07

Электронная структура металлических слоев в двухслойном квазидвумерном органическом металле (BETS)₄HgBr₄(C₆H₄Cl₂)

© Р.Б. Любовский^{1,2}, С.И. Песоцкий^{1,2,¶}, Е.И. Жиляева¹, А.М. Флакина¹, Р.Н. Любовская¹

1 Институт проблем химической физики РАН, Черноголовка, Московская обл., Россия

² International Laboratory of High Magnetic Fields and Low Temperatures, Wroclaw, Poland

[¶] E-mail: pesot@icp.ac.ru

Поступило в Редакцию 29 декабря 2018 г. В окончательной редакции 30 января 2019 г. Принято к публикации 1 февраля 2019 г.

Исследовано поведение осцилляций Шубникова-де Гааза в двухслойном органическом металле $(BETS)_4HgBr_4(C_6H_4Cl_2)$. Показано, что спектр осцилляций в этом соединении хорошо согласуется с теоретическими расчетами и качественно совпадает со спектром в изоструктурном металле $(ET)_4HgBr_4(C_6H_4Cl_2)$. При этом частичное замещение атомов серы атомами селена в катионном слое сильно уменьшает величины циклотронных масс. Это уменьшение, скорее всего, вызвано ослаблением электрон-фононного взаимодействия.

DOI: 10.21883/PJTF.2019.08.47621.17667

Традиционные органические квазидвумерные металлы представляют собой катион-радикальные соли, синтезированные на основе молекулы ЕТ (бис(этилендитио)тетратиофульвален) и ее производных. В процессе синтеза формируются слоистые монокристаллические образцы, в которых катионные слои, состоящие из молекул ЕТ и обладающие благодаря значительному перекрытию атомных орбиталей серы металлической проводимостью вдоль слоя, чередуются с изолирующими анионными слоями [1-3]. Таким образом, в результате получается хорошо выраженный слоистый органический металл с анизотропией проводимости вдоль и перпендикулярно слоям порядка 10³-10⁴. Одна из особенностей традиционных органических металлов заключается в том, что молекулярная и электронная структура катионных слоев в них одинакова или почти одинакова. Это приводит к единой поверхности Ферми (ПФ) внутри каждого слоя и общей ПФ для всей обратной решетки, имеющей форму цилиндра с осью, перпендикулярной металлическим слоям [1-3]. Сравнительно недавно синтезирован новый класс квазидвумерных органических металлов — так называемых двухслойных металлов [4,5]. В этих материалах электронная и молекулярная структура соседних катионных слоев различается, и свойства катионного слоя, в частности ПФ, транслируются через слой. В работе [5] приводятся исследования структуры и свойств двухслойного квазидвумерного органического металла (ET)₄CoBr₄(C₆H₄Cl₂). Рентгеноструктурный анализ показал наличие в нем двух различных чередующихся катионных слоев. Детальный расчет зонной структуры позволил установить, что один из слоев с упаковкой молекул ЕТ α-типа представляет собой диэлектрик с малой щелью, ширина которой не превосходит точности расчета. Другой слой является металлом с ПФ, представленной на вставке к рис. 1. Эта ПФ характерна для *θ*-типа упаковки молекул ЕТ в катионном слое [1-3].

Анализ квантовых осцилляций в (ET)₄CoBr₄(C₆H₄Cl₂) показал хорошее согласие частотного спектра осцилляций с теоретическими расчетами. Аналогичный результат был получен при исследовании осцилляций в изоструктурном комплексе $(ET)_4HgBr_4(C_6H_4Cl_2)$ [6]. В настоящей работе предлагаются результаты исследования осцилляций Шубникова-де Гааза (ШдГ) в изоструктурном двухслойном органическом металле (BETS)₄HgBr₄(C₆H₄Cl₂). В этом соединении помимо изменения состава аниона часть атомов серы в молекуле ЕТ заменена на атомы селена. Принимая во внимание то, что перекрытие орбиталей именно атомов серы обеспечивает металлическую проводимость в слоях ЕТ, можно ожидать заметные изменения проводящих свойств в BETS-комплексе даже при условии идентичности их кристаллических структур.

Исследование сопротивления в (BETS)₄HgBr₄(C₆H₄Cl₂) проводилось на монокристаллических образцах, имеющих форму неправильного параллелепипеда со средним размером $1.0 \times 0.4 \times 0.02 \, \text{mm}$, стандартным четырехконтактным методом на постоянном измерительном токе 1 µА, направленном перпендикулярно проводящим слоям. Магнитосопротивление изучалось при гелиевых температурах в полях до 14 Т, создаваемых сверхпроводящим магнитом. При необходимости измерительная вставка позволяла поворачивать образец как в азимутальной, так и в полярной плоскости, не извлекая его из магнита. На рис. 1 представлена зависимость сопротивления от температуры. Монотонный неметаллический ход сопротивления имеет место во всем интервале температур. При этом для сопротивления вдоль проводящих слоев характерно нормальное для металлов уменьшение сопротивления с уменьшением температуры [5]. Такое поведение радикально отличает исследованный материал от традиционных органических квазидвумерных металлов [3], но оно достаточно

Рис. 1. Температурная зависимость межслоевого сопротивления в $(BETS)_4HgBr_4(C_6H_4Cl_2)$. На вставке — схематическое изображение поверхности Ферми металлического катионного слоя в $(ET)_4CoBr_4(C_6H_4Cl_2)$ [5]. Пояснение в тексте.

Рис. 2. Фурье-спектр осцилляций Шубникова–де Гааза в (BETS)₄HgBr₄(C₆H₄Cl₂), представленных на вставке к рисунку. T = 1.5 K, $\theta = 0^{\circ}$.

часто встречается в двухслойных объектах [5] и при этом имеет простое объяснение. Неметаллический ход межслоевого сопротивления соответствует некогерентному переносу электронов, определяемому соотношением времен $\tau_h = \hbar/t \gg \tau_c$, где τ_h — время межслоевого перехода, t — интеграл перехода, τ_c — время рассеяния электрона в слое, т.е. между переходами электрона на соседний металлический слой он многократно рассеивается в слое [1,3,7–9]. При идентичности кристаллических структур в ЕТ- и ВЕТS-металлах переход электрона с металлического слоя на соседний катионный слой исключается; следовательно, величина t резко уменьшается, что обеспечивает устойчивый некогерентный межслоевой транспорт. Аналогичное поведение температурной зависимости сопротивления, соответствующее системе почти невзаимодействующих металлических слоев, наблюдалось и в изоструктурном комплексе (ET)₄HgBr₄(C₆H₄Cl₂) [6].

На рис. 2 представлен фурье-спектр осцилляций ШдГ в (BETS)₄HgBr₄(C₆H₄Cl₂). Пример таких осцилляций изображен на вставке к рис. 2. Спектр хорошо согласуется с теоретическими расчетами ПФ для соли (ET)₄CoBr₄(C₆H₄Cl₂) (рис. 1) [5] и совпадает со спектром осцилляций, обнаруженным ранее в металле (ET)₄HgBr₄(C₆H₄Cl₂) [6]. Величины всех частот осцилляций в квазидвумерных металлах в силу цилиндрического характера ПФ должны зависеть от полярного угла в между направлением магнитного поля и нормалью к проводящим слоям по закону $F_i(\theta) = F_i(0)/\cos\theta$, где $i = \alpha, \beta, 2\alpha, \ldots$ [1–3]. Спектр содержит две фундаментальные частоты $F_{\alpha}(F_{\alpha}(0) \approx 875 \text{ T})$ и $F_{\beta}(F_{\beta}(0) \approx 4550 \text{ T})$, отвечающие α- и β-орбитам, охватывающим 19 и 100% площади первой зоны Бриллюэна соответственно. Циклотронные массы, связанные с этими частотами, вычислялись из температурных зависимостей амплитуды осцилляций. Величины амплитуды определялись исходя из фурье-спектров в интервале полей 12-14 Т. Каждая температура в процессе изменения поля стабилизировалась откачкой паров жидкого гелия. Значения циклотронной массы составляют $m_{lpha} = (1.2 \pm 0.2) m_0$ и $m_{\beta} = (2.2 \pm 0.2)m_0$, где m_0 — масса свободного электрона. Существование α- и β-частот вызвано возникновением щели в точках 1-4 пересечения исходной $\Pi \Phi$, составляющей 100% зоны Бриллюэна (два электрона на элементарную ячейку), с границей этой зоны. В результате образуются замкнутая дырочная α -орбита (h1g2h) и два листа открытой электронной орбиты (... abc ... и $\dots def \dots$) (см. вставку на рис. 1). Магнитный пробой и переход электрона через щель с а-орбиты на открытые участки формируют замкнутую β -орбиту.

Помимо фундаментальных частот спектр содержит комбинационные частоты $F_{\beta-\alpha}(0) \approx 3670$ т и $F_{\beta-2\alpha}(0) \approx 2790$ Т, для которых отсутствуют разрешенные замкнутые орбиты. Их появление, скорее всего, связано с эффектом квантовой интерференции [10,11]. Такое явление оказывается наиболее доступно для наблюдения в двумерных металлах благодаря цилиндрической форме ПФ [12]. В этом варианте частоте $F_{\beta-\alpha}$ соответствует интерферометр с траекториями abief и agf, а частоте $F_{\beta-2\alpha}$ — с траекториями abief и aghgf (см. вставку на рис. 1). Подтверждением этой версии может служить соотношение циклотронных масс, характерное для интерференционного процесса: $m_{\beta-\alpha} = (1.1 \pm 0.2)m_0 \sim m_{\beta} - m_{\alpha}$ и $m_{\beta-2\alpha} = (0 \pm 0.2)m_0 \sim m_{\beta} - 2m_{\alpha}$.

Следует отметить, что циклотронные массы, связанные с замкнутыми орбитами, в $(BETS)_4HgBr_4(C_6H_4Cl_2)$ почти в 2 раза меньше аналогичных циклотронных масс в изоструктурном комплексе $(ET)_4HgBr_4(C_6H_4Cl_2)$ [6], это единственное серьезное количественное отличие электронных систем BETS- и ET-комплексов. По всей вероятности, этот факт вызван существенным ослаблением электрон-фононного взаимодействия в ВЕТS-металле. Такое ослабление неоднократно фиксировалось в традиционных BETS-комплексах (см., например, [13]). Его причина до сих пор не до конца ясна.

Таким образом, установлено, что в двухслойном органическом металле (BETS)₄HgBr₄($C_6H_4Cl_2$):

1) межслоевой зарядовый перенос осуществляется в некогерентном режиме, что соответствует системе почти невзаимодействующих металлических слоев;

2) спектр осцилляций ШдГ хорошо согласуется с теоретическими расчетами зонной структуры и экспериментальными результатами, полученными для изоструктурного комплекса (ET)₄HgBr₄(C₆H₄Cl₂);

 замещение части атомов серы атомами селена в катионном слое не приводит к существенным изменениям электронной структуры;

4) значительное уменьшение величин циклотронных масс в исследованном материале, скорее всего, связано с ослаблением электрон-фононного взаимодействия в нем.

Работа выполнена по теме государственного задания, номер госрегистрации 0089-2019-0011 (синтез образцов и измерения в отсутствие магнитного поля) и в рамках проекта РФФИ № 18-02-00308 (исследования в магнитном поле).

Список литературы

- [1] Kartsovnik M.V. // Chem. Rev. 2004. V. 104. P. 5737-5781.
- [2] Saito G., Yoshida Y. // Bull. Chem. Soc. Jpn. 2007. V. 80.
 P. 1–137.
- [3] Kartsovnik M.V. // The physics of organic conductors and superconductors / Ed. A. Lebed. Berlin-Heidelberg: Springer, 2008. P. 185–247.
- [4] Прохорова Т.Г., Ягубский Э.Б. // Успехи химии. 2017. Т. 86.
 В. 2. Р. 164–180.
- [5] Lyubovskaya R., Zhilyaeva E., Shilov G., Audouard A., Vignolles D., Canadell E., Pesotskii S., Lyubovskii R. // Eur. J. Inorg. Chem. 2014. N 24. P. 3820–3836.
- [6] Любовский Р.Б., Песоцкий С.И., Шилов Г.В., Жиляева Е.И., Флакина А.М., Любовская Р.Н. // ЖЭТФ. 2016. Т. 150. В. 2. С. 368–371.
- [7] Moses P., McKenzie R.H. // Phys. Rev. B. 1999. V. 60.
 P. 7998–8011.
- [8] Gutman D.B., Maslov D.L. // Phys. Rev. B. 2008. V. 77.
 P. 035115.
- [9] Grigoriev A.D., Grigoriev P.D. // Low Temp. Phys. 2014.
 V. 40. P. 367–370.
- [10] Stark R.W., Friedberg C.V. // J. Low. Temp. Phys. 1974. V. 1. P. 111–146.
- [11] Kaganov M.I., Slutskin A.A. // Phys. Rep. 1983. V. 98. P. 189– 211.
- [12] Kartsovnik M.V., Logvenov G.Yu., Ishiguro T., Biberacher W., Anzai H., Kushch N.D. // Phys. Rev. Lett. 1996. V. 77. P. 2530–2533.
- [13] Песоцкий С.И., Любовский Р.Б., Карцовник М.В., Биберахер В., Кущ Н.Д., Кобаяши А., Чжоу Б. // ЖЭТФ. 2009. Т. 136. В. 4. С. 771–774.