно выше и является промежуточной между δ для Fe²⁺ и Fe³⁺, что объясняется эффектом перескока электронов.

На восстановленных из экспериментальных МС МНЧ Fe_3O_4/γ - Fe_2O_3 при 80 K вероятностях распределения $P(H_{eff})$ для дополнительного шестого секстиплета (см. рисунок, *b*) наблюдаются два максимума: один в области $\sim 405-440$ kOe, второй — в области $\sim 120-140$ kOe. В работах [16,17] с использованием метода молекулярных орбиталей установлено, что вклады в H_{eff}

от каждой из косвенных обменных связей для иона Fe³⁺ в структуре шпинели для окта- и тетраэдрических положений составляют 8 и 12 kOe соответственно. Следовательно, отсутствие половины связей у ионов железа в поверхностном слое должно привести к уменьшению H_{eff} на несколько десятков kOe. Из табл. 2 видно, что максимальные значения H_{eff} для объемной части маггемита варьируются в области ~ 500-530 kOe. В таком случае максимумы в области $\sim 405-440\,{
m kOe}$ на распределениях $P(H_{eff})$ в МНЧ Fe₃O₄/ γ -Fe₂O₃ (см. рисунок, b) можно отнести к ионам железа, находящимся в поверхностном слое оболочки из маггемита, не имеющим половины ближайших соседей. Отсутствие ионов железа в поверхностном слое приводит также к понижению H_{eff} ионов железа и фрустрации спиновых магнитных моментов в приповерхностном слое оболочки, но без эффектов суперпарамагнетизма (аналогично тому, что наблюдалось в [18]). Другим возможным объяснением понижения H_{eff} является формирование скошенной спиновой структуры в поверхностном слое МНЧ (см. работу [19] и ссылки в ней). Максимумы в области $\sim 120-140$ kOe на распределениях $P(H_{eff})$, полученных для мессбауэровских спектров при 80 К (см. рисунок, b), можно объяснить спин-стекольным состоянием промежуточного слоя между ядром и оболочкой [20].

Таким образом, на основании результатов мессбауэровских исследований МНЧ Fe₃O₄/γ-Fe₂O₃ типа ядро/оболочка однозначно установлено, что МНЧ состоят из магнетита (Fe₃O₄), образующего ядро, и маггемита (γ-Fe₂O₃), формирующего оболочку. Дополнительных фаз не обнаружено. Увеличение времени синтеза МНЧ Fe₃O₄/γ-Fe₂O₃ от 1 до 3h приводит повышению толщины оболочки из маггемита. Магнитная структура поверхностного слоя оболочки отличается от структуры объема оболочки, что можно объяснить фрустрацией спиновых магнитных моментов или формированием скошенной спиновой структуры в поверхностном слое оболочки. Промежуточный слой между оболочкой и ядром, возможно, находится в спин-стекольном состоянии. Как МС, так и восстановленные из них распределения $P(H_{eff})$ имеют характерные признаки, указывающие на возможность как небольшого распределения исследуемых МНЧ по размерам, так и существования релаксационных процессов в этих МНЧ. Для установления причины такого поведения МНЧ Fe₃O₄/γ-Fe₂O₃ необходимы мессбауэровские исследования этих частиц во внешнем магнитном поле, что и планируется осуществить в дальнейшем.

Финансирование работы

Работа выполнена при частичной финансовой поддержке Программы углубленных исследований UAEU (UPAR) (грант № 31S241).

Список литературы

- Wu W., Wu Z., Yu T., Jiang C., Kim W.-S. // Sci. Technol. Adv. Mater. 2015. V. 16. P. 023501 (1–43).
- [2] Phan M.-H., Alonso J., Khurshid H., Lampen-Kelley P., Chandra S., Repa K.S., Nemati Z., Das R., Iglesias O., Srikanth H. // Nanomaterials. 2016. V. 6. P. 221–251.
- [3] Chatterjee K., Sarkar S., Rao K.J., Paria S. // Adv. Coll. Interface Sci. 2014. V. 209. P. 8–39.
- [4] Lee S.-C., Fu C.-M., Chang F.-H. // Appl. Phys. Lett. 2013.
 V. 103. P. 163104 (1–4).
- [5] Hwang Y., Angappane S., Park J., An K., Hyeon T., Park J.-G. // Curr. Appl. Phys. 2012. V. 12. P. 808–811.
- [6] Obaidat I.M., Nayek C., Manna K. // Appl. Sci. 2017. V. 7.
 P. 1269–1283.
- [7] Obaidat I.M., Nayek C., Manna K., Bhattacharjee G., Al-Omari I.A., Gismelseed A. // Nanomaterials. 2017. V. 7. P. 415–432.
- [8] Камзин А.С., Wakiya N. // ФТТ. 2018. Т. 60. В. 12. С. 2429– 2436.
- [9] Matsnev M.E., Rusakov V.S. // AIP Conf. Proc. 2012. V. 1489.
 P. 178–185.
- [10] Крупичка С. Физика ферритов и родственных им магнитных окислов. М.: Мир, 1976. Т. 1. 353 с.
- [11] Шипилин М.А., Захарова И.Н., Шипилин А.М., Бачурин В.И. // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2014. № 6. С. 45–50.
- [12] Starowicz M., Starowicz P., Zukrowski J., Przewoźnik J., Lemański A., Kapusta C., Banaś J. // J. Nanopart. Res. 2011. V. 13. P. 7167–7176.
- [13] Tronc E., Ezzir A., Cherkaoui R., Chanéac C., Nogués M., Kachkachi H., Fiorani D., Testa A.M., Grenéche J.M., Jolivet J.P. // J. Magn. Magn. Mater. 2000. V. 221. P. 63–79.
- [14] da Costa G.M., De Grave E., Vandenberghe R.E. // Hyperfine Interact. 1998. V. 117. P. 207–243.
- [15] Murad E., Johnston J.H. // Mössbauer spectroscopy applied to inorganic chemistry. V. 2 / Ed. G.J. Long. N.Y.: Plenum Press, 1987. P. 507–582.
- [16] Sawatzky G.A., Boekema C., van der Woude F. // Proc. Int. Conf. on magnetism. Dresden, 1971. P. 238–252.
- [17] van der Woude F., Sawatzky G.A. // Phys. Rev. B. 1971. V. 4. P. 3159–3165.
- [18] Theil Kuhn L., Bojesen A., Timmermann L., Meedom Nielsen M., Morup S. // J. Phys.: Condens. Matter. 2002. V. 14. P. 13551–13567.
- [19] Mørup S., Brok E., Frandsen C. // J. Nanomaterials. 2013.
 V. 2013. P. 720629 (1–8).
- [20] Martínez B., Obradors X., Balcells L., Rouanet A., Monty C. // Phys. Rev. Lett. 1998. V. 80. P. 181–184.