08,09

Конверсия энергии в нанокристаллах Gd_2O_3 , легированных ионами Er^{3+}

© Е.С. Трофимова, В.А. Пустоваров, А.Ф. Зацепин

Уральский федеральный университет, Екатеринбург, Россия

E-mail: trofimova.e.s@yandex.ru

Изучены процессы конверсии поглощенной энергии в нанокристаллическом Gd_2O_3 кубической сингонии, легированном ионами Er^{3+} и солегированного ионами Yb^{3+} , Zn^{2+} в диапазоне температур 95–425 К при различных концентрациях примесных ионов. Спектры возбуждения фотолюминесценции подтверждают возможность переноса энергии возбуждения от ионов Gd^{3+} или матрицы к ионам Er^{3+} . Заселение верхних возбужденных состояний ионов Er^{3+} зависит от способа возбуждения, в результате меняется вероятность многофононной релаксации возбужденных состояний на излучательные уровни. Кинетики затухания фотолюминесценции показывают, что возможен перенос энергии от анионных дефектов, созданных дополнительным легированием ионами Zn^{2+} . Температурные зависимости выхода антистоксовой люминесценции для линий эмиссии 560 и 660 nm различны.

Работа выполнена при финансовой поддержке Министерства образования и науки РФ (проектная часть государственного задания, проект № 3.1485.2017/4.6) и постановления № 211 Правительства Российской Федерации (контракт № 02.А03.21.0006).

DOI: 10.21883/FTT.2019.05.47583.13F

1. Введение

Антистоксовы люминофоры находят широкое применение в лазерах, маркерах или контрастных веществах для биомедицинских исследований, в устройствах фотоники, визуализации инфракрасного лазерного излучения, повышении эффективности солнечных батарей и др. Up-конверсия (или антистоксова люминесценция, АСЛ) наблюдается при поглощении нескольких фотонов низкой энергии с испусканием фотонов более высокой энергии. Для АСЛ твердотельных матриц наиболее эффективным является использование ионов Er³⁺ как примесных центров, благодаря наличию у них развитой структуры возбужденных электронных состояний и большому времени жизни (τ) ${}^4I_{11/2}$ возбужденного состояния [1]. При дополнительном введении в матрицу ионов Yb³⁺ наблюдается сенсибилизированная АСЛ, которая предполагает перенос энергии возбужденного состояния ${}^2F_{5/2}$ ионов Yb^{3+} (которое соответствует длине волны 980 nm) примесным ионам (чаще всего Er^{3+} , Tm^{3+} или Ho^{3+}). При этом выход АСЛ значительно повышается.

Оксид гадолиния (ширина запрещенной зоны $E_g = 5.6 \text{ eV}$), как и оксиды других редкоземельных элементов, представляют интерес как матрицы для функциональных устройств нанофотоники, оптоэлектроники, конверторов излучения из-за их высокой термической стабильности, химической стойкости, возможности их легирования редкоземельными ионами (РЗИ) в высоких концентрациях. Низкая энергия предельных фононов (~ 600 cm⁻¹) указывает на перспективность применения Gd₂O₃, как матрицы для конверторов ИК-излучения [2]. Процессы конверсии энергии в микроструктурированных порошках и макрокристаллах Gd₂O₃, легированных ионами Er^{3+} , изучены в работах [3,4]. Свойства и люминесценция наноструктурированных порошков оксида гадолиния активно изучаются и в настоящее время [5,6].

В настоящей работе исследуется конверсия поглощенной энергии электромагнитного излучения широкого спектра (от ИК- до жесткого УФ-излучения) в излучение видимого спектрального диапазона путем изучения излучательных $f \rightarrow f$ -переходов в ионах Er^{3+} , а также влияние на них температуры, концентрации примесных ионов и дефектов кристаллической решетки $\mathrm{Gd}_2\mathrm{O}_3$.

2. Образцы и методы

Объектами исследования были нанопорошки оксида гадолиния, легированные ионами ${\rm Er}^{3+}$ (концентрации от 0.25 до 8 mol.%), солегированные ионами Yb³⁺ (от 3 до 5 mol.% при фиксированной концентрации ${\rm Er}^{3+}$ 2 mol.%), а также солегированные Zn²⁺ (0.5–4 mol.%). Нанопорошки были изготовлены методом химического осаждения в Уральском федеральном университете. Особенности синтеза, а также результаты аттестации образцов методами рентгеновской дифракции и сканирующей электронной микроскопии приведены в работе [7]. Все образцы имели только кубическую фазу, средний размер наночастиц составлял 48–57 nm.

Спектры фотолюминесценции (ФЛ) и возбуждения ФЛ измерены с использованием дейтериевой лампы DDS-400 и двойного призменного монохроматора типа DMR-4, для возбуждения АСЛ использовался GaAs лазерный диод (980 nm, 100 mW). Регистрация ФЛ проводилась с применением монохроматора MDR-23 и фотоэлектронного умножителя R6358-10 (Hamamatsu). Спектры возбуждения ФЛ нормированы на равное число падающих на образец фотонов с применением желтого люмогена, имеющего постоянный квантовый выход в исследуемом спектральном диапазоне. Кинетики затухания $\Phi \Pi$ измерены с использованием импульсной ксеноновой лампы (FWHM = 1 μ s, частота 5 Hz).

3. Результаты и обсуждение

На рис. 1 показаны спектры ФЛ Gd₂O₃: Er³⁺ при возбуждении фотонами разных длин волн от 230 до 380 nm. Длина волны возбуждающих фотонов 380 nm соответствует внутрицентровому возбуждению ионов Er³⁺ (переход ${}^{4}I_{15/2} \rightarrow {}^{4}G_{11/2}$). При таком возбуждении в спектре ФЛ четко видны основные излучательные переходы: 525 (${}^{4}H_{11/2} \rightarrow {}^{4}I_{15/2}$), 560 (${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$) и 660 nm $({}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2})$. При возбуждении фотонами с длиной волны 313 nm ФЛ ионов Er³⁺, как следует из представленных ниже на рис. 2 спектров возбуждения ФЛ, происходит за счет передачи энергии от ионов Gd³⁺ (переход ${}^{8}S_{7/2} \rightarrow {}^{6}P_{J}$). Длина волны 230 nm соответствует возбуждению ФЛ в области длинноволнового края фундаментального поглощения Gd₂O₃ при создании электронно-дырочных пар. Во всех случаях спектры ФЛ содержат группы линий, характерных для ионов Er³⁺.

Спектры возбуждения ФЛ $Gd_2O_3: Er^{3+}$ для линий 560 и 660 nm представлены на рис. 2. Низкоэнергетическая полоса 3.4 eV (380 nm) соответствует внутрицентровому переходу ${}^{4}I_{15/2} \rightarrow {}^{4}G_{11/2}$ в ионах Er^{3+} . Полосы в области 4.0–5.0 eV полностью соответствуют энергии возбужденных состояний ионов Gd^{3+} . Как отмечалось нами ранее в работе [8], это указывает на эффективный безызлучательный перенос энергии $Gd^{3+} \rightarrow Er^{3+}$. Подьем в спектре возбуждения ФЛ в области энергий выше 5.2 eV указывает на перенос энергии от матрицы к примесному Er^{3+} центру. Ранее нами было показано, что эффективность переноса энергии $Gd^{3+} \rightarrow Er^{3+}$ растет с увеличением концентрации Er^{3+} , а максимальный выход ФЛ Er^{3+} достигается при его концентрации 2 mol.% [8].

Как следует из спектров ФЛ (рис. 1) и спектров возбуждения ФЛ (рис. 2), относительная интенсивность линий в зеленой и красной областях спектра зависит от длины волны возбуждения, то есть способа возбуждения примесного центра. При внутрицентровом возбуждения примесного центра. При внутрицентровом возбуждения при возбуждении ФЛ по механизму передачи энергии $Gd^{3+} \rightarrow Er^{3+}$ или при создании электронно-дырочных пар более эффективно возбуждается ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$ излучательный переход. На наш взгляд такое отличие связано с тем, что в последних двух случаях заселяются верхние возбужденные состояния, лежащие выше уровня ${}^{4}G_{11/2}$, в результате меняется вероятность многофононной релаксации возбужденных состояний с преимущественным заселением излучательного ${}^{4}F_{9/2}$ состояния.

При дополнительном введении в $Gd_2O_3: Er^{3+}$ ионов Yb^{3+} или Zn^{2+} процессы переноса энергии изменяются, что влияет, в том числе, на вероятности безызлучательных переходов, в частности, между возбужденными

Рис. 1. Спектры ФЛ Gd_2O_3 : Er^{3+} (2 mol.%) при возбуждении длиной волны 230, 313 и 380 nm, T = 295 K.

Рис. 2. Спектры возбуждения ФЛ Gd_2O_3 : Er^{3+} (2 mol.%) при длине волны излучения 560 и 660 nm, T = 295 K.

состояниями ${}^{4}S_{3/2} \rightarrow {}^{4}F_{9/2}$. Для исследования процессов переноса энергии нами были изучены кинетики затухания ФЛ. Как известно, вероятность и эффективность переноса энергии между примесными ионами зависит от соотношения времени затухания люминесценции в образцах с наличием второго примесного центра (акцептора) и его отсутствии. Эффективность переноса энергии между ионами определяется как

$$\eta = 1 - \tau_{d-a} / \tau_d, \tag{1}$$

где τ_d — время жизни возбужденного состояния иона (донора) в отсутствии акцептора, τ_{d-a} — время жизни возбужденного состояния донора при наличии акцептора [9].

На рис. 3 представлены кинетики затухания ФЛ-ионов Er^{3+} при внутрицентровом возбуждении. Кинетики затухания ФЛ для излучательного перехода ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ (560 nm) представлена на рис. 3, *a* (в логарифмическом масштабе). Время жизни возбужденного состояния ${}^{4}S_{3/2}$ составляет 20, 15 и 23 μ s для образцов, легированных только Er^{3+} , солегированных Yb³⁺ и солегированных Zn²⁺ соответственно. Таким образом, эффективность

Рис. 3. Кинетики затухания люминесценции $Gd_2O_3: Er^{3+}/Yb^{3+}/Zn^{2+}$ при внутрицентровом возбуждении длиной волны 380 nm: *а* — излучательный переход ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$, *b* — излучательный переход ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$, *T* = 295 K.

переноса энергии $Er^{3+}-Yb^{3+}$ составляет 25%, тогда как при добавлении Zn^{2+} наблюдается перенос энергии от дефектов к ионам Er^{3+} , то есть имеет место незначительное увеличение выхода ФЛ в зеленой области спектра.

Кинетики ФЛ в красной области спектра (660 nm, переход ${}^4F_{9/2} \rightarrow {}^4I_{15/2}$) содержат стадию разгорания, рис. 3, b. Такое разгорание наблюдается, в частности, во фторидах, легированных РЗИ [9], и связывается с тем, что возбужденное состояние ${}^{4}F_{9/2}$ заселяется путем медленной мультифононной релаксации с более высоких возбужденных состояний ионов Er³⁺. Для всех трех представленных кинетик ФЛ время нарастания пропорционально времени жизни возбужденного состояния ${}^{4}F_{9/2}$ и меняется от 25 μ s (Gd₂O₃:Er³⁺) до 5 μ s (Gd₂O₃: Er³⁺/Yb³⁺). Стадия разгорания в кинетике ФЛ отсутствует в образцах, солегированных ионами Er³⁺ и Zn^{2+} . Отметим, что кинетика $\Phi\Pi$ Gd₂O₃: Er³⁺ помимо стадии разгорания содержит две компоненты, описывающих стадию затухания. Первая (короткая) полностью повторяет форму возбуждающего импульса, измерена

для линии 660 nm, выход которой в $Gd_2O_3:Er^{3+}$ мал (рис. 1), поэтому она соответствует рассеянному свету от Xe источника возбуждения. Вторая стадия затухания ($\tau = 98 \,\mu$ s) характеризует время жизни возбужденного ${}^4F_{9/2}$ -состояния.

Некоторые результаты исследования АСЛ Gd₂O₃: Er³⁺/Yb³⁺ были описаны нами в работе [10]. Были изучены спектры АСЛ и их зависимость от концентрации примесных ионов, а также температурная зависимость выхода АСЛ. Отмечено, что повышение концентрации примесных РЗИ приводит к увеличению относительной интенсивности "красного" свечения Er³⁺, что связано с увеличением вероятности безызлучательных переходов ${}^4S_{3/2} \rightarrow {}^4F_{9/2}$. В присутствии Yb³⁺ увеличивается общий выход АСЛ, благодаря его сенсибилизирующим свойствам. Однако зависимость отношения интенсивностей "красного" и "зеленого" свечения от концентрации Zn2+ имеет более сложный вид (вставка на рис. 4): имеется максимум при концентрации Zn²⁺ 1 mol.%, затем наблюдается спад. Похожие результаты были получены другими авторами для Gd_2O_3 : Er³⁺, легированных как ионами Zn²⁺, так и Li⁺, создающими в кристалле анионные вакансии [11,12].

Температурная зависимость выхода АСЛ в области 90–450 К, как было показано нами в работе [10], имеет максимум, положение которого значительно отличается для разных излучательных переходов в ионах Er^{3+} , а также зависит от концентрации ионов Yb^{3+} . Это связано с тем, что возбуждение АСЛ в присутствии сенсибилизатора определяется процессами переноса энергии. Рис. 5 показывает спектры АСЛ $\mathrm{Gd}_2\mathrm{O}_3$: Er^{3+} при различных температурах. Необходимо отметить несколько особенностей. Во-первых, с ростом температуры, растет вероятность безызлучательных переходов ${}^4S_{3/2} \rightarrow {}^4F_{9/2}$, что вызывает рост выхода АСЛ в красной области. Во-вторых, вероятность основных излучательных пере-

Рис. 4. Нормированные спектры АСЛ $Gd_2O_3: Er^{3+}(2 \text{ mol.}\%)$ и $Gd_2O_3: Er^{3+}(2 \text{ mol.}\%)/Zn^{2+}(1 \text{ mol.}\%), T = 295 \text{ K}$. На вставке показана зависимость относительного выхода красной $({}^4F_{9/2} \rightarrow {}^4I_{15/2})$ и зеленой $({}^4S_{3/2} \rightarrow {}^4I_{15/2})$ АСЛ от концентрации ионов Zn^{2+} .

Рис. 5. Спектры АСЛ Gd_2O_3 : Er^{3+} (2 mol.%) при различных температурах.

ходов ${}^{2}H_{11/2} \rightarrow {}^{4}I_{15/2}$ (524 nm), ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ (560 nm), ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$ (660 nm). в ионах ${\rm Er}^{3+}$ имеет разную температурную зависимость. В-третьих, при высоких температурах в спектре АСЛ появляется новая линия в области 800 nm, соответствующая излучательному ${}^{4}I_{9/2} \rightarrow {}^{4}I_{15/2}$ переходу. Такая температурная зависимость связана с изменением времени жизни возбужденных состояний ионов ${\rm Er}^{3+}$ за счет взаимодействия с дефектами кристаллической структуры и с изменением скорости многофононной релаксации [1,9,13,14]. Температурная зависимость относительной интенсивности АСЛ для разных излучательных переходов может найти применение в оптической термометрии.

4. Заключение

В работе рассмотрены процессы конверсии поглощенной энергии в нанопорошках Gd_2O_3 кубической сингонии, легированных ионами Er^{3+} , Yb^{3+} и Zn^{2+} . Показано, что возможно возбуждение ФЛ-ионов Er^{3+} путем внутрицентрового возбуждения, а также путем переноса энергии возбуждения от ионов Gd³⁺ или от матрицы (при создании электронно-дырочных пар). Заселение верхних возбужденных состояний ионов Er³⁺ зависит от способа возбуждения, в результате меняется вероятность многофононной релаксации возбужденных состояний на излучательные уровни. Исследования кинетики ФЛ показывают, что в образцах с добавлением Zn²⁺ возможен перенос энергии от дефектов примесным ионам, что проявляется в увеличении времени жизни возбужденного состояния ⁴S_{3/2}. Характеристики АСЛ $Gd_2O_3: Er^{3+}/Yb^{3+}/Zn^{2+}$ зависят как от концентрации всех примесных ионов, так и от температуры. Изменяя концентрацию примесных ионов, температуру или энергию возбуждения, можно управлять цветом свечения (как АСЛ, так и стоксовой люминесценции). Различие температурной зависимости интенсивности ${}^4S_{3/2} \to {}^4I_{15/2}$ и ${}^4F_{9/2} \to {}^4I_{15/2}$ излучательных переходов позволяет использовать Gd₂O₃: Er³⁺/Yb³⁺ для задач оптической термометрии.

Список литературы

- Ю.П. Чукова. Антистоксова люминесценция и новые возможности ее применения. Сов. радио, М. (1980). 193 с.
- [2] H. Guo, N. Dong, M. Yin, W. Zhang, L. Lou, S. Xia. J. Phys. Chem. B 108, 19205 (2004).
- [3] S.K. Singh, K. Kumar, S.B. Rai. Appl. Phys. B 94, 165 (2009).
- [4] A. Zatsepin, Yu. Kuznetsova, L. Spallino, V. Pustovarov, V. Rychkov. Energy Procedia 102, 144 (2016).
- [5] Y. Li, G. Hong, Y. Zhang, Y. Yu. J. Alloys. Compd. 456, 247 (2008)
- [6] R.K. Tamrakar, D.P. Bisen, K. Upadhyay, N. Bramhe. Int. J. Lumin. Appl. 1, 23 (2014).
- [7] Yu. Kuznetsova, A. Zatsepin. Appl. Mater. Today. 12, 34 (2018).
- [8] Yu.A. Kuznetsova, A.F. Zatsepin, V.A. Pustovarov, M.A. Mashkovtsev, V.N. Rychkov. J. Phys.: Conf. Ser. 917, 052015 (2017).
- [9] P.A. Loiko, N.M. Khaidukov, J. Méndez-Ramos, E.V. Vilejshikova, N.A. Skoptsov, K.V. Yumashev. J. Lumin. 170, 1 (2016).
- [10] В.А. Пустоваров, Е.С. Трофимова, Ю.А. Кузнецова. Письма в ЖТФ 14, 42 (2018).
- [11] I. Kaminska, K. Fronc, B. Sikora, M. Mouawad, A. Siemiarczuk, M. Szewczyk, K. Sobczak, T. Wojciechowski, W. Zaleszczyk, R. Minikayev, W. Paszkowicz, P. Stepien, P. Dziawa, K. Ciszak, D. Piatkowski, S. Mackowski, M. Kaliszewski, M. Włodarski, J. Młynczak, K. Kopczynski, M. Łapinskii, D. Elbauma. RSC Advances 5, 78361 (2015).
- [12] D. Li, W. Qin, P. Zhang, L. Wang, M. Lan. P. Shi. Opt. Mater. Express 7, 329 (2017).
- [13] E.S. Trofimova, V.A. Pustovarov, Yu.A. Kuznetsova, A.F. Zatsepin. AIP Conf. Proc. 1886, 020024 (2017).
- [14] В.И. Петрик. Антистоксовые соединения и материалы на их основе. Обл. типогр. № 1, Иркутск (2012). 400 с.

Редактор Д.В. Жуманов