11

Структура и оптические характеристики пленок ниобатов бария-стронция на подложках Al₂O₃

© А.В. Павленко^{1,2}, С.В. Кара-Мурза³, А.П. Корчикова³, А.А. Тихий³, Д.В. Стрюков¹, Н.В. Ковтун¹

 Южный научный центр РАН, 344006 Ростов-на-Дону, Россия
 Научно-исследовательский институт физики ЮФУ, 344090 Ростов-на-Дону, Россия
 Луганский национальный университет им. Тараса Шевченко, 91011 Луганск, Украина
 e-mail: Antvpr@mail.ru

Поступила в редакцию 15.06.2018 г. В окончательной редакции 26.10.2018 г. Принята к публикации 04.12.2018 г.

> Проведены исследования структуры и оптических характеристик тонких пленок сегнетоэлектрикарелаксора $Ba_{0.5}Sr_{0.5}Nb_2O_6$, выращенных методом высокочастотного RF-напыления в атмосфере кислорода на подложке Al_2O_3 (*c*-срез). Рентгеноструктурные исследования показали, что пленки $Ba_{0.5}Sr_{0.5}Nb_2O_6$ являются *c*-ориентированными, параметр *c* элементарной ячейки составил 3.948(1) Å. Эллипсометрическими измерениями подтверждено, что пленки SBN-50 характеризуются естественным направлением роста, которое совпадает с направлением оптической оси кристалла. Анализ результатов эллипсометрических измерений показал отсутствие переходного слоя на границе пленка-подложка; толщина нарушенного слоя на свободной поверхности пленки 7.5 nm, коэффициент объемного заполнения оценивается как 0.625.

DOI: 10.21883/OS.2019.05.47654.167-18

Введение

Сегнетоэлектрические материалы длительное время успешно интегрируются в устройства функциональной электроники, медицинской ультразвуковой диагностики, дефектоскопии, СВЧ и пьезотехники. Однако стремительное развитие в последние десятилетия микро- и наноэлектроники привело к тому, что в физическом материаловедении большое внимание стало уделяться получению и исследованию свойств гетероструктур на базе тонких пленок сегнетоэлектриков (СЭ) [1]. Известно, что в крупнокристаллических СЭ (керамика, поли- и монокристаллы) изменение и оптимизация их свойств достигается преимущественно вариацией химического состава: изменением концентрации компонент в твердых растворах (TP) или модифицированием [2]. В наноразмерных структурах на основе пленок СЭ это возможно путем изменения механизма роста пленки и/или толщины материала, создания подслоев [1,3], что позволяет в рамках одной химической композиции не только варьировать свойства материала, но и формировать новые свойства, свойственные только тонким пленкам. К числу одних из наиболее перспективных в тонкопленочном состоянии СЭ-материалов, благодаря высоким значениям диэлектрических, пьезоэлектрических и оптических характеристик, относятся одноосные СЭ в виде TP Sr_{1-x}Ba_xNb₂O₆ (SBN_x) [4]. Как показывает анализ литературы, оптические свойства ТР SBN_x достаточно мало изучены, при этом имеют место противоречия.

В частности, в [5,6] отмечено снижение показателей преломления n_o и n_e в SBN_x/MgO (x = 0.25, 0.60, 0.75) в сравнении с монокристаллами близких составов [4], в то время как в [7] отмечено, что в гетероструктуре Ba_{0.5}Sr_{0.5}Nb₂O₆/Pt(111)/Si(001) материал пленки по оптическим характеристикам соответствует таковым в монокристалле (Ba_{0.5}Sr_{0.5})Nb₂O₆.

Настоящая работа посвящена установлению закономерностей формирования структуры и оптических свойств пленок $Sr_{0.50}Ba_{0.50}Nb_2O_6$ (SBN-50), выращенных на подложке Al_2O_3 .

Объекты, методы получения и исследования

Газоразрядное RF-напыление пленок SBN на предварительно подготовленную под гетероэпитаксиальные осаждения подложку Al_2O_3 (*c*-plane, толщина — 0.43 mm, производитель "MONOCRYSTAL", г. Ставрополь) производилось на установке для осаждения наноразмерных монокристаллических пленок сложных оксидов "Плазма 50СЭ" по методике, описанной ранее в работах [7,8]. Керамическая мишень стехиометрического состава $Sr_{0.50}Ba_{0.50}Nb_2O_6$ была изготовленная в отделе ИМиНТ НИИФ ЮФУ.

Рентгендифракционный анализ проводили на дифрактометре "ДРОН-4-07" методом $\theta/2\theta$ (Си K_{α} -излучение).

Эллипсометрические измерения выполнялись с помощью многоуглового отражательного эллипсометра на длине волны гелий-неонового лазера $\lambda = 632.8$ nm. Спектры пропускания снимались в диапазоне длин волн 200–1000 nm при комнатной температуре спектрофотометром Shimadzu UV-50.

Экспериментальные результаты и обсуждение

На рентгенограммах θ —2 θ -сканирования (рис. 1) присутствовали только отражения от плоскостей (001) пленки SBN-50 и (006) подложки Al₂O₃. Установлено, что пленка является поликристаллической, текстурированной, и в ней отсутствуют примесные фазы. Пленка формируется с преимущественной ориентацией в направлении кристаллографической оси [001], параллельной нормали к подложке (ось [006] подложки). По максимумам рефлексов (001) пленки определен параметр элементарной ячейки c = 0.3948 nm. Полученный параметр несколько превышает параметр объемного SBN-50 (c = 0.3945 nm).

Эллипсометрические измерения подтвердили, что исследуемые пленки характеризуются естественным направлением роста, которое совпадает с направлением оптической оси кристалла [001] (поворот плоскости падения зондирующего луча не приводит к изменению значений эллипсометрических углов ψ и Δ). Полученные по результатам измерений эллипсометрические углы и являются функциями оптических параметров пленки и подложки, толщины пленки и угла падения φ эллиптически поляризованного света. Определение характеристик пленки при известных параметрах подложки сводится к решению основного уравнения эллипсометрии

$$e^{i\Delta}\operatorname{tg}\psi = \frac{R^{(p)}}{R^{(s)}},\tag{1}$$

где $R^{(p)}$ и $R^{(s)}$ — амплитудные коэффициенты отражения электромагнитной волны *p*- и *s*-поляризаций.

В простейшем случае однослойной однородной и изотропной прозрачной пленки на прозрачной подложке

Рис. 1. θ -2 θ -рентгенограмма пленки SBN/Al₂O₃.

Рис. 2. Оптическое пропускание пленки SBN-50/Al₂O₃.

задача определения параметров пленки решается методом, изложенным в [9]. Метод основан на особенностях зависимостей $\psi(\varphi)$ и $\Delta(\varphi)$: при угле падения, равном главному $\varphi = \varphi_0$, угол ψ минимален, а $\Delta = \pi/2$ или $3\pi/2$. При этом $\text{Re}\left(\frac{R^{(p)}(\varphi_0)}{R^{(s)}(\varphi_0)}\right) = 0$, и нахождение толщины пленки при известном показателе преломления сводится к решению квадратного уравнения относительно величины $\cos \alpha$, где аргумент α связан с фазой $\delta = \frac{4\pi}{\lambda} d \sqrt{n^2 - \sin^2 \varphi_0}$ соотношением $\alpha + 2\pi m = \delta$ $(m = 0, 1, 2, \ldots$ порядок интерференции). Для нахождения *m* используются результаты, полученные измерениями спектра оптического пропускания.

Для интерпретации результатов эллипсометрических измерений пленки SBN-50/Al₂O₃ в нулевом приближении использовалась описанная методика. Эллипсометрические измерения дополнялись измерениями оптического пропускания в диапазоне длин волн 300-1000 nm (рис. 2). По анализу экстремумов восстановлен порядок интерференции m = 2 при $\lambda = 632.8$ nm. Процедура восстановления заключается в поиске такого минимального порядка интерференции для первого наблюдаемого длинноволнового экстремума, который обеспечивает дисперсию оптической толщины пленки n₀d, характерную для кристаллического материала. К особенностям описываемой SBN-пленки относится то, что для нее главный угол $\varphi_0 = 60.5^\circ$ и tg $\varphi_0 = 1.73 = n_s$ (n_s показатель преломления подложки), т.е. зондирующий луч "не видит" пленку. В этом случае толщина пленки такова, что френелевские амплитудные коэффициенты отражения воздух-пленка $r_{12}^{(p)}$, пленка-подложка $r_{23}^{(p)}$ и подложка-воздух $r_{31}^{(p)}$ удовлетворяют условию $r_{12}^{(p)}+r_{23}^{(p)}=r_{31}^{(p)}$, а $\coslpha=1$ и $d\sqrt{n^2-\sin^2arphi_0}=\lambda$. При этом в нулевом приближении для $n = n_0 = 2.3$ толщина пленки d = 297 nm.

Подложка n_s	Угол падения φ , deg	Эксперимент		Изотропная модель		Анизотропная модель	
		ψ , deg	Δ , deg	ψ , deg	Δ , deg	ψ , deg	Δ , deg
1.76	40	27.0125	182.7454	26.968	181.668	27.184	180.982
	45	21.3235	178.9224	21.22	179.997	21.575	179.155
	50	14.3796	173.4771	14.805	175.427	15.309	174.567
	55	8.3315	159.3511	8.205	161.605	8.817	161.635
	60	3.5288	100.6841	4.006	97.372	4.23	105.637

Рис. 3. Расчетные зависимости ψ и Δ от угла падения φ в модели однослойного покрытия с n = 2.3 и d = 297 nm (theory 1) и экспериментальные значения для пленки SBN/Al₂O₃; theory 2 — нарушенный слой с d = 7.5 nm, $n_{ef} = 1.7$, $k_{ef} < 0.01$; пленка — d = 290 nm, $n_0 = 2.3$, $n_e = 2.28$.

Указанные особенности пленки позволяют достаточно просто оценить влияние анизотропии на интерпретацию результатов эллипсометрических измерений. Так как для необыкновенного луча фаза

$$d^{(p)} = \frac{4\pi}{\lambda} d \frac{n_0}{n_e} \sqrt{n_e^2 - \sin^2 \varphi_0},$$
 (2)

то достаточно сравнить фазы *p*- и *s*-составляющих отраженного света, т. е. сравнить величины $\sqrt{n_e^2 - \sin^2 \varphi_0}$ и $\frac{n_0}{n}\sqrt{n_e^2-\sin^2\varphi_0}$. Для монокристалла Ba_{0.5}Sr_{0.5}Nb₂O₆ $n_0 = 2.3 - 2.31$ и $n_e = 2.26 - 2.28$ [10,11]. Тогда $\sqrt{n_e^2 - \sin^2 \varphi_0} = 2.129,$ $\frac{n_0}{n_e}\sqrt{n_e^2-\sin^2\varphi_0}=2.124.$ а Малое различие в значениях этих величин позволяет использовать изотропную модель SBN-пленки с для $nm = n_0 = 2.3$ интерпретации результатов эллипсометрических измерений.

Тот факт, что зондирующий луч "не видит" пленку, приводит к тривиальным зависимостям $\psi(\varphi)$ и $\Delta(\varphi)$, рассчитанным в соответствии с основным уравнением эллипсометрии (1) в рамках оптически однородной изотропной пленки с n = 2.3 и d = 297 nm на подложке с $n_s = 1.73$ (рис. 3, theory 1). Видно, что экспериментально найденные углы $\Delta(\varphi)$ значительно отклоняются от теоретической кривой *1*. Коррекция теоретической

модели была осуществлена с учетом анизотропии пленки SBN-50, возможных переходных слоёв на границе пленка-подложка и на свободной поверхности пленки за счет ее шероховатости. При этом поверхностный переходный слой может обладать эффективным коэффициентом экстинкции k_f, отражающим потери энергии из-за ее рассеяния на неоднородностях поверхности пленки. Задача нахождения параметров переходных слоев решалась оптимизационным методом с несколькими параметрами минимизации по среднеквадратичным отклонениям [12]. Для границы пленка-подложка в качестве параметров поиска использовались толщина переходного слоя и его показатель преломления; для поверхностного нарушенного слоя, помимо его толщины и эффективного показателя преломления, учитывался и возможный эффективный коэффициент экстинкции. Расчеты показали отсутствие переходного слоя на границе пленка-подложка, что коррелирует с данными дифракции рентгеновских лучей. Неплохое соответствие между теорией и экспериментом в модели изотропной пленки было получено при введении поверхностного нарушенного слоя толщиной $n = 7.5 \,\mathrm{nm}$ с эффективным показателем преломления $n_{ef} = 1.7$ и эффективным коэффициентом экстинкции $k_{ef} = 0.01$. В модели эффективной среды Максвелла-Гарнета для прозрачной среды с показателем преломления nef можно ввести

Рис. 4. Дисперсия показателя преломления пленки SBN-50/Al₂O₃ и монокристалла SBN-50[4]. Сплошная линия — расчеты по (5) с $\lambda_0 = 199$ nm, $S_0 = 0.99 \cdot 10^{14}$ m⁻².

коэффициент объемного заполнения q, определяемый соотношением [13]

$$\frac{n_{ef}^2 - 1}{n_{ef}^2 + 2} = q \, \frac{n^2 0 - 1}{n^2 + 2}.$$
(3)

Из (4) следует, что коэффициент объемного заполнения материалом пленки поверхностного нарушенного слоя составляет $q \approx 0.67$. Эффективному коэффициенту экстинкции 0.01 отвечают потери энергии вследствие ее рассеяния на неоднородностях поверхности менее 3%.

Наилучшее согласие между экспериментом и теорией было получено при дополнительном учете анизотропии пленки с указанными выше параметрами нарушенного слоя и практически нулевым эффективным коэффициентом экстинкции (рис. 3, theory 2). В таблице представлены результаты эксперимента и рассчитанные с использованием полученных параметров поверхности зависимости $\psi(\varphi)$ и $\Delta(\varphi)$ для изотропной и анизотропной моделей пленки.

Определенная нами толщина пленки позволила найти из спектра оптического пропускания (рис. 2) дисперсию показателя преломления n_0 (рис. 4). Для аппроксимации зависимости в области слабого поглощения использовалось соотношение Зельмейера

$$n_0^2(\lambda) - 1 = \frac{S_0 \lambda_0^2}{1 - (\lambda_0 / \lambda)^2},$$
 (4)

где λ_0 — средняя длина волны, S_0 — средняя сила осциллятора.

Как видно из рис. 4, наблюдаемая в пленках SBN-50 дисперсия практически совпадает с таковой для кристаллических материалов [4].

Выводы и заключение

1. В поликристаллических текстурированных пленках SBN-50/Al₂O₃, полученных одностадийным газоразрядным RF-напылением, методом дифракции рентгеновских лучей зарегистрировано небольшое увеличение параметра c элементарной ячейки по сравнению с объемным материалом. Установлено, что такая деформация элементарной ячейки не приводит к заметным отличиям в оптических свойствах пленок и монокристаллических объектов. Так, показатели преломления n_0 и n_e на длине волны $\lambda = 632.8$ nm, а также дисперсия $n_0(\lambda)$ пленки не отличаются от таковых в кристалле.

2. Результаты эллипсометрических измерений подтвердили, что направление роста пленки SBN-50 совпадает с направлением оптической оси кристалла. Анализ экспериментальных зависимостей эллипсометрических углов ψ и Δ от угла падения показал, что пленка SBN-50 однородна, переходный слой на границе пленка-подложка отсутствует, на свободной поверхности имеется нарушенный слой. Наилучшее согласие между экспериментом и теорией достигается, если учитывать анизотропию пленки (ее толщина 290 nm); при этом поверхностный нарушенный слой характеризуется толщиной 7.5 nm с коэффициентом объемного заполнения $q \approx 0.67$ и практически нулевыми потерями.

3. Полученные результаты можно распространить на тонкие пленки ниобатов бария стронция на подложках Al_2O_3 , изготовленные описанным методом. Такие пленки целесообразно использовать в функциональных структурах на их основе.

Финансирование работы

Исследования выполнены в рамках реализации гос. задания ЮНЦ РАН (проект № 0120-1354-247), государственного задания Минобрнауки России (проект № 3.6371.2017/8.9) и при поддержке РФФИ (грант № 16-29-14013).

Список литературы

- [1] Воротилов К.А., Мухортов В.М., Сигов А.С. Интегрированные сегнетоэлектрические устройства. М.: Энергоатомиздат, 2011. 175 с.
- [2] Фесенко Е.Г. Семейство перовскита и сегнетоэлектричество. М.: Атомиздат, 1972. 248 с.
- [3] Мухортов В.М., Головко Ю.И., Бирюков С.В., Анохин А.С., Юзюк Ю.И. // ЖТФ. 2016. Т. 86. № 1. С. 93–98; Mukhortov V.M., Golovko Yu.I., Biryukov S.V., Anokhin A., Yuzyuk Yu.I. // Techn. Phys. 2016. V. 61. N 1. P. 91. doi 10.1134/S106378421601014X
- [4] Кузьминов Ю.С. Сегнетоэлектрические кристаллы для управления лазерным излучением. М.: Наука, 1982. 400 с.
- [5] Koo J., Kang E., Bae B. // J. Korean Physical Society. 2003.
 V. 42. P. S1161.
- [6] Ковтун А.П., Зинченко С.П., Павленко А.В., Толмачев Г.Н. // Письма в ЖТФ. 2016. Т. 42. № 11. С. 48; Kovtun A.P., Zinchenko S.P., Pavlenko A.V., Tolmachev G.N. // Techn. Phys. Lett. 2016. V. 42. N 6. P. 577. doi 10.1134/S1063785016060109
- [7] Толмачев Г.Н., Ковтун А.П., Захарченко И.Н., Алиев И.М., Павленко А.В., Резниченко Л.А., Вербенко И.А. // ФТТ. 2015. Т. 57. № 10. С. 2050; Tolmachev G.N., Kovtun A.P., Zakharchenko I.N., Aliev I.M., Pavlenko A.V., Reznichenko L.A., Verbenko I.A. // Phys. Solid State. 2015. V. 57. N 10. P. 2106. doi 10.1134/S1063783415100339
- [8] Павленко А.В., Захарченко И.Н., Анохин А.С., Куприна Ю.А., Киселева Л.И., Юзюк Ю.И. // ФТТ. 2017.
 Т. 59. № 5. С. 888–891; Pavlenko A.V., Zakharchenko I.N., Anokhin A.S., Kuprina Yu.A., Kiseleva L.I., Yuzyuk Yu.I. // Phys. Solid State. 2017. V. 59. N 5. P. 909. doi 10.1134/S1063783417050249
- [9] Грицких В.А., Жихарев И.В., Кара-Мурза С.В., Корчикова Н.В., Николаенко Ю.М., Тихий А.А. // Тр. 7-го Междунар. симп. "Физика поверхностных явлений, межфазных границ и фазовые переходы". 2017. № 7. С. 53.
- [10] Kip D., Aulkemeyer S., Buse K., Mersch F., Pankrath R., Krätzig E. // Phys. Stat. Sol. A. 1996. V. 154. N 2. P. K5. doi 10.1002/pssa.2211540235

- [11] Lenzo P.V., Spencer E.C., Ballman A.A. // Appl. Phys. Lett. 1967. V. 11. N 1. P. 23. doi 10.1063/1.1754944
- [12] Тихий А.А., Грицких В.А., Кара-Мурза С.В., Корчикова Н.В., Николаенко Ю.М., Фарапонов В.В., Жихарев И.В. // Опт. и спектр. 2015. Т. 119. № 2. С. 282; Tikhii А.А., Gritskikh V.A., Kara-Murza S.V., Korchikova N.V., Nikolaenko Yu.M., Faraponov V.V., Zhikharev I.V. // Opt. Spectrosc. 2015. V. 119. N 2. P. 268. doi 10.1134/S0030400X15080238
- [13] Головань Л.А., Тимошенко В.Ю., Кашкаров П.К. // УФН. 2007. Т. 177. № 6. С. 619–638. doi 10.3367/UFNr.0177.200706b.0619; Golovan L.A., Timoshenko V.Yu., Kashkarov P.K. // Phys. Usp. 2007. V. 50. P. 595–612 doi 10.1070/PU2007v050n06ABEH006257