03,19

Тепловое расширение ограниченных полупроводниковых твердых растворов Ag_xPb_{1-x}S

© С.И. Садовников

Институт химии твердого тела УрО РАН, Екатеринбург, Россия E-mail: sadovnikov@ihim.uran.ru

Поступила в Редакцию 2 июля 2018 г. В окончательной редакции 21 декабря 2018 г. Принята к публикации 27 декабря 2018 г.

Методом химического соосаждения из водных растворов ацетата свинца и нитрата серебра в присутствии сульфидизатора, комплексообразующих и стабилизирующих агентов синтезированы однофазные порошки кубических твердых растворов $Ag_x Pb_{1-x}S$ с максимальным относительным содержанием серебра до x = 0.12. Методом дилатометрии в области температур 295–580 К впервые измерено тепловое расширение синтезированных полупроводниковых твердых растворов $Ag_x Pb_{1-x}S$. Показано, что замещение атомов свинца атомами серебра в $Ag_x Pb_{1-x}S$ приводит к небольшому понижению коэффициента термического расширения, связанному с изменением ангармонизма атомных колебаний.

Исследование выполнено при финансовой поддержке Российского научного фонда (проект № 17-73-10104) в ИХТТ УрО РАН.

DOI: 10.21883/FTT.2019.06.47679.182

1. Введение

В последние годы вырос интерес к сульфидным твердым растворам, расширяющим возможность модификации решеточных и электронных свойств сульфидов. Сульфиды свинца и серебра PbS и Ag₂S — одни из наиболее востребованных полупроводников, однако сведения об их твердых растворах Ag_xPb_{1-x}S крайне ограничены.

В нормальных условиях крупнокристаллический (bulk) сульфид свинца является прямым узкозонным полупроводником с кубической (пр. гр. $Fm\bar{3}m$) структурой В1. При температуре 300 К ширина запрещенной зоны Е_g монокристаллического сульфида свинца и поликристаллических пленок PbS равна 0.41-0.42 eV [1,2]. Сульфид свинца PbS применяется в таких устройствах как фотодетекторы с широким (от инфракрасного до ультрафиолетового) диапазоном излучения, солнечные элементы с высоким коэффициентом полезного действия, термоэлектрические преобразователи, оптические переключатели [3]. Крупнокристаллический сульфид серебра с моноклинной (пр. гр. $P2_1/c$) структурой акантита α-Ag₂S является прямым полупроводником с шириной запрещенной зоны около $\sim 0.9 \, \mathrm{eV}$ [4,5]. Сульфид серебра Ag₂S широко используется как материал для электронных и сенсорных устройств [6,7]. В работе [8] показано, что получение композиционного материала $Ag_x Pb_{1-x}S$ на основе твердых растворов узкозонного PbS и широкозонного Ag₂S позволяет добиться пошагового изменения ширины запрещенной зоны и регулирования сенсорной чувствительности твердых растворов к оксидам азота.

Сульфиды и сульфидные твердые растворы чаще всего используются в виде пленок на подложках, поэтому для

их применения при повышенной температуре нужны данные о термическом расширении.

Согласно [9], коэффициент термического расширения поликристаллического PbS при температуре 300 K составляет $(19-20) \cdot 10^{-6} \text{ K}^{-1}$, а по данным [10] равен 29.8 $\cdot 10^{-6} \text{ K}^{-1}$.

Коэффициент термического расширения пленки PbS измеряли в работах [11,12]. Согласно [11], при охлаждении пленки PbS от 423 до 293 К период кристаллической решетки *а* уменьшился от 0.59637 до 0.59326 nm, и такому изменению периода соответствует коэффициент термического расширения α (423 K), равный ~ 40 · 10⁻⁶ K⁻¹. При повторном нагреве пленки PbS от 293 до 393 К период решетки увеличился, чему соответствовал коэффициент α (393 K) около ~ 28 · 10⁻⁶ K⁻¹. Согласно *in situ* исследованию теплового расширения пленок PbS при температуре до 473 К [12], коэффициент термического расширения составил (37–39) · 10⁻⁶ K⁻¹ и близок к величине α , определенной в работе [11].

Согласно [13], коэффициент линейного термического расширения крупнокристаллического акантита α -Ag₂S равен $\sim 20 \cdot 10^{-6} \, \mathrm{K}^{-1}$. Недавно тепловое расширение крупнокристаллического и нанокристаллического порошков сульфида серебра изучили в работах [14–16], согласно которым изотропный линейный коэффициент термического расширения нанокристаллического акантита α -Ag₂S в области температур $\sim 300-400 \, \mathrm{K}$ равен $(22-24) \cdot 10^{-6} \, \mathrm{K}^{-1}$ и примерно в 1.2–1.3 раза больше, чем $\alpha_{\rm ac}$ крупнокристаллического акантита.

Из-за различия кристаллических структур сульфиды PbS и Ag₂S имеют ограниченную взаимную растворимость. Согласно [17], предельная растворимость крупнокристаллического Ag₂S в PbS достигается при 970 K и не превышает 0.4 mol.%. Авторы [8] сумели получить пленки твердых растворов $Ag_x Pb_{1-x}S$, в которых величина *x* изменялась от 0 до 0.16. По сравнению с данными [17], твердые растворы с x > 0.08 были пересыщенными.

Никаких сведений о тепловом расширении твердых растворов $Ag_x Pb_{1-x}S$ в литературе нет. В связи с этим целью настоящей работы является изучение теплового расширения твердых растворов сульфидов свинца и серебра и определение их коэффициента термического расширения.

Образцы и экспериментальные методы

Тонкодисперсные порошки сульфидов PbS и Ag₂S и сульфидных твердых растворов Ag_xPb_{1-x}S синтезировали методом химического осаждения из водных растворов ацетата свинца Pb(CH₃COO)₂, нитрата серебра AgNO3, цитрата натрия Na₃C₆H₅O₇, гидроксида аммония NH4OH и тиокарбамида (NH2)2CS по ранее предложенной методике [8]. Во всех реакционных смесях концентрация NH₄OH составляла 4 mol $\cdot 1^{-1}$, концентрации тиокарбамида и цитрата натрия были одинаковы и равны 0.05 mol 1⁻¹. Концентрации ацетата свинца и нитрата серебра меняли в интервалах 0.01-0.05 и $0.001-0.015 \text{ mol} \cdot 1^{-1}$ соответственно. При осаждении тиокарбамид как источник ионов серы являлся сульфидизатором. Попытка использовать сульфид натрия Na₂S как сульфидизатор оказалась неудачной вследствие почти мгновенного осаждения сульфида серебра вместо сульфидного твердого раствора Ag_xPb_{1-x}S. Использование тиокарбамида позволило снизить скорость осаждения сульфида серебра благодаря образованию комплексов [Ag(N₂H₄CS)₃]⁺. Комплексообразующим агентом, препятствующим быстрому осаждению сульфида свинца, был цитрат натрия.

Осаждение проводили в щелочной среде при температуре 298 К и *p*H от 10 до 11 в течение 3 h. Продолжительность нахождения полученного осадка в растворах составляла 2 h. Осажденные порошки промывали дистиллированной водой методом декантации, фильтровали и сушили на воздухе при температуре 323 К.

Все осажденные порошки исследовали методом рентгеновской дифракции на дифрактометре Shimadzu XRD-7000 в Си $K\alpha_{1,2}$ -излучении. Рентгеновские измерения проводили в интервале углов $2\theta = 20-85^\circ$ с шагом $\Delta(2\theta) = 0.02^\circ$ и временем сканирования 10 s в точке. Рентгенограммы численно анализировали с помощью программного пакета X'Pert HighScore Plus [18].

Микроструктуру и элементный состав порошков твердых растворов $Ag_x Pb_{1-x}S$ изучали методом сканирующей электронной микроскопии (СЭМ) на микроскопе JEOL-JSM LA 6390 с энерго-дисперсионным рентгеновским анализатором JED 2300 Energy Dispersive X-ray Analyzer.

Коэффициент термического расширения измеряли на цилиндрических образцах диаметром 5 mm, спрессованных под давлением $\sim 260\,MPa$ и спеченных в вакууме при температуре $\sim 470\,K$ из синтезированных отожженных порошков однофазных твердых растворов

Рис. 1. Рентгенограммы сульфидов Ag₂S и PbS и ограниченных сульфидных твердых растворов $Ag_x Pb_{1-x}S$ (x < 0.15). Твердые растворы с $0.05 \le x \le 0.12$ имеют кубическую (пр. гр. *Fm*3*m*) структуру и являются однофазными. Твердый раствор Ag0.15Pb0.85S наряду с основной кубической фазой содержит до 4-5 wt.% моноклинного (пр. гр. $P2_1/c$) сульфида серебра Ag₂S, чьи отражения на рентгенограмме выделены овалом. На вставке показано смещение отражения (200)_{В1} твердых растворов Ag_xPb_{1-x}S в область меньших углов 20 при замещении атомов Pb атомами Ag (при увеличении x от 0 до 0.15). Для образцов Ag₂S, PbS и Ag_{0.10}Pb_{0.90}S как пример минимизации дополнительно показаны расчетные рентгенограммы и разности (I_{exp} - I_{calc}) между экспериментальными и рассчитанными рентгенограммами, а также приведены факторы Ритвелда R_I. Периоды твердых растворов Ag_xPb_{1-x}S определены с точностью ±0.00005 nm.

Состав	PbS	$Ag_{0.05}Pb_{0.95}S$	$Ag_{0.08}Pb_{0.92}S$	$Ag_{0.10}Pb_{0.90}S$	$Ag_{0.12}Pb_{0.88}S$	Ag _{0.15} Pb _{0.85} S
I_{111}/I_{200}	0.62	1.12	1.14	1.15	1.16	1.17

Экспериментальны5е соотношения интенсивностей I_{111}/I_{200} отражений $(111)_{B1}$ и $(200)_{B1}$

Ад_xPb_{1-x}S. Длина образцов составляла ~ 4–6 mm. Перед прессованием порошки предварительно отжигали в вакууме 0.013 Pa (10⁻⁴ mm Hg) при медленном двухчасовом нагреве со скоростью 0.5 K · min⁻¹ до 393 K и последующем вакуумном отжиге при 393 K в течение 2 h.

Измерения проводили на дилатометре NETZSCH DIL 402С в атмосфере гелия Не при давлении $1.01 \cdot 10^5$ Ра и изменении температуры от 293 до 573 К с шагом 0.5 К. Скорость нагрева составляла 4 К мин⁻¹.

Влияние состава на тепловое расширение твердых растворов Ag_x Pb_{1-x} S

Согласно данным сканирующей электронной микроскопии, средний размер частиц в осажденных порошках $Ag_x Pb_{1-x}S$ составляет ~ 300–500 nm, а в порошках PbS и $Ag_2S - ~ 100$ и ~ 800 nm соответственно.

Рентгенограммы синтезированных порошков PbS, Ag₂S и твердых растворов Ag_xPb_{1-x}S представлены на рис. 1. Количественный анализ рентгенограммы сульфида серебра и сравнение с данными [19] показывает, что наблюдаемый набор дифракционных отражений соответствует моноклинному (пр. гр. $P2_1/c$) акантита α-Ag₂S. Порошок сульфида свинца PbS имеет кубическую (пр. гр. $Fm\bar{3}m$) структуру с периодом элементарной ячейки 0.5932 nm. Судя по рентгенограммам, твердые растворы $Ag_x Pb_{1-x}S$ с $x \le 0.12$ тоже являются кубическими и однофазными, тогда как твердый раствор Ag0.15Pb0.85S является двухфазным и наряду с основной кубической фазой содержит до 4-5 wt.% моноклинного сульфида серебра. Об образовании твердых растворов свидетельствуют постепенное изменение соотношения интенсивностей отражений $(111)_{B1}$ и $(200)_{B1}$ (таблица) и смещение всех отражений в область меньших углов 20 (рис. 1, вставка), т.е. небольшое увеличение периода *а*_{*B*1} кубической решетки от 0.59320 до 0.59435 nm при замещении свинца серебром. Для образцов A₂S, PbS и Ag_{0.10}Pb_{0.90}S как пример минимизации дополнительно показаны расчетные рентгенограммы и разности $(I_{exp} - I_{calc})$ между экспериментальными и рассчитанными рентгенограммами. Малая величина факторов Ритвелда R_I подтверждает высокую точность выполненного полнопрофильного анализа.

Количественный анализ рентгенограмм ограниченных твердых растворов $Ag_x Pb_{1-x}S$, выполненный с использованием программного обеспечения [18], подтвердил, что наблюдаемое увеличение периода a_{B1} кубической решетки обусловлено замещением атомов Pb атомами Ag. Согласно [20], радиусы иона свинца Pb^{2+} и иона серебра

Аg⁺ составляют 0.120 nm и 0.126 nm соответственно. Количественный анализ рентгенограмм позволил также оценить величину x, т.е. относительное содержание серебра в металлической подрешетке, с точностью ± 0.015 .

Для оценки относительного содержания серебра и свинца было использовано также изменение периода решетки твердых растворов Ag_xPb_{1-x}S. Ограниченные твердые растворы замещения Ag_xPb_{1-x}S сохраняют кубическую структуру сульфида PbS, поэтому можно принять, что решетка сульфида серебра в области ограниченной растворимости искажается до кубической. Согласно [14,15], объем элементарной ячейки моноклинного сульфида серебра при 273 К равен 0.2260 nm³, поэтому период модельной кубической элементарной ячейки с этим же объемом равен $a_{Ag,S}^* = 0.6091 \, \text{nm}.$ Если в первом приближении период кубической решетки ass твердого раствора при замещении свинца серебром меняется линейно по правилу Вегарда, то используя значения $a_{PbS} = 0.5932 \,\mathrm{nm}$ и $a^*_{Ag_2S} = 0.5996 \,\mathrm{nm}$, можно оценить относительное содержание Ag₂S и Ag в твердом растворе замещения как $z = (a_{ss} - a_{PbS})/(a_{Ag,S}^* - a_{PbS})$ и $x_{Ag} = 2z.$

Согласно оценкам, сделанным с помощью минимизации рентгенограмм, с одной стороны, и по изменению периода решетки, с другой стороны, синтезированные твердые растворы $Ag_x Pb_{1-x}S$ имеют состав $\sim Ag_{0.05}Pb_{0.95}S$, $\sim Ag_{0.08}Pb_{0.92}S$, $\sim Ag_{0.10}Pb_{0.90}S$, $\sim Ag_{0.12}Pb_{0.88}S$ и $\sim Ag_{0.15}Pb_{0.85}S$, т.е. относительное содержание серы в них немного меньше 1.

Элементный анализ твердых растворов Ag_xPb_{1-x}S был выполнен с помощью рентгеновского энергодисперсионного анализа EDX. Как пример на рис. 2 показаны EDX спектры сульфида свинца PbS и твердых растворов Ag_{0.08}Pb_{0.92}S и Ag_{0.12}Pb_{0.88}S. В EDX спектре сульфида серебра (рис. 2, a) присутствуют только линии свинца и серы и слабая линия примесного кислорода в области 0.5 eV. Содержание Pb и S в порошке сульфида свинца равно 86.2 ± 0.4 и 13.2 ± 0.5 wt.% и соответствует сульфиду $\sim PbS_{0.99}$. В спектрах твердых растворов наряду с линиями Pb и S наблюдаются линии серебра Ag в области около $\sim 2.9 \,\mathrm{eV}$ (рис. 2, b, c). Содержание Ag, Pb и S в твердых растворах ~ Ag_{0.08}Pb_{0.92}S и ~ Ag_{0.12}Pb_{0.88}S по данным EDX-анализа равно 3.6 ± 0.2 , 82.1 ± 0.4 , 12.9 ± 0.5 wt.% и 5.9 ± 0.2 , 80.0 ± 0.4 , 13.1 ± 0.5 wt.% соответственно и качественно согласуется с оценками относительного содержания Ад и Рb в твердых растворах по периоду решетки и путем минимизации рентгенограмм. Относительное содержание серы немного меньше стехиометрического и составляет ~ 0.93-0.94.

Линейный коэффициент термического расширения *a*_{aver} определяли как средний коэффициент в темпераa

Рис. 2. Элементный EDX анализ порошков PbS (a), $\sim Ag_{0.08}Pb_{0.92}S$ (b) и $\sim Ag_{0.12}Pb_{0.88}S$ (c).

турном интервале между начальной температурой 293 К и температурой измерения *Т*

 SK_{α}

$$\alpha_{\rm aver}(T) = \frac{\Delta L}{L_{293\,\rm K}\Delta T} = \frac{L(T) - L_{293\,\rm K}}{L_{293\,\rm K}(T - 293)},\tag{1}$$

где L(T), $L_{293 \text{ K}}$ — длина образца при температуре T и при начальной температуре 293 К.

Температурные зависимости среднего линейного коэффициента термического расширения $\alpha_{aver}(T)$ образцов PbS, Ag₂S и твердых растворов Ag_xPb_{1-x}S показаны на рис. 3. На зависимости $\alpha_{aver}(T)$ сульфида серебра в области температур 455–485 К наблюдается скачкообразное увеличение коэффициента термического расширения, обусловленное фазовым переходом "акантит

Рис. 3. Температурные зависимости среднего линейного коэффициента термического расширения $\alpha_{aver}(T)$ образцов PbS, Ag₂S и твердых растворов Ag_xPb_{1-x}S: *I* — PbS, *2* — Ag_{0.05}Pb_{0.95}S, *3* — Ag_{0.08}Pb_{0.92}S, *4* — Ag_{0.10}Pb_{0.90}S, *5* — Ag_{0.12}Pb_{0.88}S, *6* — Ag_{0.15}Pb_{0.85}S, *7* — Ag₂S. На вставке показано изменение α_{aver} при 300 K от состава твердых растворов.

 α -Ag₂S- β -Ag₂S аргентит". Ранее аналогичный скачок α_{aver} сульфида серебра наблюдали в работе [15]. Замещение атомов свинца атомами серебра в твердых растворах приводит к небольшому уменьшению коэффициентов термического расширения (рис. 3, вставка). Коэффициенты термического расширения $\alpha_{aver}(T)$ сульфида PbS и твердых растворов Ag_xPb_{1-x}S в изученной области температур слабо увеличиваются с ростом *T*. Немного больший температурный рост α_{aver} наблюдается для твердого раствора Ag_{0.15}Pb_{0.85}S, содержащего примесь сульфида серебра. В изученной области температур зависимости $\alpha_{aver}(T)$ сульфида свинца PbS и твердых растворов Ag_xPb_{1-x}S можно аппроксимировать полиномами второго порядка.

$$\begin{split} \text{PbS}: & \alpha_{\text{aver}}(T) = 10.461 \cdot 10^{-6} \\ & + 4.529 \cdot 10^{-8}T - 3.545 \cdot 10^{-11}T^2 \, (\text{K}^{-1}), \\ \text{Ag}_{0.05}\text{Pb}_{0.95}\text{S}: & \alpha_{\text{aver}}(T) = 10.525 \cdot 10^{-6} \\ & + 4.458 \cdot 10^{-8}T - 3.544 \cdot 10^{-11}T^2 \, (\text{K}^{-1}), \\ \text{Ag}_{0.08}\text{Pb}_{0.92}\text{S}: & \alpha_{\text{aver}}(T) = 9.588 \cdot 10^{-6} \\ & + 4.705 \cdot 10^{-8}T - 3.769 \cdot 10^{-11}T^2 \, (\text{K}^{-1}), \\ \text{Ag}_{0.10}\text{Pb}_{0.90}\text{S}: & \alpha_{\text{aver}}(T) = 9.282 \cdot 10^{-6} \\ & + 4.641 \cdot 10^{-8}T - 3.505 \cdot 10^{-11}T^2 \, (\text{K}^{-1}), \\ \text{Ag}_{0.12}\text{Pb}_{0.88}\text{S}: & \alpha_{\text{aver}}(T) = 8.935 \cdot 10^{-6} \\ & + 4.292 \cdot 10^{-8}T - 2.106 \cdot 10^{-11}T^2 \, (\text{K}^{-1}), \end{split}$$

$$+4.385 \cdot 10^{-1} T = 5.106 \cdot 10^{-1} T (K^{-1}),$$

$$Ag_{0.15}Pb_{0.85}S: \ \alpha_{aver}(T) = 7.328 \cdot 10^{-6}$$

$$+4.685 \cdot 10^{-8}T - 3.107 \cdot 10^{-11}T^{2} (K^{-1}).$$

Тепловое расширение твердого тела обусловлено ангармонизмом атомных колебаний. Для качественного описания теплового расширения в первом приближении потенциальную энергию U(r) системы взаимодействующих атомов как функцию смещений $u = (r - r_0)$ записывают [21] в виде

$$U(u) = A_h u^2 / 2 - \beta u^3 / 3, \qquad (2)$$

где $A_h = (\partial^2 U / \partial r^2)_{r=r_0}$ — постоянная, учитывающая вклад гармонических колебаний в потенциальную энер-

гию, $\beta = \frac{1}{2} (\partial^3 U / \partial r^3)_{r=r_0}$ — коэффициент ангармонизма атомных колебаний. С учетом распределения Больцмана среднее по времени отклонение $\langle u \rangle$ атома от положения равновесия определяется [21,22] как

$$\langle u \rangle = k_{\rm B} T \beta / A_h^2, \tag{3}$$

а линейный коэффициент термического расширения имеет вид

$$\alpha(T) = (1/a_{293\,\mathrm{K}})d\langle u \rangle/dT = k_{\mathrm{B}}\beta/(A_{h}^{2}a_{293\,\mathrm{K}}).$$
(4)

Тепловое расширение (или сжатие) твердого тела можно объяснить только при учете ангармонизма атомных колебаний, т.е. при $\beta \neq 0$, так как в гармоническом приближении, когда $\beta = 0$, коэффициент $\alpha = 0$ и тепловое расширение отсутствует. Из (4) ясно, что наблюдаемое уменьшение коэффициента термического расширения при замещении атомов Pb атомами Ag в твердых растворах Ag_xPb_{1-x}S может быть обусловлено ростом периода решетки, с одной стороны, и уменьшением ангармонизма атомных колебаний, с другой стороны. Действительно, при увеличении х от 0 до 0.15 период а_{В1} твердых растворов вырос от 0.59320 до 0.59367 nm, однако такое увеличение периода недостаточно для уменьшения $\alpha_{\rm aver}(300)$ от $20.84 \cdot 10^{-6}$ до $18.57 \cdot 10^{-6} \,\mathrm{K}^{-1}$. Если коэффициент A_h при замещении свинца серебром остается постоянным, то наблюдаемое с ростом x снижение α_{aver} твердых растворов $Ag_x Pb_{1-x}S$ обусловлено, в основном, уменьшением ангармонизма колебаний атомов. Косвенным подтверждением уменьшением ангармонизма могут служить данные [8] по спектрам комбинационного рассеяния (КР) пленок А $g_x Pb_{1-x}S_{1-\delta}$. Согласно этим данным, пики 133 и $425 \,\mathrm{cm}^{-1}$, присутствующие в спектре КР сульфида свинца и отвечающие за колебания связей металл-сера, при увеличении содержания в твердых растворах более легких атомов серебра постепенно смещаются в высокочастотную область до 145 и 440 ст-1 соответственно.

4. Заключение

Методом гидрохимического соосаждения из растворов ацетата свинца и нитрата серебра синтезированы порошки твердых растворов $Ag_x Pb_{1-x}S$ с максимальным относительным содержанием серебра до x = 0.12, имеющие кубическую структуру типа *B*1. При большем содержании серебра в порошках появляется примесная фаза моноклинного сульфида серебра.

Установлено, что замещение свинца серебром в ограниченных твердых растворах $Ag_x Pb_{1-x}S$ ($x \le 0.15$) сопровождается небольшим ростом периода кубической решетки и небольшим снижением коэффициента термического расширения твердых растворов, которое обусловлено уменьшением ангармонизма атомных колебаний.

Автор благодарит Д.А. Ягодина за помощь в дилатометрических измерениях.

Список литературы

- [1] R.B. Schoolar, J.R. Dixon. Phys. Rev. 137, 2A, 667 (1965).
- [2] J.N. Zemmel, J.D. Jensen, R.B. Schoolar. Phys. Rev. 140, 1A, 330 (1965).
- [3] С.И. Садовников, А.И. Гусев, А.А. Ремпель. Успехи химии 85, 7, 731 (2016).
- [4] P. Junod. Helv. Phys. Acta 32, 6-7, 567 (1959).
- [5] P. Junod, H. Hediger, B. Kilchör, J. Wullschleger. Phil. Mag. 36, 4, 941 (1977).
- [6] S.I. Sadovnikov, A.I. Gusev. J. Mater. Chem. A 5, 34, 17676 (2017).
- [7] С.И. Садовников, А.А. Ремпель, А.И. Гусев. Успехи химии 87, 4, 303 (2018).
- [8] Л.Н. Маскаева, В.Ф. Марков, Т.В. Виноградова, А.А. Ремпель, А И. Гусев. Поверхность. Рентг., синхр. нейтр. исслед. 9, 35 (2003).
- [9] С.И. Новикова, Н.Х. Абрикосов. ФТТ 5, 7, 1913 (1963).
- [10] Yi Zhang, X. Ke, C. Chen, J. Yang, P.R.C. Kent. Phys. Rev. B 80, 2, 024304 (2009).
- [11] С.И. Садовников, А.А. Ремпель. ФТТ 51, 11, 2237 (2009).
- [12] S.I. Sadovnikov, N.S. Kozhevnikova, A.A. Rempel, A. Magerl. Thin Solid Films 548, 230 (2013).
- [13] H. Okazaki, A. Takano. Ztsch. Naturforsch. A 40, 10, 986 (1985).
- [14] А.И. Гусев, С.И. Садовников, А.В. Чукин, А.А. Ремпель. ФТТ 58, 2, 246 (2016).
- [15] S.I. Sadovnikov, A.I. Gusev, A.V. Chukin, A.A. Rempel. Phys. Chem. Chem. Phys. 18, 6, 4617 (2016).
- [16] S.I. Sadovnikov, A.I. Gusev. J. Thermal Anal. Calorimetry 130, 2, 1155 (2018).
- [17] Л.Е. Шелимова, В.Н. Томашик, В.И. Грицив. Диаграммы состояния в полупроводниковом материаловедении (системы на основе халькогенидов Si, Ge, Sn, Pb). Наука, М. (1991). 256 с.
- [18] X'Pert HighScore Plus. Version 2.2e (2.2.5). ©2009 PANalytical B.V. Almedo, the Netherlands.
- [19] S.I. Sadovnikov, A.I. Gusev, A.A. Rempel. Superlat. Microstr. 83, 35 (2015).
- [20] Ю.Ю. Лурье. Справочник по аналитической химии. Химия, М. (1987). 390 с.
- [21] С.В. Вонсовский, М.И. Кацнельсон. Квантовая физика твердого тела. Наука, М. (1983). 336 с.
- [22] N.W. Ashcroft, N.D. Mermin. Solid State Physics. Cornell University, N.Y.-Chicago-London (1976). 826 p.

Редактор Д.В. Жуманов