08 Деформационное уширение и тонкая структура спектральных линий в оптических спектрах диэлектрических кристаллов, содержащих редкоземельные ионы

© Н.М. Абишев¹, Э.И. Байбеков¹, Б.З. Малкин¹, М.Н. Попова², Д.С. Пыталев², С.А. Климин²

¹ Казанский (Приволжский) федеральный университет, Казань, Россия ² Институт спектроскопии РАН, Троицк, Москва, Россия E-mail: abishevnm@gmail.com

Разработана методика расчета формы спектральных линий в оптических спектрах редкоземельных ионов в кристаллах с учетом случайных деформаций упруго анизотропной кристаллической решетки, обусловленных точечными дефектами. Функция распределения компонент тензора случайных деформаций в случае малой концентрации дефектов получена в виде обобщенного шестимерного распределения Лоренца. Параметры функции распределения представлены интегральными функционалами компонент тензора деформации на сфере единичного радиуса, содержащей в центре изотропный точечный дефект. Выполнены численные расчеты тензоров деформаций, индуцированных точечными дефектами, и параметров функций распределения случайных деформаций в кристаллах LiLuF₄ и LaAlO₃. Вычисленная огибающая с дублетной структурой, отвечающая синглет–дублетному переходу $\Gamma_2(^3H_4) \rightarrow \Gamma_{34}(^3H_5)$ в спектре поглощения ионов \Pr^{3+} в кристалла LiLuF₄, хорошо согласуется с данными измерений.

Работа выполнена при финансовой поддержке РФФИ (грант № 17-02-00403, Н.М.А., Э.И.Б., Б.З.М.) и программы президиума РАН 1.7 "Актуальные проблемы фотоники, зондирование неоднородных сред и материалов" (М.Н.П., Д.С.П., С.А.К.).

DOI: 10.21883/FTT.2019.05.47589.22F

1. Введение

Ширина спектральных линий оптических материалов определяет возможности их использования в качестве активных сред в лазерах и сцинтилляторах, в оптических информационных технологиях [1,2]. В оптических спектрах редкоземельных (РЗ) ионов в кристаллах, соответствующих *f*-*f*-переходам, ширины наблюдаемых линий всегда существенно больше естественной ширины участвующих в переходе уровней энергии вследствие неоднородного уширения. Неоднородное уширение является результатом взаимодействия оптических центров (РЗ-ионов) с полями различной природы. В частности, взаимодействие 4f-электронов с полем случайных деформаций, индуцированных дефектами кристаллической решетки, обусловливает квази-непрерывное распределение энергии квантовых переходов и соответствующее неоднородное уширение. Наряду с уширением, случайные деформации формируют тонкую структуру бесфононных линий в случае переходов, в которых участвуют орбитально вырожденные состояния РЗ-ионов в кристаллических полях тригональной, тетрагональной и кубической симметрии [3-6]. Деформационная тонкая структура (дублетная, триплетная) наблюдалась в оптических спектрах высокого разрешения активированных РЗ-ионами кристаллов со структурами шеелита [4], эльпасолита [5], циркона [6] и ромбоэдрического перовскита [7].

Статистическая теория деформационного уширения спектральных линий в случае переходов между невырожденными состояниями оптических центров была развита Стоунхэмом [3]. Аналитическое выражение для функции распределения компонент тензора деформаций, обусловленных точечными дефектами в упруго изотропном континууме, было получено в работе [5]. Отметим, что в рамках приближения упругого континуума точечные дефекты не приводят к неоднородному всестороннему сжатию или растяжению кристаллической решетки. В работе [6] была введена функция распределения случайных деформаций, индуцированных точечными дефектами в упруго анизотропном континууме, в полном шестимерном пространстве компонент тензора деформаций на основе обобщения аналитического выражения для двумерных функций распределения.

В настоящей работе представлена методика моделирования формы спектральных линий, соответствующих f-f-переходам в РЗ-ионах, включающая последовательное выполнение расчетов индуцированного точечным дефектом поля смещений в упруго анизотропном континууме, параметров функции распределения случайных деформаций и параметров гамильтониана взаимодействия РЗ-иона с деформированной решеткой. Сравнение с наблюдаемым спектром усредненной по распределению случайных деформаций функции формы линии при фиксированных деформациях дает возможность найти силу дефектов при заданной их концентрации. Приведены результаты расчетов полей деформаций и параметров функций распределения случайных деформаций в кристаллах LiLuF4 и LaAlO3. Построенный алгоритм вычислений использован в моделировании измеренной в настоящей работе линии синглет — дублетного перехода с индуцированной случайными деформациями дублетной структурой в спектре примесных ионов празеодима в кристалле LiLuF4.

2. Поле деформаций, индуцированных точечным дефектом в упруго анизотропном кристалле

Мы рассматриваем поле смещений атомов из положений равновесия в кристаллической решетке, индуцированных точечным дефектом, в рамках теории упругости в приближении анизотропного упругого континуума. Статические смещения $\mathbf{u}(\mathbf{r})$, обусловленные силами с плотностью $\mathbf{f}(\mathbf{r})$, удовлетворяют системе неоднородных дифференциальных уравнений второго порядка [8]

$$\sum_{\beta\gamma\delta} C_{\alpha\beta\gamma\delta} \frac{\partial^2 u_{\delta}}{\partial x_{\beta}\partial_{\gamma}} + f_{\alpha} = 0, \qquad (1)$$

где С — тензор упругих постоянных среды. Плотность сил, индуцированных сферически симметричным точечным дефектом, расположенным в точке с радиусвектором \mathbf{R}_d , пропорциональна модулю всестороннего сжатия K и "силе" дефекта Ω , равной изменению объема элементарной ячейки, приходящемуся на один дефект [9],

$$\mathbf{f}(\mathbf{r}) = -K\Omega\nabla\delta(\mathbf{r} - \mathbf{R}_d). \tag{2}$$

Методика расчета функций Грина уравнений (1) для сред различной симметрии была развита Лифшицем и Розенцвейгом [10]. Вычисление функций Грина сводится к нахождению корней алгебраического уравнения шестого порядка. Аналитические решения уравнений (1) были получены для упруго изотропного континуума и кристаллических решеток гексагональной симметрии [10,11]. В частности, компоненты тензора деформации $e_{\alpha\beta} = (\partial u_{\alpha}/\partial x_{\beta} + \partial u_{\beta}/\partial x_{\alpha})/2$, индуцированной точечным дефектом в упруго изотропном континууме, равны

$$e_{\alpha\beta} = \frac{\Omega}{12\pi r^3} \frac{1+\sigma}{1-\sigma} \left(\delta_{\alpha\beta} - \frac{3x_{\alpha}x_{\beta}}{r^2} \right), \qquad (3)$$

где σ — отношение Пуассона. В общем случае компоненты тензора неоднородной деформации в сферической системе координат с центром на дефекте можно представить в виде $e_{\alpha\beta}(\mathbf{r}) = \pi \Omega (2\pi r)^{-3} q_{\alpha\beta}(\theta, \varphi)$, где r, θ, φ сферические координаты вектора \mathbf{r} , а безразмерные функции $q_{\alpha\beta}(\theta, \varphi)$ могут быть найдены с использованием численных методов, основанных на преобразовании Фурье функций Грина уравнений (1) [12–14]. С целью построения функции распределения случайных деформаций в тетрагональном кристалле LiLuF₄ и в ромбоэдрическом кристалле LaAlO₃ с пространственными группами симметрии $I4_1/a$ и $R\overline{3}c$, соответственно, в настоящей работе выполнены численные расчеты функций $q_{\Gamma\lambda}(\theta, \varphi)$, определяющих линейные комбинации компонент тензора деформации $e_{\Gamma\lambda}(\mathbf{r})$, преобразующиеся по строке λ неприводимого представления (НП) Γ соответствующих фактор-групп. Расчеты были выполнены с использованием величин упругих постоянных, приведенных в статьях [15] (LiLuF₄) и [16] (LaAlO₃).

Симметризованные комбинации компонент тензора деформации в кристалле LiLuF₄ были выбраны в виде $e_1 = e(A_g^1) = (e_{xx} + e_{yy} + e_{zz})/\sqrt{6}, e_2 = e(A_g^2) = (2e_{zz} - e_{xx} - e_{yy})/\sqrt{12}, e_3 = e(B_g^1) = (e_{xx} - e_{yy})/2, e_4 = e(B_g^2) = e_{xy}, e_5 = e(E_g, 1) = e_{xz}, e_6 = e(E_g, 2) = e_{yz}, где компоненты тензора деформации <math>e_{\alpha\beta}$ определены в кристаллографической системе координат с осью z вдоль оси c решетки (ось симметрии S₄ в позициях ионов Lu³⁺), A_g , B_g и E_g — НП группы C_{4h} . Здесь и далее $e(\Gamma, \lambda) = e_{\Gamma\lambda}(\mathbf{r})$ и $q(\Gamma, \lambda) = q_{\Gamma\lambda}(\theta, \varphi)$. Компоненты тензора деформации е и сосью z вдоль оси симметрии третьего порядка; линейные комбинации компонент тензора деформации e_m (m = 1-6), введенные выше, преобразуются по НП A_g и E_g точечной группы симметрии D_{3d} : $e(A_g^1) = e_1, e(A_g^2) = e_2, e(E_g^1, 1) = e_3, e(E_g^1, 2) = e_4, e(E_g^1, 2) = e_4, e(E_g^2, 1) = e_5, e(E_g^2, 2) = e_6$.

В качестве примера результатов расчетов определенных выше функций сферических координат $q_{\Gamma\lambda}(\theta, \varphi)$ на рис. 1 представлены графические изображения функций $q(A_g^1)$ и $q(B_g^2)$ для кристалла LiLuF₄. Неоднородные деформации всестороннего сжатия (растяжения) $e(A_g^1)$ в упруго анизотропном кристалле отличны от нуля (рис. 1, *a*), но на порядок величины меньше в сравнении с ромбическими деформациями $e(B_g^2)$ (рис. 1, *b*). Тем не менее, полносимметричные деформации $e(A_g^1)$ дополнительно уширяют спектральные линии.

Упругая анизотропия кристаллической решетки существенно изменяет соотношения и величины компонент тензора деформации на единичной сфере. Заметим, что угловая зависимость (3) компонент тензора деформации $e_{\alpha\beta}(\mathbf{r})$ в упруго изотропном континууме описывается сферическими гармониками 2-го порядка. Аналогично, деформации $e_{\Gamma\lambda}(\mathbf{r})$, обусловленные дефектами в реальных кристаллах, могут быть разложены в ряд по сферическим гармоникам высших порядков. Как следует из выполненного нами анализа результатов вычислений, для аналитического представления численных массивов можно ограничиться в соответствующих разложениях гармониками 2-го-10-го порядков [5]. Полученные массивы данных используются ниже для нахождения параметров функций распределения случайных деформаций, индуцированных точечными дефектами.

Рис. 1. Функции $q_{\Gamma\lambda}(\theta, \varphi)$, соответствующие полносимметричной $(a, \Gamma = A_g^1)$ и ромбической $(b, \Gamma = B_g^2)$ деформациям, индуцированным точечным дефектом в кристалле LiLuF₄.

3. Функция распределения случайных деформаций

В рамках статистической теории функция распределения компонент тензора деформации представляется в виде

$$g(\mathbf{e}) = \left\langle \prod_{m=1}^{6} \delta\left(e_m - \sum_{j=1}^{N_d} e_m^j\right) \right\rangle, \tag{4}$$

где угловые скобки $\langle \ldots \rangle$ означают конфигурационное усреднение по всем возможным положениям N_d точечных дефектов в трехмерном пространстве, $\delta(x)$ — дельта-функция Дирака, e_m^j — вклад в *m*-ую компоненту тензора деформации от *j*-го дефекта. В приближении континуума и при малой концентрации точечных дефектов C_d выражение (4) принимает вид

$$g(\mathbf{e}) = \frac{1}{(2\pi)^6} \int_{-\infty}^{\infty} d\rho_1 \dots \int_{-\infty}^{\infty} d\rho_6$$
$$\times \exp\left(-i \sum_{m=1}^6 \rho_m e_m - C_d J(\boldsymbol{\rho})\right), \qquad (5)$$

$$J(\boldsymbol{\rho}) = \int_{V} d^{3}\mathbf{r} \left(1 - \exp\left(i\sum_{m=1}^{6} \rho_{m} e_{m}(\mathbf{r})\right) \right).$$
(6)

Поскольку компоненты тензора деформации $e_m(\mathbf{r})$ в упруго анизотропном кристалле представляются численными массивами, построение функции распределения случайных деформаций выполняется численно. Выражение (5) для любых пар симметризованных компонент тензора деформации после интегрирования по

модулю вектора **r** в функции $J(\rho)$ принимает вид

$$g(e_1, e_2) = \frac{1}{(2\pi)^2} \int_{-\infty}^{\infty} d\rho_1 \int_{-\infty}^{\infty} d\rho_2$$

$$\times \exp\left(-i \sum_{m=1}^2 \left\{ \rho_m e_m + \xi \int_0^{\pi} \sin\theta d\theta \int_0^{2\pi} d\varphi |\rho_m q_m(\theta, \varphi)| \right\} \right),$$
(7)

где $\xi = |\Omega|C_d/48\pi$ — единственный параметр, определяемый концентрацией и типом дефектов в конкретном кристалле, и интеграл в показателе экспоненты берется по сфере единичного радиуса. Анализ результатов численных расчетов функций распределения (7) для кристаллов различной структуры показал, что двумерная функция распределения может быть записана в виде обобщенной функции Лоренца

$$g(e_1, e_2) = \frac{\xi \gamma \nu}{2\pi} \left(\tilde{e}_1^2 + \nu^2 \tilde{e}_2^2 + \xi^2 \gamma^2 \right)^{-3/2}.$$
 (8)

Линейные преобразования $\tilde{e}_1 = \cos \psi e_1 + \sin \psi e_2$, $\tilde{e}_2 = -\sin \psi e_1 + \cos \psi e_2$ определяют направления главных осей эквипотенциальной поверхности распределения. Для рассмотренных в настоящей работе тетрагональных и тригональных кристаллов мы построили функции распределения (8) пар компонент $e(\Gamma, \lambda)$ тензора деформации, преобразующихся по одному и тому же неприводимому представлению. Соответствующие параметры γ_{Γ} , ν_{Γ} и ψ_{Γ} функций распределения (8) различаются по индексу Г. В качестве примера на рис. 2 представлены функции распределения полносимметричных и ромбических деформаций в кристалле LiLuF₄.

Обобщение функций рапределения (8) на случай шестимерного пространства компонент тензора деформа-

Рис. 2. Функции распределения случайных деформаций $g(e(\Gamma^1), e(\Gamma^2)) \cdot (\xi \gamma_{\Gamma})^2$, (слева $\Gamma = A_g$, справа — B_g), индуцированных точечными дефектами в кристалле LiLuF4. Штриховыми линиями обозначены главные оси распределения.

ции в кристалле LiLuF₄ (см. [6]) имеет вид

$$g(\mathbf{e}) = \frac{15\xi v_A v_B}{8\pi^3 \gamma_A^2 \gamma_B^2 \gamma_E^2} \left((v_A^2 \tilde{e}_1^2 + \tilde{e}_2^2) / \gamma_A^2 + (v_B^2 \tilde{e}_3^2 + \tilde{e}_4^2) / \gamma_B^2 + (\tilde{e}_5^2 + \tilde{e}_6^2) / \gamma_E^2 + \xi^2 \right)^{-7/2}.$$
(9)

Для кристалла LaAlO₃

$$g(\mathbf{e}) = \frac{15\xi\nu_A}{8\pi^3\gamma_A^2\gamma_{E^1}^2\gamma_{E^2}^2} \left((\nu_A^2\tilde{e}_1^2 + \tilde{e}_2^2)/\gamma_A^2 + (\tilde{e}_3^2 + \tilde{e}_4^2)/\gamma_{E^1}^2 + (\tilde{e}_5^2 + \tilde{e}_6^2)/\gamma_{E^2}^2 + \xi^2 \right)^{-7/2}.$$
(10)

Значения параметров функций распределения (9) и (10) приведены в таблице. В предельном случае упруго изотропного континуума $\nu_{\Gamma} = 1, \ \psi_{\Gamma} = 0,$ параметр $\gamma_{\Gamma} = 16\pi^2(1+\sigma)/9(1-\sigma)$ не зависит от НП Г и определяется только коэффициентом Пуассона σ .

В следующем разделе функция распределения случайных деформаций (9) используется в моделировании тонкой структуры линии синглет-дублетного перехода в кристалле LiLuF₄: Pr^{3+} .

Параметры функций распределения случайных деформаций (9), (10) для кристаллов LiLuF₄ и LaAlO₃

Параметр	LiLuF4			LaAlO ₃		
Г	Α	В	Ε	Α	E^1	E^2
${\mathcal V}$ г $ u_{\Gamma}$ ψ_{Γ}	30.3 5.26 9.2°	54.0 2.32 -35°	30.4 1 0	26.2 5.88 7.4°	30.7 1 0	31.2 1 0

4. Форма линии синглет-дублетного перехода в кристалле LiLuF₄: Pr^{3+}

Поляризованные спектры поглощения монокристалла LiLuF₄, активированного ионами Pr^{3+} (0.1 at.%), были измерены при температурах 5-300 К фурье-спектрометром высокого разрешения (до 0.008 cm^{-1}) BRUKER IFS 125, оснащенным криостатом замкнутого цикла Cryomech ST 403 и охлаждаемым жидким азотом InSb детектором. Кристаллическое поле, действующее на ионы Pr³⁺, замещающие ионы Lu³⁺ в позициях с локальной симметрией S₄, расщепляет электронные мультиплеты $4f^2$ -оболочки на синглеты Γ_1 и Γ_2 и дублеты Γ_{34} (Г_р — НП группы S₄). На одной из наиболее узких линий в ИК области спектра, отвечающей переходу из основного состояния $\Gamma_2({}^3H_4)$ на дублет $\Gamma_{34}({}^3H_5)$ (см. рис. 3), наблюдалась дублетная структура, показанная на рис. 4.

Спектр энергий электронно-ядерных состояний иона ¹⁴¹Pr³⁺ (существует единственный стабильный изотоп празеодима с ядерным спином I = 5/2) в кристалле описывается гамильтонианом

$$H = H_{FI} + H_{CF} + H_{HFM} + H_{el-def}, \tag{11}$$

где *H_{FI}* — энергия свободного иона [17], *H*_{CF} — энергия взаимодействия иона с кристаллическим полем,

$$H_{\rm CF} = \sum (B_2^0 O_2^0 + B_4^0 O_4^0 + B_6^0 O_6^0 + B_4^4 O_4^4 + B_4^{-4} O_4^{-4} + B_6^4 O_6^4 + B_6^{-4} O_6^{-4}), \qquad (12)$$

*H*_{HFM} — энергия магнитного сверхтонкого взаимодействия,

$$H_{\rm HFM} = \mu_B \gamma_N \hbar \left\langle \frac{1}{r^3} \right\rangle_{4f} \sum \left\{ 2II + O_2^0 (3s_z I_z - sI) + 3O_2^2 (s_x I_x - s_y I_y) + 3O_2^{-2} (s_x I_y + s_y I_x) + 6O_2^1 (s_x I_z + s_z I_x) + 6O_2^{-1} (s_z I_y + s_y I_z) \right\}, \quad (13)$$

*H*_{el-def} — электрон-деформационное взаимодействие,

$$H_{\text{el-def}} = \sum_{\Gamma\lambda} V(\Gamma, \lambda) e(\Gamma, \lambda),$$
$$V(\Gamma, \lambda) = \sum_{pk} \sum_{pk} b_p^k(\Gamma, \lambda) O_p^k.$$
(14)

В формулах (12)-(14) символ \sum означает суммирование по 4f-электронам с орбитальными и спиновыми моментами *l* и *s*, $\gamma_N/2\pi = 13.05 \text{ Hz/T}$ ядерное гиромагнитное отношение [18], μ_B — магнетон Бора, $\langle 1/r^3 \rangle_{4f} = 5$ а.u. [19]. Операторы O_p^k линейные комбинации одноэлектронных сферических тензорных операторов, определенные в [20] (в пространстве состояний мультиплета с полным моментом Ј операторы О^k_p совпадают с операторами Стивенса). В численных расчетах собственных значений оператора $H' = H_{FI} + H_{CF} + H_{HFM}$, действующего в пространстве 546 электронно-ядерных состояний 4f²-оболочки, были использованы параметры гамильтониана свободного иона H_{FI} из работы [21]. Параметры кристаллического поля $B_2^0 = 216.5$, $B_4^0 = -130$, $B_6^0 = -2.94$, $B_4^4 = -1127$, $B_4^{-4} = -849$, $B_6^4 = -635$, $B_6^{-4} = -428 \,\mathrm{cm}^{-1}$ были определены моделированием результатов измерений штарковской структуры мультиплетов ${}^{3}H_{4,5,6}$, ${}^{3}F_{2,3,4}$, ${}^{3}P_{0,1,2}$. Параметры оператора электрон-деформационного взаимодействия $b_{p}^{k}(\Gamma, \lambda)$ были вычислены в рамках модели обменных зарядов [22] и затем скорректированы по результатам пьезоспектроскопического исследования кристалла LiLuF₄: Tm^{3+} [23].

В первом приближении по $H_{\rm HFM}$ сверхтонкое взаимодействие дает нулевой вклад в энергию синглетов Γ_1 и Γ_2 , а дублеты Γ_{34} расщепляются на шесть эквидистантных электронно-ядерных дублетов с энергиями AMm (где $M = \pm 1$, $m = \pm 1/2$, $\pm 3/2$, $\pm 5/2$ проекции спина ядра на ось симметрии c, A интервал сверхтонкой структуры). В частности, вычисленные интервалы сверхтонкой структуры дублета $\Gamma_{34}({}^3H_5)$ равны 0.0154 ± 0.0015 сm⁻¹ (эквидистантность нарушается вследствие смешивания волновых функций штарковских подуровней мультиплетов сверхтонким взаимодействием). Однако вместо квази-эквидистантной шестикомпонентной сверхтонкой структуры линия синглет-дублетного перехода $\Gamma_2({}^3H_4) \rightarrow \Gamma_{34}({}^3H_5)$

Рис. З. Схема уровней энергии (cm^{-1}) иона Pr^{3+} в кристалле LiLuF4.

Рис. 4. Форма линии (символы — эксперимент, сплошные линии — расчет), соответствующей переходам $\Gamma_2({}^{3}H_4) \rightarrow \Gamma_{34}({}^{3}H_5)$ в σ -поляризации ($\mathbf{k} \perp \mathbf{c}, \mathbf{E} \perp c, \mathbf{H} \parallel c$) ионов \Pr^{3+} в кристалле LiLuF₄. Линии *I*, *2* и *3* — спектральные огибающие переходов между электронно-ядерными состояниями с проекциями спина ядра |m| = 1/2, 3/2 и 5/2 соответственно.

содержит лишь один провал с шириной, сравнимой с полной шириной вычисленной сверхтонкой структуры (5A) дублета (см. рис. 4).

Электрон-деформационное взаимодействие мы рассматриваем в первом приближении теории возмущений. Полносимметричные деформации $e(A_g^1)$ и $e(A_g^2)$ смещают дублет $\Gamma_{34}({}^{3}H_{5})$ относительно синглета $\Gamma_{2}({}^{3}H_{4})$, ромбические деформации $e(B_g^1)$ и $e(B_g^2)$ индуцируют дополнительное расталкивание сверхтонких подуровней дублета с одинаковыми величинами проекций *m* ядерного спина на ось *c* (см. рис. 3). Сдвиги компонент сверхтонкой структуры относительно центра линии при фиксированных деформациях принимают вид

$$\varepsilon_{|m|}^{(\pm)} = v(A_g^1)e(A_g^1) + v(A_g^2)e(A_g^2)$$

$$\pm \sqrt{\Delta_{|m|}^2 + \left|v(B_g^1)e(B_g^1) + v(B_g^2)e(B_g^2)\right|^2}, \quad (15)$$

где $\Delta_{|m|} = A|m|$, $v(A_g^1) = -559 \text{ cm}^{-1}$ и $v(A_g^2) = -443 \text{ cm}^{-1}$ — разности диагональных матричных элементов введенных в (14) операторов $V(A_g^n)$ на электронных волновых функциях дублета $\Gamma_{34}(^3H_5)$ и синглета $\Gamma_2(^3H_4)$, $v(B_g^1) = -553 + 446i$ и $v(B_g^2) = -375 + 478i \text{ cm}^{-1}$ — недиагональные матричные элементы операторов $V(B_g^n)$ (n = 1, 2) на электронных волновых функциях дублета.

Спектральную огибающую $I(\omega)$ линии синглетдублетного перехода получаем усреднением по распределению случайных деформаций (9) суммы форм-функций компонент сверхтонкой структуры:

$$I(\omega) \propto \int g(\mathbf{e}) \sum_{m=\frac{1}{2},\frac{3}{5},\frac{5}{2}} \left[I_0 \big(\hbar(\omega - \omega_0) - \varepsilon_m^{(+)}(\mathbf{e}) \big) + I_0 \big(\hbar(\omega - \omega_0) - \varepsilon_m^{(-)}(\mathbf{e}) \big) \right] d\mathbf{e},$$
(16)

где частота ω_0 соответствует центру линии, форм-функцию аппроксимируем распределением Гаусса $I_0(x) = (2\pi\Delta^2)^{-1/2} \exp(-x^2/2\Delta^2)$ с дисперсией Δ^2 .

Ширина функции распределения случайных деформаций $\xi = 0.75 \cdot 10^{-6}$ в исследованном кристалле LiLuF₄ и параметр форм-функции $\Delta = 0.008 \, \mathrm{cm}^{-1}$ найдены из сопоставления вычисленной спектральной огибающей перехода $\Gamma_2({}^{3}H_4) \rightarrow \Gamma_{34}({}^{3}H_5)$ с измеренным спектром. Вычисленные распределения интенсивностей переходов между электронно-ядерными состояниями синглета и дублета с различными проекциями т спина ядра представлены на рис. 4. Оценка силы дефекта примесного иона празеодима с использованием полученной ширины распределения случайных деформаций ξ $|\Omega| = 48\pi \xi V/2x = 0.0565 \cdot V = 7.8 \text{ Å}^3$ (V — объем элементарной ячейки, содержащей два иона лютеция, *x* = 0.001 — номинальная концентрация примесных ионов) сопоставима с возможным изменением объема ячейки $4\pi (R_{\rm Pr}^3 - R_{\rm Lu}^3)/3 = 2.1 \,\text{\AA}^3$, обусловленным различием ионных радиусов празеодима ($R_{\rm Pr} = 1.126$ Å) и лютеция ($R_{\text{Lu}} = 0.977 \text{ Å}$) [24]. Таким образом, можно сделать вывод о формировании поля случайных деформаций как собственными дефектами кристаллической решетки, так и примесными ионами.

5. Заключение

Построена функция распределения для шести компонент тензора деформаций, индуцированных точечными дефектами в упруго анизотропных кристаллах, получены параметры функций распределения деформаций в кристаллах LiLuF₄ и LaAlO₃. В оптическом спектре поглощения высокого разрешения кристалла LiLuF₄, активированного ионами Pr^{3+} (0.1 ат.%), зарегистрирована линия синглет–дублетного перехода ионов празеодима в тетрагональном кристаллическом поле со специфической дублетной структурой вместо ожидаемой шестикомпонентной сверхтонкой структуры (спин ядра ¹⁴¹ Pr I = 5/2). Моделирование спектральных огибающих компонент сверхтонкой структуры с учетом взаимодействия ионов Pr^{3+} со случайными деформациями решетки дало возможность успешно воспроизвести измеренную форму линии.

Представленный анализ формы тонкой структуры линии синглет-дублетного перехода демонстрирует возможность восстановления сверхтонкой структуры некрамерсовского дублета, скрытой неоднородным деформационным уширением, при помощи теории, развитой в настоящей работе. Моделирование оптических спектров высокого разрешения можно использовать для анализа качества оптических материалов.

Список литературы

- R. Kolesov, K. Xia, R. Reuter, R. Stöhr, A. Zappe, J. Meijer, P.R. Hemmer, J. Wrachtrup. Nature Commun. 3, 1029 (2012).
- [2] T. Zhong, J.M. Kindem, E. Miyazono, A. Faraon. Nature Commun. 6, 8206 (2015).
- [3] A.M. Stoneham. Rev. Mod. Phys. 41, 82 (1969).
- [4] S.A. Klimin, D.S. Pytalev, M.N. Popova, B.Z. Malkin, M.N. Vanyunin, S.L. Korableva. Phys. Rev. B 81, 045113 (2010).
- [5] B.Z. Malkin, D.S. Pytalev, M.N. Popova, E.I. Baibekov, M.L. Falin, K.I. Gerasimov, N.M. Khaidukov. Phys. Rev. B 86, 134110 (2012).
- [6] B.Z. Malkin, N.M. Abishev, E.I. Baibekov, D.S. Pytalev, K.N. Boldyrev, M.N. Popova, M. Battinelli. Phys. Rev. B 96, 014116 (2017).
- [7] K.N. Boldyrev, P. Dereń, M.N. Popova. EPJ Web Conf. 132, 03004 (2017).
- [8] Л.Д. Ландау, Е.М. Лифшиц. Теория упругости. Наука, М. (1965). 204 с.
- [9] J.D. Eshelby. Solid State Phys. 3, 79 (1956).
- [10] И.М. Лифшиц, Л.Н. Розенцвейг. ЖЭТФ 17, 9, 783 (1947).
- [11] А.М. Косевич. Основы механики кристаллической решетки. Наука, М. (1972). 280 с.
- [12] D.M. Barnett. Phys. Status Solidi B 49, 741 (1972).
- [13] L.J. Gray, D. Ghosh, T. Kaplan. Comput. Mech. 17, 255 (1996).
- [14] F.C. Buroni, A. Sáez. Proc. R. Soc. A 466, 515 (2010).
- [15] С.А. Альтшулер и др. Магнитоупругие явления в двойных фторидах редких земель. В сб.: Парамагнитный резонанс. Изд-во Казанского университета (1984). 29 с.
- [16] M.A. Carpenter, S.V. Sinogeikin, J.D. Bass, D.L. Lakshtanov. J. Phys.: Condens. Matter 22, 035403 (2010).
- [17] W.T. Carnall, G.L. Goodman, K. Rajnak, R.S. Rana. J. Chem. Phys. 90, 3443 (1989).

- [18] K.K. Sharma, L.E. Erickson. J. Phys. C 14, 1329 (1981).
- [19] A. Abragam, B. Bleaney. Electron paramagnetic resonance of transition ions. Clarendon Press, Oxford (1970).
- [20] V.V. Klekovkina, A.R. Zakirov, B.Z. Malkin, L.A. Kasatkina. J. Phys.: Conf. Ser. 324, 012036 (2011).
- [21] M.J. Lee, M.F. Reid, M.D. Faucher, G.W. Burdick. J. Alloys Comp. 323&324, 636 (2001).
- [22] B.Z. Malkin. Crystal field and electron-phonon interaction in rare-earth ionic paramagnets. In: Spectroscopy of solids containing rare-earth ions/ Ed. A.A. Kaplyanskii, R.M. Macfarlane. Elsevier Science Publishers, Amsterdam (1987). Ch. 2. P. 13–49.
- [23] А.В. Винокуров, Б.З. Малкин, А.И. Поминов, А.Л. Столов. ФТТ **30**, 3426 (1988).
- [24] R.D. Shannon. Acta Cryst. A 32, 751 (1976).

Редактор Е.Ю. Флегонтова