Магнитная структура Er₅Ge₃ при 4.2 К

© А.П. Вохмянин, Ю.А. Дорофеев

Институт физики металлов Уральского отделения Российской академии наук, 620219 Екатеринбург, Россия E-mail: avokhm@imp.uran.ru

(Поступила в Редакцию 6 сентября 2002 г. В окончательной редакции 17 января 2003 г.)

На основе результатов измерений упругого магнитного рассеяния нейтронов, осуществленных при 4.2 К, выполнен симметрийный анализ возможных магнитных структур в основном состоянии Er_5Ge_3 . Показано, что наименьший фактор расходимости $R_m \approx 9.5\%$ соответствует модулированной коллинеарной магнитной структуре, в которой магнитные моменты атомов Ег направлены вдоль оси a_3 элементарной кристаллической ячейки и образуют антиферромагнитную продольную спиновую волну (AFLSW). Магнитная структура характеризуется волновым вектором $\mathbf{k} = 2\pi(0, 0, \mu/a_3)$, где $\mu \approx 0.293$, и периодом модуляции $\lambda \approx 3.413a_3$. В результате исследований температурной зависимости интенсивностей магнитных отражений определена температура магнитного разупорядочения T_N , равная ~ 38 К.

Работа выполнена при поддержке Министерства промышленности, науки и технологий Российской Федерации (гос. контракт № 40.012.1.1.1150).

В ряде работ [1-9] опубликованы результаты исследований магнитной структуры интерметаллических соединений R₅M₃, где R — редкоземельный элемент (Tb, Nd, Ho, Dy, Er), а M — Ge, Sb, Si или Sn. Tb₅Ge₃ [1], Nd₅Ge₃ [2], Tb₅Sb₃ [3], Tb₅Si₃ [4], Ho₅Sb₃ [5], Dy₅Sb₃ [6], Nd₅Sn₃ [7], Er₅Si₃ [8] и Tb₅Sn₃ [9] имеют кристаллическую структуру, описываемую пространственной группой $D_{6h}^3(P6_3/mcm)$. Атомы R расположены в 4(d)- и 6(g)-позициях, а атомы Ge, Sb, Si и Sn в 6(g)-позициях. Тb₅Ge₃ [1], Tb₅Si₃ [4], Dy₅Sb₃ [6] при низких температурах, Tb₅Sb₃ [3] в интервале температур $80 \text{ K} \le T \le 150 \text{ K}$ и $\text{Tb}_5 \text{Sn}_3$ [9] при T = 55 Kимеют магнитную структуру с волновым вектором $\mathbf{k} = 2\pi (0, 0, \mu/a_3)$. Nd₅Ge₃ [2], Ho₅Sb₃ [5], Nd₅Sn₃ [7] и Er₅Si₃ [8] при низких температурах имеют магнитную структуру с волновым вектором $\mathbf{k} = 2\pi(\mu/a_1, 0, 0)$. Здесь введены параметры \mathbf{a}_1 и \mathbf{a}_3 как основные периоды прямой решетки в соответствии с [10] ($\mathbf{a}_1, \mathbf{a}_2,$ a_3 соответствуют общепринятым a, b, c). Конкретные значения μ , определенные в каждом случае, можно найти в указанных источниках.

Одним из существенных недостатков работ [1–9], по мнению авторов настоящего исследования, является отсутствие систематического симметрийного анализа изученных в них магнитных структур. В настоящей работе описываются результаты нейтронографического определения магнитной структуры интерметаллида Er₅Ge₃, который является кристаллографическим аналогом упомянутых выше соединений, особое внимание уделяется именно результатам симметрийного анализа магнитных структур, возможных в интерметаллидах подобного типа.

Изучаемый объект (как и соединения, исследованные в [1–9]) удобен для проведения нейтронографических исследований и симметрийного анализа возможных магнитных структур из-за относительной простоты кристаллической структуры и небольшого числа магнитоактивных атомов, входящих в элементарную кристаллическую ячейку. Некоторые неудобства возникают из-за того, что эти атомы находятся в кристаллографических позициях двух типов. Последнее обстоятельство несколько усложняет рассматриваемую проблему, но это не очень принципиально. Полученные результаты симметрийного анализа можно распространить на все соединения с магнитоактивными атомами, занимающими 4(d)- и 6(g)-позиции, если эти соединения имеют кристаллическую структуру, описываемую пространственной группой $D_{6h}^3(P6_3/mcm)$, и магнитную структуру с соответствующим волновым вектором.

Методика эксперимента

Поликристаллический образец Er5Ge3, использованный при нейтронографических исследованиях, был предоставлен сотрудниками кафедры общей физики Уральского государственного технического университета им. С.М. Кирова (г. Екатеринбург). Нейтронографические измерения осуществлялись на двух дифрактометрах ($\lambda \approx 1.805$ и 2.4232 Å соответственно), установленных на горизонтальных пучках реактора ИВВ-2М, при температурах 293, 80 и 4.2 К. Порошкообразный образец засыпался в ванадиевый контейнер диаметром 8 и высотой 60 mm. Нейтронограммы, снятые при 293 и 80 К, существенных различий не имеют. Они (на рис. 1 и 2 приведены нейтронограммы, полученные при температурах жидкого азота и жидкого гелия на установке с $\lambda \approx 2.4232$ Å, обладающей более высокой разрешающей способностью) анализировались с использованием программы "Fullprof", которая в настоящее время является общепринятой при анализе дифрактометрических данных. Съемка нейтронограмм в области малых углов рассеяния ($2\Theta = 2 - 10^{\circ}$), осуществленная с большой

Рис. 2. Нейтронограмма Er₅Ge₃ при 4.2 K. На вставке — зависимость интенсивностей отражений (111)⁺ и (211)⁻ от температуры.

экспозицией, показала отсутствие каких-либо отражений в этом интервале углов. Поэтому малоугловые участки нейтронограмм на рис. 1 и 2 не приводятся.

Пробные модели магнитной структуры конструировались из базисных функций неприводимых представлений группы $D_{6h}^3(P6_3/mcm)$, входящих в состав магнитного представления с волновым вектором, определенным при индицировании нейтронограмм, полученных при низкой температуре. Использованная методика расчета базисных функций подробно описана в [11]. При описании этой методики мы сохраняем систему обозначений, использованную в [11].

2. Кристаллическая структура

Анализ нейтронограмм, полученных при 80 и 4.2 К (рис. 1 и 2), приводит к заключению, что Er₅Ge₃ при этих температурах имеет кристаллическую структуру с пространственной группой $D_{6h}^3(P6_3/mcm)$. В соответствии с [12], атомы Er I занимают 4(d)-позиции с координатами 1(1/3, 2/3, 0), 2(1/3, 2/3, 1/2), 3(2/3, 1/3, 0) и 4(2/3, 1/3, 1/2), а атомы Er II — 6(g)-позиции с координатами $1(x, 0, 0.25), 2(0, x, 0.25), 3(\bar{x}, \bar{x}, 0.25),$ $4(\bar{x}, 0, 0.75), 5(0, \bar{x}, 0.75), 6(x, x, 0.75),$ где $x \approx 0.240.$ Атомы Ge занимают тоже позиции 6(g), но в этом случае $x \approx 0.605$. Таким образом, элементарная ячейка содержит в себе 16 атомов, т.е. две формульные единицы. Расчет привел к следующим результатам: при $T \approx 80$ К $a_1 = a_2 \approx (8.414 \pm 0.003)$ Å, $a_3 \approx$ $pprox (6.306 \pm 0.002)$ Å, $x_{\rm Er}(6(g)) \approx 0.244$, $x_{\rm Ge} \approx 0.606$, $R_B \approx 7.41\%$, $R_f \approx 10.4\%$; при $T \approx 4.2$ К $a_1 = a_2 \approx$ $\approx (8.390 \pm 0.002)$ Å, $a_3 \approx (6.279 \pm 0.002)$ Å, $x_{\rm Er}(6(g)) \approx$ $\approx 0.240, x_{\text{Ge}} \approx 0.605, R_B \approx 4.22\%, R_f \approx 5.66\%.$

3. Магнитная структура

3.1. В олновой вектор магнитной с труктуры. Соединения, имеющие кристаллическую структуру, описываемую пространственной группой $D_{6h}^3(P6_3/mcm)$, относятся к гексагональной сингонии. В [10] можно найти перечень векторов — представителей звезд волновых векторов, допустимых в гексагональной сингонии. Здесь воспроизводится перечень этих звезд волновых векторов с использованием системы обозначений звезд, принятой в [11]

$$\{\mathbf{k}_1\} = \mu \mathbf{b}_1 + \nu \mathbf{b}_2; \qquad \{\mathbf{k}_2\} = \mu \mathbf{b}_1 + \nu \mathbf{b}_2 + \mathbf{b}_3/2; \\ \{\mathbf{k}_3\} = \mu \mathbf{b}_1 + \nu \mathbf{b}_3; \ \{\mathbf{k}_4\} = \mu(\mathbf{b}_1 + \mathbf{b}_2) + \nu \mathbf{b}_3; \ \{\mathbf{k}_5\} = \mu \mathbf{b}_1; \\ \{\mathbf{k}_6\} = \mu(\mathbf{b}_1 + \mathbf{b}_2); \qquad \{\mathbf{k}_7\} = \mu \mathbf{b}_1 + \mathbf{b}_3/2; \\ \{\mathbf{k}_8\} = \mu(\mathbf{b}_1 + \mathbf{b}_2) + \mathbf{b}_3/2; \qquad \{\mathbf{k}_9\} = \mathbf{b}_1/2 + \mu \mathbf{b}_3; \\ \{\mathbf{k}_{10}\} = (\mathbf{b}_1 + \mathbf{b}_2)/3 + \mu \mathbf{b}_3; \ \{\mathbf{k}_{11}\} = \mu \mathbf{b}_3; \ \{\mathbf{k}_{12}\} = \mathbf{b}_1/2; \\ \{\mathbf{k}_{13}\} = (\mathbf{b}_1 + \mathbf{b}_2)/3; \qquad \{\mathbf{k}_{14}\} = (\mathbf{b}_1 + \mathbf{b}_3)/2; \\ \{\mathbf{k}_{15}\} = (\mathbf{b}_1 + \mathbf{b}_2)/3 + \mathbf{b}_3/2; \ \{\mathbf{k}_{16}\} = \mathbf{0}; \ \{\mathbf{k}_{17}\} = \mathbf{b}_3/2. \end{cases}$$

Сравнение нейтронограмм, снятых с Er_5Ge_3 при 4.2 и 80 К, позволяет сделать вывод, что на нейтронограмме, полученной при низкой температуре, наблюдаются чисто магнитные отражения, которым нельзя приписать целочисленные значения индексов Миллера (*hkl*) на основе элементарной кристаллической ячейки.

Анализ углового положения магнитных отражений (в данном случае сателлитов) на нейтронограмме Er_5Ge_3 , полученной при 4.2 K, привел к заключению, что Er_5Ge_3 при этой температуре обладает магнитной структурой, описываемой волновым вектором $\mathbf{k} = \mu \mathbf{b}_3 = 2\pi (0, 0, \mu/a_3)$, где $\mu \approx 0.293$. Магнитные структуры с волновыми векторами подобного типа принято называть несоизмеримыми, или модулированными [11,13,14].

3.2. Симметрийный анализ магнитных структур, возможных в соединениях c пространственной группой $D_{6h}^3(P6_3/mcm)$ и звездой волнового вектора $\{\mathbf{k}_{11}\} = \mu \mathbf{b}_3$. В данном разделе приводится очень краткое описание методики симметрийного анализа магнитной структуры соединений с кристаллической структурой, относящейся к пространственной группе $D_{6h}^3(P6_3/mcm)$, с атомами, занимающими 4(d)- и 6(g)-позиции, на примере Er_5Ge_3 . Особое внимание уделяется описанию этой методики из-за крайне редкого использования симметрийных соображений на практике и необходимости популяризации применения методов симметрийного анализа в нейтронографии магнетиков.

Волновой вектор $\mathbf{k} = \mu \mathbf{b}_3 = 2\pi (0, 0, \mu/a_3)$, указанный выше, является одним из лучей двухлучевой звезды $\{\mathbf{k}_{11}\} = \mu \mathbf{b}_3$ [10]. Понятие звезды волнового вектора и ее лучей можно найти в [11].

Перед выполнением расчетов из [10] выписывается таблица нагруженных неприводимых представлений для случая { \mathbf{k}_{11} } = $\mu \mathbf{b}_3 = 2\pi (0, 0, \mu/a_3)$. Эта таблица содержит в себе четыре одномерных ($\tau_1 - \tau_4$) и два двумерных (τ_5 , τ_6) неприводимых представления. Неприводимые представления τ_5 и τ_6 , содержащие в себе комплексные величины

$$\omega = \exp(i\pi/3) = \left(1 + i\sqrt{3}\right)/2,$$
$$\omega^2 = \exp(2i\pi/3) = \left(-1 + i\sqrt{3}\right)/2,$$
$$\omega^4 = \exp(4i\pi/3) = \left(-1 - i\sqrt{3}\right)/2,$$
$$\omega^5 = \exp(5i\pi/3) = \left(1 - i\sqrt{3}\right)/2,$$

приводятся к вещественному виду с помощью унитарной матрицы

И

$$u = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -i \\ -i & 1 \end{pmatrix} \quad \mathbf{H} \quad u^{-1} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix}.$$

В дальнейшем используются приведенные к вещественному виду матрицы неприводимых представлений. В [10] указано, что в случае группы $D_{6h}^3(P6_3/mcm)$ элементы симметрии H_1 , H_3 , H_5 , H_{20} , H_{22} , H_{24} имеют сопровождающую трансляцию $\tau_h = 0$, а элементы H_2 , H_4 , H_6 , H_{19} , H_{21} , $H_{23} - \tau = (0, 0, \mathbf{a}_3/2)$. Перечисленные здесь элементы симметрии образуют группу волнового вектора $\mathbf{k} = 2\pi(0, 0, \mu/a_3)$. Умножая проективные (т.е. нагруженные неприводимые) представления на $\exp(-i\mathbf{k}\tau_h)$, получаем малые представления (см. [11]). В дальнейшем используются величины, комплексно сопряженные с малыми представлениями.

Далее в 4(d)- и 6(g)-позициях рекомендуется совершить переход от системы координат (*I*), использованной в [12], к системе координат (*K*), использованной в [10]. Связь между указанными системами для группы $D_{6h}^3(P6_3/mcm)$ приведена в [10] ((*XYZ*)*K* = (*XYZ*)*I*-(0, 0, 0.25)). Для каждой из позиций (4(*d*) и 6(*g*)) составляется таблица перестановок атомов под действием элементов группы волнового вектора.

Кратность вхождения неприводимого магнитного представления в приводимое определяется по формуле

$$n_{\nu} = rac{1}{n(G_k^0)} \sum_{h \in G_k^0} \chi_M^k(g) \chi^{*k\nu}(g),$$

где $n(G_k^0)$ — число элементов точечной группы волнового вектора G_k^0 ,

$$\chi_{M}^{k}(g) = \delta_{h}SpR^{h}\sum_{j}\exp\left[-i\mathbf{ka}_{p}(g, j)\right]\delta_{j,gj}$$

— характер магнитного представления,

$$\sum_{j} \exp\left[-i\mathbf{k}\mathbf{a}_{p}(g, j)\right]\delta_{j,gj} = \chi_{p}^{k}$$

— характер перестановочного представления; $\delta_h = 1$, если h — обычный поворот, и $\delta_h = -1$, если h — инверсионный поворот; R^h — матрица поворотного преобразования, \mathbf{a}_p — возвращающая трансляция, $\delta_{j,gi}$ — δ -символ Кронекера, $\chi^{k\nu}$ — характер неприводимого представления $d^{k\nu}$.

В результате выполненных вычислений получен состав магнитного представления для 4(*d*)- и 6(*g*)-позиций

$$d_M^{k_{11}}(4(d)) = \tau_1 + \tau_2 + \tau_3 + \tau_4 + 2(\tau_5 + \tau_6),$$

$$d_M^{k_{11}}(6(g)) = \tau_1 + 2(\tau_2 + \tau_3) + \tau_4 + 3(\tau_5 + \tau_6).$$

По формуле

$$S\begin{pmatrix}k\nu\\\lambda\end{vmatrix} i \end{pmatrix} = \sum_{h\in G_k^0} d_{\lambda[\mu]}^{*k\nu}(g) \exp\left[-i\mathbf{k}\mathbf{a}_p(g,j)\right] \delta_{i,g[j]} \begin{pmatrix} R_{x[\beta]}^h\\ R_{y[\beta]}^h\\ R_{z[\beta]}^h \end{pmatrix},$$

взятой из [11], получены базисные функции неприводимых представлений группы $D_{6h}^3(P6_3/mcm)$, входящих в состав магнитного представления с { \mathbf{k}_{11} } = $= \mu \mathbf{b}_3 = 2\pi (0, 0, \mu/a_3)$ (для луча $\mathbf{k}_1 = \mu \mathbf{b}_3$), в случае 4(*d*)- и 6(*g*)-позиций. Эти величины в рассматриваемом случае являются комплексными.

Поскольку магнитные моменты, образующие магнитную структуру, вещественны, базисные функции неприводимых представлений должны быть получены также в виде вещественных величин. Для этой цели в [11] рекомендуется найти базисные функции для луча $\mathbf{k}_2 = -\mathbf{k}_1$ с помощью выражения

$$S\begin{pmatrix}k_L\nu\\\lambda\end{vmatrix} i'\end{pmatrix} = \exp\left[-i\mathbf{k}_L\mathbf{a}_p(g_L,i)\right]\delta_{h_L}R^{h_L}S\begin{pmatrix}k\nu\\\lambda\end{vmatrix} i\end{pmatrix}$$

и создать линейную комбинацию (осуществить межлучевое смешивание) базисных функций неприводимых представлений, полученных для лучей \mathbf{k}_1 и $\mathbf{k}_2 = -\mathbf{k}_1$, с коэффициентами смешивания, обеспечивающими вещественность магнитного момента каждого атома во всех позициях для каждого неприводимого представления. Для перехода от луча \mathbf{k}_1 к лучу \mathbf{k}_2 использовались в 4(d)-позиции элемент $\{H_{13}|0\}$, а в позиции $6(g) - \{H_7|0\}$. В нулевой (исходной) ячейке кристалла вещественность рассматриваемых величин достигнута следующим образом:

$$S_{0i}(4(d)) = \left[S_{0i}^{k_1}(4(d)) + \varepsilon S_{0i}^{k_2}(4(d))\right] / 2.$$

где $\varepsilon = \exp(-i\pi\mu)$,

$$S_{0i}(6(g)) = \left[S_{0i}^{k_1}(6(g)) + S_{0i}^{k_2}(6(g))\right]/2$$

(здесь использована сокращенная форма записи обозначений). Простота выражения для $S_{0i}(6(g))$ объясняется тем, что величины $S_{0i}^{k_1}(6(g))$ и $S_{0i}^{k_2}(6(g))$ оказались комплексно сопряженными, в связи с чем коэффициенты смешивания для них оказались одинаковыми и равными 1/2. В конце расчета осуществлен обратный переход к системе координат, использованной в [12].

Предварительный анализ результатов выполненных расчетов приводит к выводу, что в рассматриваемом случае нет никакой возможности добиться равенства величин магнитных моментов атомов, расположенных во всех различающихся значением координаты z узлах каждого из рассматриваемых типов (4(d) или 6(g)) позиций пространственной группы $D_{6h}^3(P6_3/mcm)$. В связи с этим, они могут образовывать несколько вариантов магнитных структур, относящихся к типу спиновых волн: 1) продольную (когда магнитные моменты параллельны оси а₃ и волновому вектору k рассматриваемой магнитной структуры) спиновую волну, 2) поперечную (когда магнитные моменты перпендикулярны этой же оси и этому же волновому вектору) спиновую волну (в случае справедливости конценпции одного неприводимого представления [11]), а также 3) их векторную сумму (в случае необходимости использования базисных функций, обеспечивающих одновременное наличие проекций магнитного момента и на базисную плоскость, и на ось **a**₃ элементарной кристаллической ячейки).

3.3. Магнитная структура. Расчеты, выполненные с использованием программы "Fullprof", позволили сделать следующие выводы. В 4(d)-позиции магнитная структура образуется по неприводимому представлению τ_3 , а в 6(g)-позиции — по представлению τ'_3 . Этот вариант приводит к минимальному значению считающихся критерием достоверности полученных результатов факторов расходимости для кристаллической и магнитной структур.

Поскольку в случае атомов, расположенных в 4(d)-позиции,

 $S\begin{pmatrix}k_{11}\tau_3\\\lambda\end{vmatrix}1 = S\begin{pmatrix}k_{11}\tau_3\\\lambda\end{vmatrix}3 = S(0,0,1),$

а

$$S\begin{pmatrix}k_{11}\tau_{3}\\\lambda\end{vmatrix}^{2} = S\begin{pmatrix}k_{11}\tau_{3}\\\lambda\end{vmatrix}^{4} = S(0, 0, \overline{1}) \operatorname{Re}\varepsilon$$

(здесь обозначение S(0, 0, 1) соответствует случаю, когда атомный магнитный момент направлен вдоль оси \mathbf{a}_3 , а $S(0, 0, \overline{1})$ — случаю, когда он имеет противоположное направление) и —Re $\varepsilon = -\cos \pi \mu = \cos(\pi + \pi \mu)$, то очевидно, что магнитные моменты $\boldsymbol{\mu}_1, \boldsymbol{\mu}_2, \boldsymbol{\mu}_3$ и $\boldsymbol{\mu}_4$ образуют продольную спиновую волну, причем моментам $\boldsymbol{\mu}_1$ и $\boldsymbol{\mu}_3$ можно приписать фазу $\varphi = 0$, а моментам $\boldsymbol{\mu}_2$ и $\boldsymbol{\mu}_4$ — фазу, равную $\pi + \pi \mu$. Последняя соответствует тому, что моменты $\boldsymbol{\mu}_2$ и $\boldsymbol{\mu}_4$ антипараллельны моментам $\boldsymbol{\mu}_1$ и $\boldsymbol{\mu}_3$ и сокращены по модулю за счет множителя Re $\varepsilon = \cos \pi \mu$.

Аналогичные результаты получены для атомов, расположенных в 6(g)-позиции,

$$S\begin{pmatrix}k_{11}\tau'_{3} \\ \lambda \end{pmatrix} = S\begin{pmatrix}k_{11}\tau'_{3} \\ \lambda \end{pmatrix} = S\begin{pmatrix}k_{11}\tau'_{3} \\ \lambda \end{pmatrix} = S(0, 0, 1)$$

И

$$S\begin{pmatrix}k_{11}\tau'_{3}\\\lambda\end{vmatrix} = S\begin{pmatrix}k_{11}\tau'_{3}\\\lambda\end{vmatrix} = S\begin{pmatrix}k_{11}\tau'_{3}\\\lambda\end{vmatrix} = S\begin{pmatrix}k_{11}\tau'_{3}\\\lambda\end{vmatrix} = S(0, 0, \bar{1})\cos\pi\mu = S(0, 0, 1)\cos(\pi + \pi\mu)$$

Полученную модель магнитной структуру следует назвать антиферромагнитной продольной спиновой волной (AFLSW).

Кроме того, для достижения лучшего (минимального) фактора расходимости для магнитной структуры, получаемого при расчетах с использованием программы "Fullprof", всем атомным магнитным моментам в 6(g)-позиции приходится приписывать дополнительный фазовый сдвиг относительно 4(d)-позиции. Этот сдвиг в результате расчета получился равным $\Delta \varphi \approx (-0.508 \pm 0.022)\pi$, но у авторов нет физических оснований считать его отличающимся от $-\pi/2$.

Зная k, можно определить период продольной спиновой волны

$$\lambda = 2\pi/|\mathbf{k}| \approx 3.413a_3$$

Рис. 3. Модель магнитной структуры Er₅Gt₃ при 4.2 К. Подробности см. в тексте.

На рис. 3 представлена предлагаемая нами модель магнитной структуры в пределах четырех элементарных кристаллических ячеек, расположенных последовательно друг за другом вдоль оси а₃, на длине периода продольной спиновой волны. Атомы, занимающие 4(d)-позиции, внутри ряда элементарных кристаллических ячеек, расположенных вдоль оси а₃ кристалла, образуют две эквивалентных цепочки с координатами ($x_1 = 1/3$, $y_1 = 2/3$) и ($x_2 = 2/3$, $y_2 = 1/3$) (на рисунке приведена одна из них), в которых расстояние между ближайшими атомами вдоль оси a_3 равно $a_3/2$. В 6(g)-позициях образуется шесть эквивалентных цепочек с координатами (x, 0), (0, x), (\bar{x}, \bar{x}) , $(\bar{x}, 0)$, $(0, \bar{x})$, (x, x), в которых расстояние между ближайшими атомами равно а 3. Величина и направление магнитных моментов в позициях обоих типов не зависят от координат (x, y), но зависят от координаты z. Для большей наглядности на рисунке изображены кривые зависимости $\cos(\varphi_0 + \Delta \varphi)$ от zдля случаев $\varphi_0 = 0; \pi; -\pi/2$ и $\pi/2$ (φ_0 — исходная фаза, $\Delta \phi = 2\pi \mu z$ — фаза, приобретаемая за счет модуляции магнитной структуры). Длина стрелок соответствует величине $\mu_{a3} = \mu_0 \cos(\varphi_0 + \Delta \varphi)$ (здесь обозначение μ_{a3} отражает тот факт, что магнитный момент направлен вдоль оси \mathbf{a}_3 , $\mu_0(4(d)) \approx (9.54 \pm 0.10) \mu_B$, $\mu_0(6(g)) \approx (6.12 \pm 0.07) \mu_B$ — максимальные величины магнитных моментов атомов Ег в 4(d)- и 6(g)-позициях). Часть каждой из косинусоид, расположенная слева от значения $\cos(\varphi_0 + \Delta \varphi) = 0$, соответствует положительному значению проекции магнитного момента атома, расположенного на данной высоте, на ось z, другая половина — отрицательному значению. Представленные кривые дают возможность наиболее ясно интерпретировать характер зависимости величины и направления магнитного момента каждого атома от его положения в кристаллической решетке. Здесь приведены величины магнитных моментов и погрешности их вычисления, полученные при расчетах, выполненных с использованием программы "Fullprof" ($R_m \approx 9.55\%$).

Следует отметить, что величина $\mu_0(4(d)) \approx (9.54 \pm 0.10) \mu_B$ в пределах погрешностей измерений и вычислений совпадает с общеизвестным значением

$$\mu_J = g\sqrt{J(J+1)} \approx 9.58 \mu_B,$$

где

$$g = 1 + \frac{J(J+1) + S(S+1) - L(L+1)}{2J(J+1)} = 1.2$$

— множитель Ланде, S = 3/2 — результирующее спиновое квантовое число, L = 6 — результирующее орбитальное квантовое число, J = S + L = 15/2 — полный момент количества движения для катиона Er^{3+} (см., например, [15]). Поскольку $\lambda/a_3 \approx 3.413$ является величиной порядка 1, полученную продольную спиновую волну следует считать короткопериодической.

Исследования зависимости интенсивности отражений $(111)^+$ при 2 $\Theta \approx 44.8^\circ$ и $(211)^-$ при 2 $\Theta \approx 55.02^\circ$ на нейтронограмме Er₅Ge₃ от температуры в интервале от 4.2 до 80 K (вставка на рис. 2) свидетельствует о том, что магнитный вклад в отражения с повышением температуры монотонно уменьшается и окончательно пропадает при $T \sim 38$ K. Последнее обстоятельство можно связать с разрушением магнитного порядка в соединении при этой температуре. Полученное значение температуры (~ 38 K) можно отождествить с температурой Нееля изучаемого интерметаллида.

4. Обсуждение результатов

В работе [3] сообщается, что Tb₅Sb₃ в интервале температур 80 К $\leq T \leq 150$ К имеет магнитную структуру типа конической спирали (оси конусов образуют с осью **a**₃ угол, равный 51.5°, угол полураствора конуса равен 28.5°). Авторы [4] утверждают, что в Tb₅Si₃ при 4.2 К атомы Tb в 4(*d*)-позиции образуют простую спираль, а в 6(*g*)-позиции — коническую спираль, в которой ось конуса параллельна оси *a*₃, а угол между магнитным моментом и осью **a**₃ равен 76°.

Эти модели магнитных структур невозможно построить из базисных функций неприводимых представлений, полученных в настоящей работе. Поэтому их, по мнению авторов, следует рассматривать как противоречащие результатам симметрийного анализа. В связи с изложенным выше требуется их проверка и дальнейшее уточнение.

Попытки усовершенствовать предложенную в настоящей работе модель магнитной структуры Er₅Ge₃ (путем добавления базисных функций других неприводимых представлений к уже использованным) к положительному результату не привели. Сама модель AFLSW является достаточно естественной и простой и не нуждается на данном этапе исследований, по мнению авторов, в каком-либо улучшении. Кроме того, ранее при исследовании эффектов кристаллического поля было показано, что компоненты этого поля более высокого порядка должны благоприятствовать ориентации моментов атомов Ег параллельно оси **a**₃ (см., например, [16]). Этот результат можно рассматривать как дополнительный довод, подтверждающий справедливость наших выводов о магнитной структуре Er5Ge3, изложенных в настоящей работе.

В дальнейшем авторы планируют опубликовать результаты нейтронографического исследования магнитной структуры Er_5Si_3 при T = 20 K (в этом интерметаллиде при указанной температуре нами также обнаружена антиферромагнитная продольная спиновая волна AFLSW).

Авторы благодарят В.К. Найша, С.Б. Петрова, Ю.Н. Скрябина за полезные советы и участие в обсуждении полученных результатов, В.И. Бобровского и В.А. Казанцева за помощь в оформлении работы.

Список литературы

- P. Schobinger-Paramantellos. J. Magn. Magn. Mater. 28, 1–2, 97 (1982).
- [2] P. Schobinger-Paramantellos, K.H.J. Buschow. J. Magn. Magn. Mater. 49, 3, 349 (1985).
- [3] J.K. Yakinthos, I.P. Semitelou, E. Roudaut. Solid State Commun. 59, 4, 227 (1986).
- [4] I.P. Semitelou, Hel. Konguetsof, J.K. Yakinthos, E. Roudaut. J. Magn. Magn. Mater. 79, 1, 131 (1989).
- [5] I.P. Semitelou, Hel. Konguetsof, J.K. Yakinthos. J. Magn. Magn. Mater. 82, 2–3, 223 (1989).
- [6] I.P. Semitelou, P. Kotsanidis, J.K. Yakinthos, E. Roudaut. J. Magn. Magn. Mater. 116, 1–2, 103 (1992).
- [7] I.P. Semitelou, J.K. Yakinthos, E. Roudaut. J. Magn. Magn. Mater. **128**, 1–2, 79 (1993).
- [8] I.P. Semitelou, J.K. Yakinthos, E. Roudaut. J. Phys. Chem. Solids 56, 7, 891 (1995).
- [9] I.P. Semitelou, J.K. Yakinthos. J. Magn. Magn. Mater. 186, 1-2, 107 (1998).
- [10] О.В. Ковалев. Неприводимые и индуцированные представления и копредставления федоровских групп. Наука, М. (1986). 368 с.

- [11] Ю.А. Изюмов, В.Е. Найш, Р.П. Озеров. Нейтронография магнетиков. Атомиздат, М. (1981). 312 с. [Yu.A. Izyumov, V.E. Naish, R.P. Ozerov. Neutron diffraction of magnetic materials. Consultants Bureau, N.Y.–London (1991). 340 p.].
- [12] International Tables for X-ray Crystallography. Vol. I. Kynoch Press, Birmingham (1952). 558 p.
- [13] Ю.А. Изюмов, Р.П. Озеров. Магнитная нейтронография. Наука, М. (1966). 532 с. [Yu.A. Izyumov, R.P. Ozerov. Magnetic neutron diffraction. Plenum Press, N.Y. (1979). 598 p.].
- [14] Ю.А. Изюмов. Дифракция нейтронов на длиннопериодических структурах. Энергоатомиздат, М. (1987). 200 с.
- [15] С.В. Вонсовский. Магнетизм. Наука, М. (1971). 1032 с.
 [S.V. Vonsovskii. Magnetism. Vol. 1, 2. John Wiley, N.Y.-Toronto-Jerusalem-London (1974). 1270 p.].
- [16] К. Тейлор, М. Дарби. Физика редкоземельных соединений. Мир, М. (1974). 376 с. [К.N.R. Teylor, М.I. Darby. Physics of rare earth solids. Chapman and Hall Ltd, London (1972)].