08,09

Оптический метод измерения температуры фторидных кристаллов, активированных ионами Yb^{3+} и Tm^{3+}

© Б.Н. Казаков, О.Г. Гориев, А.Р. Хадиев[¶], С.Л. Кораблева, В.В. Семашко

Казанский федеральный университет, Казань, Россия

[¶]E-mail: ibn.rusht@gmail.com

Метод fluorescence intensities ratio (FIR) применен для измерения температуры внутри люминесцирующего кристалла LiY_{0.8}Yb_{0.2}F₄: Tm³⁺. Полученные результаты использованы для контроля температуры образца в эксперименте при перемещении перетяжки возбуждающего излучения фокусирующей линзой внутри образца. Показано, что значительное изменение интенсивности люминесценции кристалла LiY_{0.8}Yb_{0.2}F₄: Tm³⁺ (0.2%) не сопровождается существенным изменением температуры. Это подтверждает гипотезу о возникновении усиленной спонтанной люминесценции (УСЛ) ионов Yb³⁺ при интенсивной лазерной накачке в данных кристаллах.

Исследования были осущенствлены в рамках выполнении государственного задания Казанскому федеральному университету в сфере научной деятельности [3.1156.2017/4.6] и [3.5835.2017/6.7].

DOI: 10.21883/FTT.2019.05.47597.37F

1. Введение

В работах [1–3], по исследованию ап-конверсионной люминесценции ионов Tm³⁺ и Ho³⁺ в кристаллах LiY_xYb_{1-x}F₄, показано возникновение усиленной спонтанной люминесценции (УСЛ) ионов Yb³⁺ при интенсивном возбуждении излучением лазерного диода (ИК ЛД) в область собственного поглощения ионов Yb³⁺ (переход ²F_{7/2} \rightarrow ²F_{5/2}).

Так, например, в люминесценции кристалла LiYbF₄ обнаружен ряд эффектов при определенных положениях перетяжки луча накачки внутри образца:

— уменьшение ширины профиля поперечного сечения люминесценции ионов Yb³⁺ [1];

— наличие минимума в зависимостях интенсивности люминесценции и времени жизни ионов Yb³⁺ [2].

— "скачковый" характер кинетики апконверсионной люминесценции ионов Tm³⁺, возникающий при достижении определенного порога мощности накачки [4].

При непрерывном возбуждении излучением ИК ЛДобразец может сильно нагреваться, вызывая температурное тушении люминесценции и уменьшение времени жизни ионов Tm^{3+} и Yb³⁺ [5]. Однако модулируя излучение ИК ЛД прямоугольными импульсами с периодом T_{ex} и длительностью импульса t_{ex} , можно подобрать такой коэффициент заполнения ($t_{\text{ex}}/T_{\text{ex}}$), при котором нагрев образца будет минимальным. Наши эксперименты с контролем температуры образца методом FIR показали, что перечисленные выше эффекты не связаны с нагреванием кристалла.

Исследуемые образцы и методика эксперимента

Кристаллы LiY_{0.8}Yb_{0.2}F₄ : Tm³⁺ (c = 0.2 at.% по шихте) выращены методом Бриджмена-Стокбаргера в лаборатории роста кристаллов Казанского федерального университета. Образцы изготовлены в форме параллелепипеда и тонкой пластины с размерами: $3 \times 4 \times 5$ mm и $3 \times 4 \times 0.51$ mm соответственно. Оптическая ось кристалла направлена вдоль длинной стороны грани 3×4 mm.

Ап-конверсионная люминесценция ионов Tm³⁺ возбуждалась излучением ИК ЛД с $\lambda = 934$ nm и мощностью $P_{\rm LD} = 0.4 - 0.5$ W, модулированного прямоугольными импульсами с периодом $T_{\rm ex} = 30 - 200$ ms и длительностью импульсов $t_{\rm ex} = 3 - 20$ ms. Спектры люминесценции регистрировались в диапазоне 200–1100 nm ПЗС-спектрометром StellarNet со спектральным разрешением 0.5 nm.

Контроль температуры контактными методами позволяет определить ее только на поверхности образцов. Обычно используют термопары [6] или оптоволоконные температурные датчики, которым тоже необходим контакт с образцом [7]. Температура внутри люминесцирующего кристалла остается неизвестной, что значительно осложняет интерпретацию результатов спектроскопических исследований. Изящным решением данной проблемы является использование оптических методов измерения температуры. В частности, метод fluorescence intensities ratio (FIR) [8] широко применяется в различных областях научных исследований: от медицины (визуализация биологических тканей) [9] до электроники (контроль температурного распределения на поверхности интегральных схем) [10].

В методе FIR измеряется отношение интенсивностей двух спектральных линий люминесценции, вызванной переходами с двух штарковских подуровней возбужденного мультиплета, энергетический зазор между которыми сравним с *kT*. Если распределение населенностей по подуровням возбужденного мультиплета подчиняется

Рис. 1. Схема установки для калибровки метода FIR в диапазоне температур 80–320 К. *I* — лазерный диод ($P_{\text{ex}} = 0.4 \text{ W}$, $\lambda = 934 \text{ nm}$); *2* — линза (f = 50 nm); *3* — тонкий образец кристалла LiY_{0.8}Yb_{0.2}F₄ : Tm³⁺ (0.2 at.%); *4* — криостат Сгуо Industries; *5* — ПЗС спектрометр StellarNet.

закону Больцмана, то зависимость от температуры относительной интенсивности линий данного мультиплета определяется выражением

$$R = \frac{N_2}{N_1} = \frac{I_1 \lambda_2}{I_1(\lambda_1)} = A \cdot e^{\frac{\Delta E_{12}}{kT}} + B,$$
 (1)

где N_1 , N_2 — населенности выбранных подуровней 1 и 2; I_1 , I_2 — интенсивности спектральных линий люминесценции; ΔE_{12} — энергетический зазор между подуровнями в сm⁻¹; k = 0.695 cm⁻¹/K — постоянная Больцмана; T — температура в K; A и B — параметры аппроксимации. Значение разности энергий ΔE_{12} можно взять из литературных данных. Выбранные спектральные линии люминесценции могут перекрываться с линиями люминесценции, обусловленными переходами с других состояний. Их вклад определяется значением параметра B [8].

Для калибровки метода FIR регистрировались температурные зависимости интенсивностей люминесценции тонкого образца, приклеенного к медной подложке и помещенного в криостат Cryo Industries рис. 1. Температура медной подложки измерялась термопарой с точностью 0.5 К. Калибровка осуществлялась в диапазоне температур 80–320 К. Ап-конверсионная люминесценция ионов Tm³⁺ возбуждалась модулированным излучением ИК ЛД с длительностью импульса $t_{\rm exc} = 3$ ms, периодом $T_{\rm exc} = 60$ ms и коэффициентом заполнения, равном 0.05. При этом нагрев кристалла оказался минимальным.

Температурная зависимость отношения интенсивностей спектральных линий аппроксимировалась формулой (1) и определялись параметры ΔE , A и B. Ошибка в определении энергетического зазора между подуровнями определена по формуле

$$\delta_E(\%) = \frac{|\Delta E_f - \Delta E_{12}| \cdot 100}{\Delta E_{12}},$$
(2)

где E_f — значение параметра ΔE , определенного аппроксимацией температурной зависимости интенсивностей линий люминесценции ионов Tm³⁺ формулой (1), а значение ΔE_{12} — литературные данные [11].

Температура кристалла T_f и ошибка δ_T ее оценки определяются выражениями (3,4):

$$T_f = \frac{-\Delta E}{\ln\left[\frac{R_f - B}{A}\right] \cdot k},\tag{3}$$

$$\delta_T(\%) = \frac{|T_f - T| \cdot 100}{T}.$$
 (4)

3. Результаты и обсуждение

В спектре ионов Tm^{3+} имеется несколько пар линий люминесценции, пригодных для оптического измерения температуры. Наибольшую точность оценки температуры образца методом FIR обеспечивает использование пары спектральных линий, обусловленных переходами с подуровней возбужденного мультиплета ${}^{1}G_{4}$ на подуровни мультиплета ${}^{3}F_{4}$ ионов Tm^{3+} . На рис. 2, *а* приведены спектры люминесценции ионов Tm^{3+} кристалла $\text{LiY}_{0.8}\text{Yb}_{0.2}\text{F}_{4}$: Tm^{3+} при разных температурах.

Выбранные для метода FIR спектральные линии люминесценции иона Tm^{3+} , показаны на схеме энергетических уровней (рис. 2, *b*).

Экспериментальная зависимость отношения интенсивностей линий люминесценции от 1/kT, а ее аппроксимация формулой (1) представлена на рис. 3. "Невязка" аппроксимации δT представлена на вставке рис. 3. Отметим, что экспериментальное значение разности энергий между подуровнями мультиплета ${}^{1}G_{4}$ $\Delta E = 213 \pm 4 \text{ cm}^{-1}$, что хорошо совпадает с литературными данными [11] (см. рис. 2, *b*). Использование данной пары линий позволяет оценивать температуру внутри люминесцирующего кристалла LiY_{0.8}Yb_{0.2}F₄ : Tm³⁺ с точностью $\approx 1\%$. Аналогичная точность получается при различных значениях коэффициента заполнения возбуждающего импульса и при непрерывном режиме возбуждения (см. таблицу).

Параметры аппроксимации формулой (1) экспериментальной зависимости от 1/kT отношения интенсивностей спектральных линий люминесценции ионов Tm³⁺ с $\lambda = 656$ nm и 666 nm

ΔE , cm ⁻¹	A	В	δE, %	δ <i>T</i> , %	Параметры импульса накачки
213	1.309	0.285	3	5	T = 60 ms, t = 3 mc
220	1.324	0.283	7	8	T = 100 ms, t = 2 mc
216	1.312	0.285	5	4	T = 100 ms, t = 2 mc

Рис. 2. Спектры люминесценции ионов Tm^{3+} кристалла $\text{LiY}_{0.8}\text{Yb}_{0.2}\text{F}_4$: Tm^{3+} в области 640–680 nm при разных температурах (*a*); штарковская структура подуровней мультиплетов ${}^{1}G_4$ и ${}^{3}F_4$ иона Tm^{3+} (*b*) [11].

Видно, что погрешности определения параметров аппроксимации слабо зависят от параметра заполнения.

Температура внутри люминесцирующего кристалла LiY_{0.8}Yb_{0.2}F₄ : Tm³⁺ в экспериментах по *z*-сканированию, аналогичных [1], оценивалась методом FIR. Схема экспериментальной установки для *z*-сканирования приведена на рис. 4. В отличии от оригинальной методики *z*-сканирования [12], мы смещали фокусирующей линзой перетяжку лазерного луча относительно передней поверхности образца на расстояние Δz с шагом 0.1 mm. Значение $\Delta z = 0$ соответствует положению претяжки на передней поверхности кристалла, $\Delta z < 0$ — перед ней, а $\Delta z > 0$ — внутри образца.

Рис. 3. Аппроксимация экспериментальной зависимости от 1/kT отношения интенсивностей спектральных линий люминесценции ионов Tm³⁺ с $\lambda = 656$ nm и 666 nm формулой (1).

Рис. 4. Схема экспериментальной установки. 1 — камера ToupCam VCMOS14000КРА; 2 — измерительный микроскоп МПБ-3; 3 — световой фильтр; 4 — кристалл LiY_{0.8}Yb_{0.2}F₄ : Tm³⁺; 5 — линза (f = 50 mm); 6 — лазерный диод (1 Wt; $\lambda = 932$ nm); StellarNet — ПЗС-спектрометр.

В экспериментах Z-сканирования одновременно регистрировались спектры и кинетика люминесценции ионов Yb³⁺ и Tm³⁺. Кроме того фотографровалось продольное сечение люминесценции кристалла камерой ToupCam VCMOS14000KPA, совмещенной с измерительным микроскопом МПБ-3. Результаты этих экспериментов представлены на рис. 5 в виде зависимостей интенсивности люминесценции, времени жизни ионов Yb³⁺ и температуры кристаллов LiY_{0.8}Yb_{0.2}F₄: Tm³⁺ (0.2%) и LiYbF₄: Tm³⁺ (0.2%) от Δz .

В результате экспериментов установлено, что температура внутри кристалла зависит от коэффициента

Puc. 5. Зависимости от Δz интенсивности люминесценции, времени жизни τ ионов Yb³⁺ и температуры кристаллов LiY_{0.8}Yb_{0.2}F₄ : Tm³⁺ (0.2%) при возбуждении $t_{ex} = 9$ ms, $T_{ex} = 50$ ms (*a*); LiYbF₄ : Tm³⁺ (0.2%) при возбуждении $t_{ex} = 14$ ms, $T_{ex} = 60$ ms (*b*).

заполнения при модулированном возбуждении, а при непрерывном возбуждении не превышает 400 К. Результаты, представленные на рис. 5, (*a*) для кристалла LiY_{0.8}Yb_{0.2}F₄ : Tm³⁺ (0.2%), аналогичны данным, полученными в экспериментах с *z*-сканированием в кристалле LiYbF₄ : Tm³⁺ (0.2%), и соответствуют данным [1].

4. Заключение

Метод FIR позволяет измерять температуру внутри люминесцирующей области образцов и исследовать процессы нагрева, а также их влияния на спектроскопические свойства рассматриваемых материалов. В то же время, данный метод требует тщательного выбора спектральных линий люминесценции с монотонной зависимостью интенсивности от температуры, а также обязательной калибровки для достижения высокой степени точности измерений.

В данной работе метод FIR был применен для измерения температуры внутри кристаллов Tm^{3+} : LiY_{0.8}Yb_{0.2}F₄ во время экспериментов по *z*-сканированию. Установлено, что изменение интенсивности люминесценции в образцах LiY_{0.8}Yb_{0.2}F₄: Tm^{3+} (0.2%) происходит на фоне незначительно изменения температуры, и, следовательно, гипотеза о возникновении УСЛ при интенсивной лазерной накачке в данных кристаллах [1] является правомерной.

Список литературы

- B.N. Kazakov, S.L. Korableva, V.V. Semashko, O.G. Goriev, A.R. Khadiev. J. Lumin. 187, 410 (2017).
- [2] B.N. Kazakov, A.V. Mikheev, O.G. Goriev, S.L. Korableva, V.V. Semashko. Opt. Spectrosc. 121, 523 (2016).
- [3] A.V. Mikheev, B.N. Kazakov. JETP Lett. 102, 279 (2015).
- [4] B.N. Kazakov, V.V. Semashko, A.V. Lovchev, A.K. Naumov. J. Phys. Conf. Ser. 560, 012003 (2014).

- [5] S. Baek, Y. Jeong, J. Nilsson, J.K. Sahu, B. Lee. Opt. Fiber Technol. 12, 10 (2006).
- [6] W.N. Lutz, G.T. Gillies, S.W. Allison. Ind. Heat. 54, 36 (1987).
- [7] Y.B. Yu, W.K. Chow. J. Thermodyn. 2009, 1 (2009).
- [8] X. Wang, Q. Liu, Y. Bu, C.-S. Liu, T. Liu, X. Yan. RSC Adv. 5, 86219 (2015).
- [9] B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, Z. Feng. Adv. Mater. 24, 1987 (2012).
- [10] G. Tessier, M. Bardoux, C. Boué, C. Filloy, D. Fournier. Appl. Phys. Lett. 90, 171112 (2007).
- [11] M. Dulick, G.E. Faulkner, N.J. Cockroft, D.C. Nguyen. J. Lumin. 48–49, 517 (1991).
- [12] M. Sheik-Bahae, A.A. Said, T.-H. Wei, D.J. Hagan, E.W. Van Stryland. IEEE J. Quantum Electron. 26, 760 (1990).

Редактор Т.Н. Василевская