10,04

Структура и динамика решетки кристаллов Nd_2TiO_5 и Sm_2TiO_5 : *ab initio* расчет

© В.А. Чернышев, В.С. Рюмшин

Уральский федеральный университет им. Б.Н. Ельцина, Екатеринбург, Россия E-mail: vchern@inbox.ru

Поступила в Редакцию 9 декабря 2018 г. В окончательной редакции 27 декабря 2018 г. Принята к публикации 27 декабря 2018 г.

В рамках теории функционала плотности проведено *ab initio* исследование кристаллической структуры и фононного спектра кристаллов $R_2 \text{TiO}_5$ (R = Nd, Sm). Расчеты проведены с использованием гибридного функционала, учитывающего вклад нелокального обмена в формализме Хартри–Фока. Определены координаты ионов в элементарной ячейке и постоянные решетки, а также частоты и типы фундаментальных колебаний, интенсивности линий в спектрах комбинационного рассеяния и инфракрасного отражения. Впервые рассчитаны упругие постоянные $R_2 \text{TiO}_5$.

Работа выполнена при поддержке Министерства образования и науки РФ, проект № 3.9534.2017/8.9

DOI: 10.21883/FTT.2019.06.47693.337

1. Введение

Интерес к исследованию кристаллов R_2 TiO₅ (R =Nd, Sm) с редкоземельной (РЗ) подрешеткой обусловлен их разнообразным применением [1]. Редкоземельные титанаты R₂TiO₅ кристаллизуются в орторомбической структуре при R от La до Dy [2]. Спектры комбинационного рассеяния света (КРС) этих соединений опубликованы в ряде работ [2-6], однако из эксперимента на данный момент не получена информация о всех модах спектров КРС. Спектры их инфракрасного ("infrared" — IR) отражения исследованы крайне мало, например, IR спектр Nd₂TiO₅ исследован только в одной работе [6], информация о спектре Sm₂TiO₅ в печати отсутствует. Представляется актуальным провести в рамках единого ab initio подхода расчет структуры и динамики решетки этих соединений. В данной работе такой расчет проводится для Nd₂TiO₅ и Sm₂TiO₅ — двух представителей ряда редкоземельных титанатов R_2 TiO₅.

2. Методы расчета

Расчеты были проведены в рамках теории функционала плотности. Использовался гибридный функционал PBE0 ("Perdew–Burke–Ernzerhof") [7], имеющий обменно-корреляционную часть Пердью–Бурке– Энзерхофа и долю нелокального обмена в формализме Хартри–Фока (25%). С использованием гибридных функционалов, учитывающих как локальный, так и нелокальный (в формализме Хартри–Фока) обмен, удается хорошо описывать зонную структуру и упругие свойства решетки соединений с ионной и ионноковалентной связью [8–10]. Расчеты проводились в программе CRYSTAL14 [11], предназначенной для моделирования периодических структур в рамках подхода МО ЛКАО (молекулярная орбиталь–линейная комбинация атомных орбиталей). При выборе методики также были проведены тестовые расчеты с широко применяемым гибридным функционалом B3LYP [12], однако он хуже воспроизводил кристаллическую структуру R_2 TiO₅, чем PBE0.

Для титана и кислорода были использованы полноэлектронные базисные наборы TZVP-типа [13]. Для описания внутренних оболочек редкоземельных ионов использовались многочастичные квазирелятивистсткие псевдопотенциалы ЕСР*п*МWB (ЕСР "effective core potential"; *n* — количество внутренних электронов, замененных на псевдопотенциал; WB — "quasirelativistic" [14]). Для описания их внешних оболочек, участвующих в образовании химической связи валентные базисные наборы с диффузными и поляризационными орбиталями [14]. Используемые для РЗ ионов псевдопотенциалы представлены в табл 1. Замена внутренних оболочек редкоземельного иона, по 4f включительно, на псевдопотенциал, позволяет успешно описывать структуру и динамику кристаллической решетки с приемлемыми затратами компьютерных ресурсов [15].

Валентные базисные наборы типа "II" (табл. 1), наиболее полные из имеющихся на сайте Sttuttgart [14], позволяют хорошо воспроизводить структуру и динамику соединений с редкоземельной подрешеткой. Из них были

Таблица 1. Псевдопотенциалы для РЗ ионов

Ион	Псевдопотенциал	Валентный базисный набор
Nd	ECP49MWB	ECP49MWB-II
Sm	ECP51MWB	ECP51MWB-II

Рис. 1. Кристаллическая структура R_2 TiO₅ (Z = 4).

удалены гауссовы примитивы с показателем экспоненты менее, чем 0.1, что характерно для периодических расчетов.

Кристаллы R_2 ТіО₅ имеют орторомбическую структуру (пространственная группа 62), количество формульных единиц в ячейке Z = 4 (рис. 1). При моделировании задавалась ориентация осей *Р пта* (возможные ориентации подробно рассмотрены в работе А.В. Баженова с соавт. [16]). Фононные моды в Г-точке: $\Gamma = 16A_g(R) + 8B_{1g}(R) + 16B_{2g}(R) + 8B_{3g}(R) + 8A_u + 16B_{1u}(IR) + 8B_{2u}(IR) + 16B_{3u}(IR)$, из них три — B_{1u} , B_{2u} и B_{3u} — трансляционные. "R" — моды, активные в спектре КРС ("рамановские"), "IR" — IR активные моды.

При расчетах проводилась оптимизация кристаллической структуры. Затем, для полученной кристаллической структуры, соответствующей минимуму энергии, выполнялся расчет фононного спектра (в Г-точке) или расчет упругих постоянных. Подробности алгоритма расчета обсуждаются в работе [15].

3. Обсуждение результатов

Результаты расчета кристаллической структуры (табл. 2–4) хорошо согласуются с данными рентгеноструктурного анализа [17]. (Расчет кристаллической структуры R_2 TiO₅ также был проведен в версии CRYSTAL17. Результаты полностью совпали, в пределах всех выведенных знаков, со структурой, рассчитанной в CRYSTAL14.)

Результаты расчета фононного спектра в Г-точке R_2 TiO₅ приведены в табл. 5–11. Из анализа векторов смещений, полученных из *ab initio* расчета, была оценена степень участия каждого иона в той или иной моде. В таблицах в столбце "Ионы-участники" перечислены

ионы, существенно смещающиеся в данной моде. Индекс "S" — сильное смещение ("Strong"), "W" — слабое ("Weak"). Максимальные смещения ионов достигают 0.05–0.06 а.и. Если смещение иона менее, чем 0.01, ион не упоминается в столбце "Ионы-участники". Если величина его смещения близка к 0.01, он обозначается индексом "W". Участие РЗ ионов в наибольшей степени проявляется в низкочастотных модах. Так, максимальные смещения неодима в низколежащих модах B_{1u} (93 cm⁻¹) и B_{2g} (61 cm⁻¹) — около 0.04 а.и. Смещения самария в низколежащих модах — около 0.04 а.и. Эта информация может быть полезна для исследования электронфононного взаимодействия и оценки изменения кристаллического поля на редкоземельном ионе при колебаниях решетки. Можно отметить сильное смешивание колеба

Таблица 2. Постоянные решетки Nd₂TiO₅, Å

Nd ₂ TiO ₅	Α	В	С
Расчет	10.7290	3.8449	11.3599
Эксп. [17]	10.7849	3.8439	11.4445

Таблица 3. Постоянные решетки Sm₂TiO₅, Å

Sm ₂ TiO ₅	Α	В	С
Расчет	10.6569	3.7999	11.3885
Эксп. [17]	10.5917	3.7969	11.3259

Таблица 4. Координаты ионов в ячейке (в долях постоянных решетки)

Иоч	Коорцината	Nd	Nd ₂ TiO ₅		Sm ₂ TiO ₅		
11011	координата	Расчет	Эксп. [17]	Расчет	Эксп. [17]		
Ln1	x	0.13740	0.13621	0.13707	0.13651		
	z	0.05664	0.05923	0.05646	0.05824		
Ln2	x	0.39473	0.39673	0.39166	0.39280		
	z	0.21947	0.21833	0.2205	0.22022		
Ti	x	0.1835	0.1859	0.1805	0.1824		
	z	0.3756	0.3745	0.3772	0.3776		
01	x	0.2250	0.2234	0.2250	0.2291		
	z	0.5351	0.5354	0.5372	0.5383		
02	x	0.4922	0.4944	0.4929	0.4925		
	z	0.6035	0.6022	0.6040	0.6002		
03	x	0.2651	0.2636	0.2656	0.2665		
	z	0.8784	0.8799	0.8799	0.8807		
04	x	0.2394	0.0249	0.0189	0.0163		
	z	0.3407	0.3332	0.3427	0.3338		
05	x	0.2688	0.2695	0.2651	0.2656		
	z	0.2310	0.2326	0.2309	0.2323		

Рис. 2. Сравнение результатов расчета спектра КРС Nd₂TiO₅ с экспериментом. Штриховая линия — расчет, сплошная — эксперимент [6]. Типы мод обозначены согласно расчету. На врезке — эксперимент [5]. (Эксперименты [5,6] и расчет — поликристалл.)

Рис. 3. Сравнение результатов расчета спектра КРС Nd₂TiO₅ с экспериментом. *a* — рассчитанные частоты мод обозначены штрихами. *b* — штриховая линия — расчет, сплошная — эксперимент [4]. Типы мод обозначены согласно расчету.

ний. Слабое участие редкоземельного иона проявляется в модах с частотами до $\sim 240 \,\mathrm{cm^{-1}}$. В низколежащих "молчащих" модах A_u с частотами $86-107 \,\mathrm{cm^{-1}}$ можно отметить сильное участие редкоземельного иона. В высокочастотных модах преимущественно участвует кис-

лород, однако, даже при высоких частотах сохраняется участие титана. Можно выделить моды, в которых участвуют только ионы кислорода: B_{1u} (695 cm⁻¹ Nd₂TiO₅ и 699 cm⁻¹ Sm₂TiO₅), B_{1g} (567 cm⁻¹ Nd₂TiO₅ и 583 cm⁻¹ Sm₂TiO₅) и др.

9

Тип	Частота cm ⁻¹	Интенсивность km/mol	Ионы-участники
	93 (91.5)	12	Nd1 ^s , Nd2, Ti, O1, O2, O3, O4, O5
	118 (113)	83	Nd1, Nd2, Ti, O1 ^{<i>w</i>} , O2, O3, O4 ^{<i>s</i>} , O5
	168 (162)	74	Nd1, Nd2 ^{s} , O1 ^{w} , O2, O3, O4 ^{s}
	191 (190)	982	Nd2 ^s , Ti, O1, O2 ^w , O3, O4 ^s , O5
	217	30	Nd1 ^{<i>w</i>} , Ti, O1, O3 ^{<i>s</i>} , O4 ^{<i>s</i>} , O5
	241 (238)	684	Nd1, Ti, O1, O2, O3 ^s , O4 ^s , O5
B_{1u}	306	38	$O1^{s}, O3^{s}, O4^{w}, O5^{s}$
	316 (323)	1394	Ti^{W} , O1, O2 ^S , O5 ^S
	400 (417 <i>sh</i>)	1222	Ti, O1, O2 ^{<i>s</i>} , O3, O4, O5
	455 (460)	355	Ti^W , O1, O2, O3 ^s , O4, O5 ^s
	467	1118	$Ti, O1^{W}, O3^{S}, O4^{W}, O5^{W}$
	500	332	O1, O2 ^s , O3, O5
	564	4482	$Ti, O1^{s}, O2^{w}, O5^{s}$
	695	43	O1 ^s , O5 ^s
	874	208	$Ti, O2^W, O4^S$
	115	20	Nd1 ^s , Nd2, Ti, O2, O4, O5
	156 (162)	556	Nd2, Ti ^s , O4
	274	4254	O1, O2 ^s , O4,
B_{2u}	304 (300)	6157	Ti^{W} , $O1^{S}$, $O2$, $O3^{S}$, $O4^{W}$, $O5^{S}$
	334	175	$O1, O3^{W}, O4^{S}$
	463	2.4490	$O1^{s}, O3^{W}, O5^{s}$
	559	225	$O1, O3^{s}, O5^{s}$
	97	1.54	Nd1, Nd2 ^s , Ti, O2, O3, O4, O5
	114	20	$Nd1^{s}$, Nd2, Ti^{s} , $O1^{W}$, $O2^{s}$, $O3^{W}$, $O4^{s}$, $O5$
	139 (132)	49	Nd1 ^s , Nd2, Ti, O1, O3, O4 ^s , O5 ^w
n	187	543	Nd1 ^{<i>W</i>} , Nd2, Ti, O1 ^{<i>W</i>} , O2, O3 ^{<i>s</i>} , O4 ^{<i>s</i>} , O5
B 3u	228	1477	Nd1 ^{<i>W</i>} , Nd2 ^{<i>W</i>} , Ti, O1, O2, O3 ^{<i>S</i>} , O4 ^{<i>S</i>} , O5
	262	129	Ti, O1, O3 ^s , O4 ^s , O5
	286	1144	01 ^s , 02, 03, 04 ^w , 05

Таблица 5. ИК моды Nd₂TiO₅. (В столбце "Частота" в скобках приведен эксперимент [6]. Соотнесение с экспериментом по волновому числу, поскольку типы мод на эксперименте [6] не определены.)

Тип	Частота cm ⁻¹	Интенсивность km/mol	Ионы-участники
	338	28	Ti, O2 ^s , O3 ^s , O4, O5 ^s
	359	208	Ti ^s , O1, O2 ^s , O3, O5
	391 (393)	865	Ti^{W} , O1, O2 ^s , O3, O4 ^W , O5 ^s
	480	164	Ti^{W} , O1, O2 ^W , O3 ^S , O5 ^W
	534	17	O1, O2 ^s , O3, O5
	617 (~ 606)	2864	Ti, $O1^{W}$, $O5^{S}$
	723	94	$Ti^{W}, O1^{s}, O2^{W}, O4$
	$834 \\ (826) \\ (\sim 844sh)$	2369	Ti, O4 ^s , O5

Таблица 5 (продолжение).

Сравнение результатов расчета спектра КРС с результатами экспериментов для Nd_2TiO_5 приведено на рис. 2, 3. Отметим, что из 48-ми активных мод спектра КРС $\Gamma_{\text{Raman}} = 16A_g + 8B_{1g} + 16B_{2g} + 8B_{3g}$ на эксперименте у Nd₂TiO₅ наблюдались только 32 [4] (в более ранних работах — еще меньше [6]). Спектр КРС Nd₂TiO₅

Рис. 4. Сравнение результатов расчета спектра КРС Sm₂TiO₅ с экспериментом [3]. *а* — рассчитанные частоты мод обозначены штрихами. *b* — штриховая линия — расчет, сплошная — эксперимент. Типы мод обозначены согласно расчету.

Таблица 6. Моды спектра КРС Nd ₂ TiO ₅ . Интенсивность для поликристалла. (Расчет проведен для возбуждающего излучения
с длиной волны λ = 514 nm и T = 298 K. В столбце "Частота" в круглых скобках приведен эксперимент [4], в фигурных —
эксперимент [6]. В обозначениях работы [6] интенсивности мод: "VS" — very strong, "S — strong", "MS" — medium strong,
"M" — medium)

True	Частота, ст $^{-1}$	Инте	Интесивность, arb. units		Исталистич
Тип		I _{tot}	I _{par}	Iperp	ионы-участники
	73	104	62	42	$Nd2^{s}, Ti^{s}, O1^{w}, O3^{s}, O4^{s}, O5^{s}$
	81	134	77	57	Nd1 ^s , Nd2 ^s , Ti, O1 ^s , O2, O3, O4, O5 ^s
	108 (102) {102.5}	259	192	68	Nd1 ^s , Nd2, Ti, O1, O2, O3, O4
	161	312	290	22	Nd1, Nd2, Ti, O1, O2 ^{<i>W</i>} , O3, O4 ^{<i>S</i>} , O5
	196	190	172	19	Nd1, Nd2, Ti, O1, O3, O4, O5
	230 (234)	615	416	198	Nd1 ^{<i>W</i>} , Nd2 ^{<i>W</i>} , Ti, O1, O2, O3 ^{<i>s</i>} , O4, O5
	238 {235}	116	92	24	Ti, O1 ^s , O2, O3, O4 ^s , O5
A_g	259	326	216	110	$Nd1^{W}$, Ti, $O1^{S}$, $O2^{S}$, $O3^{S}$, $O4^{S}$, $O5^{S}$
	371 {360.5 MS}	569	327	242	$O1^{W}, O2^{S}, O3^{S}, O4, O5^{S}$
	381	97	56	41	$O1, O2^{s}, O3, O4^{w}, O5^{w}$
	455	58	53	5	Ti, O1, O2, O3 ^s , O4, O5 ^s
	468	23	13	10	Ti, O1, O2, O3 ^s , O4, O5
	502	42	34	8	O1, O2 ^s , O3, O5
	562	32	30	2	Ti, O1 ^s , O5 ^s
	664 (642) {648}	89	84	5	Ti, O1 ^{<i>s</i>} , O5
	810 (783) {787 S}	1000	989	11	$Ti^W, O1^W, O4^S, O5$
	86	283	162	121	Nd2 ^s , Ti ^s , O1 ^w , O3, O4 ^s , O5
	114	51	29	22	Nd1 ^{<i>s</i>} , Nd2, Ti, O1, O2, O3 ^{<i>w</i>}
	160 {161 VS}	966	552	414	Nd1 ^w , Nd2, Ti ^s , O4
	300 (295) {295.5}	341	195	146	O1 ^s , O2 ^s , O3 ^s , O5
B_{1g}	327 (324) {324 M}	828	473	355	Ti^W , $O1^W$, $O2$, $O3$, $O4^s$, $O5$
	352	193	110	83	$O1, O2^{s}, O3, O4^{s}, O5$
	439 (440) {443}	22	12	9	O1 ^s , O3 ^w , O5 ^s
ľ	567 {555 M}	635	363	272	$O1, O3^{s}, O5^{s}$

Таблица 6 (продолжение).

 	\mathbf{u}_{actorn} cm^{-1}	Интесивность, arb. units		units	Иони инсотрудии
1 //11	Haciola, chi	I _{tot}	$I_{\rm par}$	Iperp	ионы-участники
	66	11	6	5	Nd1 ^s , Nd2 ^s , Ti, O1, O2, O3, O4 ^s , O5 ^s
	133 (130) {131}	186	107	80	Nd1 ^{<i>w</i>} , Nd2 ^{<i>s</i>} , O2, O4, O5 ^{<i>w</i>}
	152 {150 sh}	71	41	31	Nd1 ^s , Nd2, Ti, O2 ^w , O3, O4 ^s , O5
	163 (160)	23	13	10	Nd1 ^s , Nd2, Ti, O1, O3, O4
	212 (213)	25	14	11	Nd1 ^{<i>W</i>} , Nd2, Ti, O1, O2 ^{<i>W</i>} , O3, O4, O5
	{212} 230	3	2	1	Nd1 ^{<i>W</i>} , Ti, O1, O2, O3 ^{<i>s</i>} , O4 ^{<i>s</i>} , O5
B_{2g}	249 (249) {248}	6	3	3	Ti^{s} , $O1^{s}$, $O2$, $O3^{s}$, $O4^{s}$, $O5^{s}$
	285	27	16	12	Ti, O1 ^s , O2 ^s , O3, O4
	365 (361)	3	2	1	Ti^{W} , O1, O2 ^s , O3, O4, O5 ^s
	378	243	139	104	$Ti^W, O1^S, O2^S, O3, O4, O5^S$
	452	10	6	4	$Ti^{W}, O1^{W}, O2^{S}, O3, O4, O5$
	466	12	7	5	Ti ^{<i>W</i>} , O1, O2, O3 ^{<i>s</i>} , O4, O5
	496 (485) {486}	207	118	89	$O1^{s}, O2, O3^{s}, O4^{w}, O5$
	677 (692) {694}	42	24	18	Ti^{W} , $O1^{S}$, $O3^{W}$, $O5$
	710	104	59	45	Ti, O1, O2, $O4^W$, $O5^S$
	854	20	12	9	$Ti, O1^W, O4^S$
	91	2.39	1.37	1.02	Nd1, Nd2 ^s , Ti, O1, O3, O4 ^w , O5 ^s
	116	57	32	24	Nd1 ^s , Nd2, Ti ^s , O1 ^w , O2, O4
	148	4.76	2.72	2.04	Nd1, Ti ^{\$} , O3, O4, O5
	289	23	13	10	$O1^{s}, O2^{s}, O3^{s}, O5^{s}$
	322	109	62	47	$O2^{s}, O3^{w}, O4^{s}, O5$
B _{3g}	347 (342) {345.5}	6.88	3.36	2.52	$01, 02^s, 03, 04^s, 05^w$
	463	94	54	40	$O1^s, O3^w, O5^s$
ľ	561 (556)	4.22	2.41	1.81	01, 03 ^s , 05 ^s

Частота	Тип	I_xx	I_xy	I_xz	I_yy	I_yz	I_zz
cm^{-1}		_				-	
Ba	65.9	0	0	11	0	0	0
D_{2g}	73.3	172	0	0	27	0	7
A	810	130	0	0	5	0	128
Ag B.	86.4	0	286	0	0	0	0
D_{1g}	01.3	0	280	0	0	2	0
D_{3g}	107.0	17	0	0	427	0	18
Ag B.	11/.9	0	51	0	427	0	10
D_{1g}	114.0	0	0	0	0	57	0
D_{3g}	1327	0	0	188	0	0	0
D_{2g}	132.7	0	0	100	0	5	0
D_{3g}	147.0	0	0	72	0	0	0
D_{2g}	150.7	0	075	0	0	0	0
D_{1g}	1610	120	975	0	220	0	12
A_g	161.0	156	0	24	520	0	15
D_{2g}	102.0	0	0	24	0	0	200
A_g	195.9	2	0	20	04	0	209
B_{2g}	211.7	0	0	20	1000	0	125
A_g	229.0	24	0	0	1000	0	125
B_{2g}	229.8	0	0	3	0	0	0
A_g	237.7	0	0	0	1	0	196
B_{2g}	248.7	0	0	6	0	0	0
A_g	259.1	13	0	0	86	0	517
B_{2g}	285.0	0	0	27	0	0	0
B_{3g}	288.9	0	0	0	0	24	0
B_{1g}	300.0	0	344	0	0	0	0
B_{3g}	322.5	0	0	0	0	110	0
B_{1g}	327.1	0	836	0	0	0	0
B_{3g}	346.5	0	0	0	0	6	0
B_{1g}	352.5	0	195	0	0	0	0
B_{2g}	365.4	0	0	3	0	0	0
A_g	371.2	22	0	0	357	0	769
B_{2g}	378.2	0	0	245	0	0	0
A_g	380.6	6	0	0	108	0	81
B_{1g}	438.7	0	22	0	0	0	0
B_{2g}	452.1	0	0	10	0	0	0
A_g	455.2	0	0	0	49	0	41
B_{3g}	463.2	0	0	0	0	95	0
B_{2g}	466.1	0	0	12	0	0	0
A_g	467.7	1	0	0	20	0	26
B_{2g}	495.5	0	0	209	0	0	0
A_g	502.4	0	0	0	69	0	2
B_{3g}	560.6	0	0	0	0	4	0
A_g	562.2	38	0	0	2	0	8
B_{1g}	566.9	0	641	0	0	0	0
A_g	664.1	26	0	0	94	0	11
B_{2g}	677.4	0	0	43	0	0	0
B_{2g}	710.1	0	0	105	0	0	0
A_g	809.8	329	0	0	740	0	359
B ₂	1 X Y K	I ()	()	21	I ()	I ()	I ()

Таблица 7. Моды спектра КРС Nd₂TiO₅. Интенсивность (отн. ед.) для монокристалла. Расчет проведен для возбуждающего излучения с длиной волны $\lambda = 514$ nm и T = 298 K

был измерен на поликристалле [6] с длиной волны возбуждающего излучения $\lambda = 632.8$ nm (Paques-Ledent, 1976), на поликристалле [5] с $\lambda = 632.8$ nm (Park, 2018), а также на монокристалле [4] с $\lambda = 514$ nm (Murugesan,

Рис. 5. Зависимость модуля Юнга (GPa) от направления в кристалле. (Для построения использовалась программа ELATE [18].)

2015). Однако, в работе [4] не обсуждается поляризация, которой соответствует измеренный спектр. Расчет был проведен для возбуждающего излучения с длиной волны $\lambda = 514$ nm и T = 298 K. При моделировании спектра КРС на основании рассчитанных частот и интенсивностей (полные интенсивности для поликристалла) использовались функции Pseudo-Voigt с фактором затухания ("damping factor") $8 \,\mathrm{cm}^{-1}$. Расчетный спектр хорошо согласуется с экспериментальным, полученным на поликристаллических образцах (рис. 2). Расчеты подтверждают вывод, сделанный в работе [4], о том, что интенсивная мода в области $800 \,\mathrm{cm}^{-1}$ имеет тип A_g . При сравнении расчетного спектра, соответствующего поликристаллу, с экспериментальным, полученным в работе [4] на монокристалле, можно отметить расхождение в интенсивности низкочастотных мод (рис. 3, b), тогда как положения их пиков согласуются достаточно хорошо. В работе [4] не указана поляризация, которой соответствует измеренный спектр. Согласно расчетам (табл. 7), интенсивность низкочастотных линий в различных поляризациях существенно различается.

Сравнение результатов расчета спектра КРС Sm₂TiO₅ с экспериментом для поликристалла [3] показывает

Таблица 8. "Молчащие" моды Nd₂TiO₅

Тип	Частота, cm ⁻¹	Ионы-участники
	89	$Nd1^{s}$, $Nd2^{w}$, Ti, O1, $O2^{s}$, O3
	107	Nd2 ^s , Ti, O3, O4, O5
	144	Ti^{S} , $O2^{W}$, $O3$, $O4$
	276	$O2^s$, $O4^W$
A_u	323	$O1^{s}, O3^{s}, O4, O5^{s}$
	330	Ti^{W} , O1, O3, O4 ^S
	440	$O1^{s}, O3^{W}, O5^{s}$
	568	O1, $O3^{s}$, $O5^{s}$

Тип	Частота	Интенсивность	Ионы-участники
	cm ⁻¹	km/mol	
	91	13	Sm1, Sm2, Ti, O1, O2, O3, O4, O5
	117	66	Sm1, Sm2, Ti, O1, O2, O3, O4 ^s , O5
	165	72	Sm1, Sm2, O1, O2, O3, O4, O5
	194	940	Sm2, Ti, O1, O2, O3, O4 ^s , O5
	219	20	Sm1, Ti, O1, O3, O4, O5
	241	669	Sm1, Ti, O1, O2, O3, O4, O5
	312	123	Ti, O1, $O2^{s}$, O3, O4, $O5^{s}$
B_{1u}	319	1360	$O1^{s}, O2, O3, O5^{W}$
	401	1143	Ti, O1, O2 ^s , O3, O4, O5
	464	583	Ti, O1, O2, O3, O4, O5
	470	1220	Ti, O1, O3 ^s , O4, O5
	506	192	$O1, O2^{s}, O3, O5$
	567	4287	Ti, O1, O2, O3, O5
	699	26	$O1^{s}, O5^{s}$
	878	199	Ti, $O4^{S}$
	112	2.84	Sm1, Sm2, Ti, O2, O4, O5
	166	209	Sm2W, Ti^{s} , $O3^{W}$, $O4^{W}$
	272	3352	$O1^{W}, O2^{S}, O4^{W}$
B_{2u}	321	6767	$\mathrm{Ti}^W, \mathrm{O2}^W, \mathrm{O4}^S$
	331	96	Ti, O1, O2, O3, O4, O5
	473	598	$O1^s, O5^s$
	575	494	O1, O3 ^s , O5
	98	1.74	Sm1, Sm2, Ti, O2, O3, O5
	114	12	Sm1, Sm2, Ti, O2, O3, O4 ^s , O5
	138	41	Sm1, Sm2, Ti, O1, O3, O4 ^s , O5
	189	441	Sm2, Ti, O1, O2, O3, O4 ^s , O5
	229	1585	Sm1, Sm2, Ti, O1, O2, O3, O4, O5
	267	75	Ti, O1, O3, O4 ^s , O5
	291	1134	O1 ^s , O2, O3, O5
B_{3u}	341	23	Ti, O2, O3, O4, O5
	359	191	Ti, O1, O2 ^s , O3, O5
	397	865	Ti, O1, O2 ^{s} , O3, O4, O5 ^{s}
	487	218	Ti, O1, O2, O3 ^s
	541	5.47	01, 02, 03, 05
	621	2768	$\operatorname{Ti}_{W}^{W}, \operatorname{O1}_{W}^{W}, \operatorname{O5}_{S}^{S}$
	725	99	$\operatorname{Ti}^{W}, \operatorname{O1}^{S}_{c}, \operatorname{O4}^{W}$
	838	2315	Ti, O4 ³ , O5

Таблица 9. IR моды Sm₂TiO₅

хорошее согласие (рис. 4). При моделировании спектра также использовались функции Pseudo-Voigt с фактором затухания 8 сm⁻¹.

В работе также были рассчитаны упругие постоянные Nd₂TiO₅ и Sm₂TiO₅ (табл. 12–13). Соответствующие экспериментальные данные в научной печати отсутствуют. Можно отметить, что в работе [2] был исследован структурный фазовый переход в Nd₂TiO₅ под давлением из орторомбической в гексагональную фазу. На зависимости P-V, полученной в данной работе в результате рентгеноструктурного анализа, проведенного при наложенном давлении (рис. 9 в [2]), три точки относятся к ороторомбической фазе. Это позволяет сделать приближенную оценку модуля объемного сжатия, которая согласуется с результатами расчетов (табл. 13) достаточно хорошо (расхождение в пределах 9%). Согласно расчетам, по упругим свойствам Nd_2TiO_5 и Sm_2TiO_5 достаточно близки. Анизотропию упругих свойств можно проиллюстрировать зависимостью модуля Юнга от направления в кристалле (рис. 5).

Расчет объемного модуля и модуля сдвига, в приближениях Фойгта, Реусса и Хилла, дает близкие результаты, что позволяет сделать вывод о достаточно высокой изотропии химической связи и упругих свойств в R_2 TiO₅, что также видно из рис. 5.

Было исследовано влияние гидростатического сжатия (до 2 GPa) на частоты фононных мод. При наложении давления в 2 GPa максимальное изменение частот мод в R_2 TiO₅ достигает 12 cm⁻¹. Наибольшее изменение

Тип	Частота, cm^{-1}	Инт	есивность, arb.	units	Hours vuoctuuren		
		$I_{\rm tot}$	I _{par}	I _{perp}	иопы-участники		
	74	79	48	31	Sm2, Ti, O1, O2, O3, O4, O5		
	80	109	63	47	Sm1, Sm2, Ti, O1, O2, O3, O4, O5		
	107	226	165	61	Sm1, Sm2, Ti, O1, O2, O3, O4		
	164	286	265	21	Sm1 Sm2 Ti $\Omega_1 \Omega_2 \Omega_3 \Omega_4^{\text{S}} \Omega_5$		
	101	08	81	17	Sm1, Sm2, Ti, O1, O2, O3, O4, O5		
	232	191	3/15	150	Sm1, Sm2, Ti, O1, O2, O3, O4, O3 Sm2 Ti, O1, O2, O3 S O4		
	232	125	105	21	$T_{1}^{S} O_{1}^{S} O_{2}^{S} O_{2}^{S} O_{4}^{S} O_{5}^{S}$		
	242	207	103	112	$T_{1}, O1, O2, O3, O4, O5$		
A_{σ}	201	507	194	112	11, 01, 02, 03, 04, 05		
8	377	435	251	184	01, 02, 03, 04, 05		
	386	95	54	41	$01, 02^{\circ}, 03, 04, 05$		
	464	41	36	5	11, 01, 02, 03, 04, 05		
	471	21	13	8	11, 01, 02, 03, 04, 05		
	508	38	31	7	01, 02, 03, 05		
	565	22	20	2	Ti, O1, O3, O5		
	669	64	61	2	Ti, O1, O5		
	812	846	839	7	Ti, O1, O4 ^s , O5		
	87	134	76	57	Sm2, Ti, O3, O4,O5		
	110	28	16	12	Sm1, Sm2, Ti, O1, O2		
B_{1g}	169	557	318	239	Sm1, Sm2, Ti ^s , O3, O4		
	305	67	38	29	$O1, O2^{s}, O3^{w}, O4$		
	334	1000	571	429	Ti^W , $O2^W$, $O4^S$		
	359	0.86	0.49	0.37	01, 02, 03, 05		
	445	26	15	11	01° 05°		
	583	560	320	240	$01,03^{\circ},05$		
	60	500 7.77	1.1.1	2 3 3 3	$Sm1 Sm2 Ti O1 O2 O3 O4^{S} O5$		
	130	1.77	4.44	5.55	$Sm^2 \Omega 1 \Omega^2 \Omega 4 \Omega^5$		
	140	133	07	00	Sin2, 01, 02, 04, 03 Sm1 Sm2 Tr 02 02 04		
	149	12	30	21	Sin1, Sin2, n, 02, 03, 04, Sm1, Sm2, T, 01, 02, 04		
	101	15	0	0	$\sin 1, \sin 2, \pi, 01, 02, 02, 04$		
	212	19	11	8	Sm1, Sm2, 11, 01, 02, 03, 04 ⁴ , 05		
	231	2.07	1.18	0.89	Sm1, 11, 01, 02, 03°, 04, 05		
	255	9.55	5.46	4.09	11, 01, 02, 03, 04, 05		
B_{2g}	287	22	13	9	Ti, O1, O2, O3, O4		
	374	3.19	1.82	1.37	$O1, O2^3, O3, O4, O5$		
	383	181	103	78	Ti, O1, O2, O3, O4, O5		
	457	5.69	3.25	2.44	Ti, O1, $O2^3$, O3, O4, O5		
	473	9.93	5.67	4.225	01, 02, 03, 04, 05		
	504	171	98	73	O1, O2, O3 ^s , O4, O5		
	678	37	21	16	Ti, O1 ^s , O3, O5		
	716	81	46	35	Ti, O2, O4, $O5^{S}$		
	856	17	9	7	Ti, O1, O4 ^{<i>s</i>}		
B_{3g}	89	0.26	0.15	0,11	Sm1, Sm2, Ti, O1, O3, O5		
	115	40	23	17	Sm1, Sm2, Ti, O2, O4		
	157	2.91	1.66	1.25	Sm1, Ti ^s , O3, O4		
	299	11.22	6.41	4.81	O1, O2 ^s , O3, O4, O5		
	321	94	54	40	O1, O2, O3, O4 ^s , O5		
	354	4.41	2.52	1.89	Ti, O1, O2, O3, O4, O5		
	473	70	40	30	$O1^{s}, O5^{s}$		
	576	6	3	2	$01, 03^{s}, 05$		
	- / -	-	-		- , ,		

Таблица 10. Моды спектра КРС Sm₂TiO₅. Расчет проведен для возбуждающего излучения с длиной волны $\lambda = 632$ nm и T = 298 K

частот происходит в высокочастотных модах, в которых преимущественно участвуют ионы кислорода. Низкочастотные моды, в которых в существенной степени участвует редкоземельный ион, практически не изменяются $(1-2 \text{ cm}^{-1})$. Волновое число минимальной по частоте моды в спектре (B_{2g} мода, 66 cm⁻¹ у Nd₂TiO₅ и 69 cm⁻¹ у Sm₂TiO₅) уменьшается соответственно на 5 и 0.3 cm⁻¹.

Тип	Частота,	Ионы-участники		Nd ₂ TiO ₅	Sm ₂ TiO ₅
	cm ·		<i>C</i> ₁₁	192	198
A_u	86	Sm1, Ti, O1, O2, O3	C_{12}	91	90
	106	Sm2 ^s , O4, O5	C_{13}	103	103
	155	Ti ^{<i>s</i>} , O2, O3, O4	C_{22}	246	251
	273	$O2^S$, $O4^W$	C_{23}	110	113
	326	$O2^{W}, O3^{W}, O4^{S}, O5^{W}$	C_{33}	197	215
	344	Ti, O1 ^{<i>s</i>} , O3, O4, O5	C_{44}	85	90
	447	01, 03, 04, 05	C_{55}	58	59
	584	O1, O3 ^s , O5	C_{66}	72	75

Таблица 11. "Молчащие" моды Sm₂TiO₅

Таблица 13. Объемный модуль, модуль Юнга, модуль сдвига R₂TiO₅, GPa

Схема расчета	Объемный Модуль, GPa		Модуль Юнга, GPa		Модуль сдвига, GPa		Соотношение Пуассона	
	Nd ₂ TiO ₅	Sm ₂ TiO ₅	Nd ₂ TiO ₅	Sm ₂ TiO ₅	Nd ₂ TiO ₅	Sm ₂ TiO ₅	Nd ₂ TiO ₅	Sm ₂ TiO ₅
Фойгта	138	142	169	177	65	69	0.30	0.29
Peycca	137	140	161	171	62	66	0.30	0.30
Хилла	137	141	165	174	64	67	0.30	0.29
Из эксп. данных [2]	~ 150	—	—	—	—	—	—	

4. Заключение

В целом можно заключить, что МО ЛКАО подход, использование гибридного РВЕО функционала позволяют успешно описывать структуру и динамику решетки, а также упругие свойства Nd_2TiO_5 и Sm_2TiO_5 в орторомбической фазе (*Pnma*). Спектр КРС, рассчитанный в предположении, что кристалл обладает этой симметрией, хорошо согласуется с измеренным. В результате расчета удалось описать низкочастотные моды спектра КРС Sm_2TiO_5 с преимущественным участием редкоземельного иона, информация о которых из эксперимента не получена.

Список литературы

- R.C. Ewing, W.J. Weber, J. Lian. J. Appl. Phys. 95, 5949 (2004).
- [2] F.X. Zhang, J.W. Wang, M. Lang, J.M. Zhang, R.C. Ewing. J. Solide State Chem. 183, 11, 2636 (2010).
- [3] C.L. Tracy, M. Lang, J. Zhang, F. Zhang, Z. Wang, R.C. Ewing. Acta Mater. 60, 11, 4477 (2012).
- [4] G. Murugesan, R. Nithya, S. Kalainathan, T.R. Ravindran. AIP Conf. Proc. AIP Publishing 1665, 1, 100008 (2015).
- [5] S. Park, C.L. Tracy, F. Zhang, R.I. Palomares, C. Park, C. Trautmann, M. Lang, W.L. Mao, R.C. Ewing. J. Solid State Chem. 258, 108 (2018).
- [6] M.Th. Paques-Ledent. Spectrochim. Acta A32, 6, 1339 (1976).
- [7] J.P. Perdew, M. Ernzerhof, K. Burke. J. Chem. Phys. 105, 9982 (1996).

[8] Р.А. Эварестов, А.В. Бандура, В.Е. Александров. ФТТ 47, 2157 (2005).

Таблица 12. Упругие постоянные R_2 TiO₅, GPa

- [9] Д.В. Корабельников, Ю.Н. Журавлев. ФТТ 58, 1129 (2016).
- [10] Ю.М. Басалаев, Н.И. Гордиенок. Изв. высш. учебн. заведений. Физика **60**, 140 (2017).
- [11] http://www.crystal.unito.it/index.php
- $[12]\;\; A.D.\; Becke.\; J.\; Chem. Phys. 98, 5648\;(1993).$
- [13] M.F. Peintinger, D.V. Oliveira, T. Bredow. J. Comput. Chem. 34, 451 (2013).
- [14] Energy-consistent Pseudopotentials of the Stuttgart; http://www.tc.uni-koeln.de/PP/clickpse.en.html.
- [15] В.А. Чернышев, А.Е. Никифоров, В.П. Петров, А.В. Сердцев, М.А. Кащенко, С.А. Климин. ФТТ 58, 8, 1587 (2016).
- [16] А.В. Баженов, И.С. Смирнова, Т.Н. Фурсова, М.Ю. Максимук, А.Б. Кулаков, И.К. Бдикин. ФТТ 42, 40 (2000).
- [17] R.D. Aughterson, G.R. Lumpkin, G.J. Thorogood, Z. Zhang, B. Gault, J.M. Cairney. J. Solid State Chem. 227, 60 (2015).
- [18] http://progs.coudert.name/elate

Редактор Д.В. Жуманов