Эффективность преобразования перовскитных и сенсибилизированных красителем солнечных элементов при различных интенсивностях солнечного излучения

© А.Б. Никольская, С.С. Козлов, М.Ф. Вильданова, О.И. Шевалеевский

Институт биохимической физики им. Н.М. Эмануэля Российской академии наук, 119334 Москва, Россия

E-mail: anickolskaya@mail.ru

(Поступила в Редакцию 19 ноября 2018 г. В окончательной редакции 26 ноября 2018 г. Принята к публикации 26 ноября 2018 г.)

> Представлены результаты сравнительного исследования поведения основных фотовольтаических характеристик для перовскитных солнечных элементов (PSC), сенсибилизированных красителями солнечных элементов (DSC) и солнечных элементов на основе кристаллического кремния (*c*-Si) при изменении интенсивности солнечной радиации в диапазоне 10–1000 Вт/м². Установлено, что в отличие от *c*-Si эффективности PSC- и DSC-фотопреобразователей при низких значениях солнечной радиации мало отличаются от соответствующих величин, наблюдаемых для стандартных условий освещения интенсивностью 1000 Вт/м² (AM1.5G). Показано, что высокие эффективности PSC и DSC при низкоинтенсивном и рассеянном освещении обусловлены наличием в конструкции фотопреобразователей наноструктурированных фотоэлектродов на основе диоксида титана и существенно зависят от структуры, морфологии и толщины оксидных слоев.

DOI: 10.21883/FTP.2019.04.47456.9023

1. Введение

В последние десятилетия многочисленные исследования в области солнечной фотовольтаики направлены на создание солнечных элементов (СЭ) следующего поколения, которые могли бы составить конкуренцию доминирующим на рынке традиционным фотопреобразователям на основе кремния и обладали при этом сравнимой с ними эффективностью при более дешевой технологии изготовления [1,2]. К основным направлениям поиска относится разработка сенсибилизированных красителем СЭ типа DSC (dye-sensitized solar cells) [3,4] и перовскитных СЭ — PSC (perovskite solar cells) [5,6].

Существенным преимуществом DSC- и PSC-фотопреобразователей является их способность сохранять достаточно высокие значения кпд при работе в условиях низкого уровня солнечной радиации и при диффузном освещении, в то время как эффективность кремниевых СЭ в аналогичных условиях значительно понижается [7–9]. Например, авторами [8] было показано, что при уменьшении интенсивности освещения с 1000 до 50 Вт/м² кпд DSC не понижается, а возрастает от 7–8 до 10–12%. Эффективность СЭ вида PSC с падением уровня солнечной радиации незначительно снижается [9].

Общим в конструкции DCS- и PSC-фотопреобразователей является наличие наноструктурированного мезоскопического слоя из наночастиц диоксида титана (TiO₂), который играет роль электронпроводящего фотоэлектрода, и наноструктурная морфология которого во многом обуславливает способность СЭ к поглощению низкоинтенсивного и рассеянного светового излучения. Различия между СЭ рассматриваемого вида связаны с тем, что при конструировании PSC-фотопреобразователя на TiO₂-фотоэлектрод методом спин-коутинга (spin-coating) наносится перовскитный материал, представляющий собой органо-неорганическое соединение с общей формулой ABX₃, где A — CH₃NH₃⁺, HC(NH₂)₂⁺, B — Pb²⁺, Sn²⁺, X — I⁻, Br⁻, Cl⁻. В отличие от DSC, где TiO₂-фотоэлектрод сенсибилизируется красителем, фоточувствительный перовскитный слой способен проводить и дырки, и электроны, при этом длина диффузии заряда может достигать 1 мкм [10,11].

Следует отметить, что в целом в научной литературе слабо освещен вопрос влияния уровня солнечной радиации на работу различных типов СЭ, тогда как это имеет первостепенное значение в реальных условиях эксплуатации солнечных элементов и солнечных панелей, особенно в широтах средней и северной России [12]. Также в публикациях отсутствуют сравнительные данные по эффективностям DSC и PSC при низких интенсивностях освещения.

В нашей работе представлены результаты по конструированию и исследованию работы СЭ типа DSC и PSC на основе TiO_2 -фотоэлектродов в условиях изменяемой интенсивности освещения в сравнении с соответствующими параметрами для СЭ на основе кристаллического кремния (*c*-Si).

2. Методика эксперимента

2.1. Солнечные элементы типа DSC

Для конструирования DSC-фотопреобразователей в качестве подложек были использованы стекла Solaronix

размером 2 × 2 см с высоким оптическим пропусканием (T > 80%), покрытые тонким проводящим слоем FTO на основе оксида олова, допированного фтором. Подложки предварительно были очищены в ультразвуковой ванне и последовательно в растворах детергента, этанола и ацетона, после чего они кипятились в TiCl₄ в течение 30 мин при 70°C в 0.4 мМ водном растворе TiCl₄ и прокаливались при 500°C в течение 30 мин. Фотоэлектроды в виде наноструктурированных слоев из наночастиц TiO₂ наносились на подложки с последующим отжигом при 500°C в течение 30 мин, следуя описанной ранее методике [13,14]. Затем они вновь подвергались кипячению в 0.4 мМ водном растворе TiCl₄ и повторному отжигу.

Процесс сенсибилизации фотоэлектродов проводился в течение 24 ч в смеси ацетонитрила и трет-бутилового спирта в соотношении 1:1, содержащей краситель N719 в концентрации 0.3 мМ [15]. В качестве противоэлектрода использовалась стеклянная проводящая подложка, на которую наносился раствор H₂PtCl₆ (2 мг Pt в 1 мл этанола) с последующим отжигом при 400°C в течение 15 мин [15]. При окончательной сборке СЭ типа DSC сенсибилизированный фотоэлектрод и противоэлектрод накладывались друг на друга с последующей герметизацией по периметру с помощью пленки Surylin-1702. Далее пространство между электродами через заранее просверленные в противоэлектроде отверстия заполнялось электролитом (раствор AN-50 Iodolyte, Solaronix). В результате была приготовлена серия DSC-элементов на основе мезоскопических слоев TiO2 толщиной 6.1 мкм и рабочей площадью $\sim 0.7 \times 0.7$ см.

2.2. Солнечные элементы типа PSC

При создании фотоэлектродов для PSC мезоскопические слои TiO_2 толщиной 400 нм наносились методом спин-коутинга [16,17] и подвергались отжигу при 500°C в течение 30 мин, затем кипячению в течение 10 мин при 90°C в 0.2 мМ водном растворе $TiCl_4$ и повторному отжигу при 500°C в течение 30 мин. Непосредственно перед нанесением фотоэлектродных слоев подложки предварительно покрывались блокирующим слоем, который предотвращал возможный электрический контакт между перовскитом и FTO-покрытием [16].

Дальнейшая сборка PSC проводилась в атмосферных условиях при высокой влажности ($\sim 50-60\%$) согласно методике, подробно описанной нами ранее [16]. Раствор перовскита CH₃NH₃PbI₃ в диметилформамиде с последующим введением диэтилового эфира распылялся на поверхность TiO₂-фотоэлектрода, который впоследствии подсушивался при 100°C в течение 10 мин. После остывания поверх перовскитного слоя наносился слой дырочного проводника Spiro-MeO-TAD. С этой целью использовался раствор следующего состава: в 1 мл хлорбензола смешивалось 72.3 мг Spiro-MeO-TAD, 28.8 мкл 4-трет-бутилпиридина и 17.5 мкл раствора бис(трифторметансульфонил)имида лития Li-TSFI (520 мг Li-TSFI в 1 мл ацетонитрила). Завершающей стадией создания PSC было формирование

тыльных токосъемных контактов из золота толщиной около 50 нм, которые наносились методом термического напыления в вакууме с использованием вакуумного поста ВУП-4. Площадь рабочей области фотоэлектрода в PSC составляла 0.09 см².

2.3. Методы исследования

СЭ на основе кристаллического кремния c-Si размером 1.7×2.1 см были любезно предоставлены нам исследовательской группой Г.Г. Унтилы из НИИЯФ МГУ им. М.В. Ломоносова.

Сравнительные исследования работы СЭ вида DSC, PSC и *c*-Si проводились с использованием солнечного имитатора Abet 10500 (Abet Technologies, CШA) как в условиях стандартного солнечного излучения в 1000 Вт/м² (AM1.5G), так и при изменяемой интенсивности освещения (10–1000 Вт/м²). Уменьшение интенсивности освещения достигалось с помощью специальных нейтральных фильтров (Marumi, Япония), которые обеспечивали равномерное уменьшение светового потока в спектральном диапазоне от 300 до 1100 нм.

Вольт-амперные характеристики (ВАХ) записывались на универсальном анализаторе 4200-SCS (Keithley, США). Спектры внешней квантовой эффективности СЭ, IPCE (incident photon-to-current conversion efficiency), исследовались с использованием автоматизированной системы QEX10 (PV Measurments, США) в диапазоне длин волн 300–900 нм.

3. Экспериментальные результаты

Структуры сконструированных нами СЭ вида DSC и PSC представлены на рис. 1. Фотоэлектроды в образцах

Рис. 1. Схематическое изображение конструкций СЭ типа DSC и PSC.

Рис. 2. ВАХ для СЭ вида *c*-Si, DSC и PSC при освещении интенсивностью 1000 Bt/m^2 (AM1.5G).

DSC и PSC представляют собой тонкие слои TiO_2 толщиной 6.1 мкм и 400 нм соответственно. Для СЭ типа c-Si толщина фотоэлектрода составляет ~ 200 мкм.

ВАХ, полученные при интенсивности освещения 1000 Br/m^2 (AM1.5G), для образцов разработанных нами фотопреобразователей вида DSC и PSC в сравнении с данными для СЭ типа *c*-Si представлены на рис. 2. Видно, что наибольшее значение тока короткого замыкания показывает СЭ на основе *c*-Si, в то время как максимальное значение напряжения холостого хода наблюдается для PSC-фотопреобразователя.

Значения кпд фотопреобразования η (%), полученные для СЭ типа DSC, PSC и *c*-Si в стандартных условиях освещения, представлены в таблице и рассчитывались по известной формуле [18]:

$$\eta = \frac{J_{SC}V_{OC}FF}{P_{IN}} 100\%,$$

где J_{SC} — плотность тока короткого замыкания, V_{OC} — напряжение холостого хода, FF — коэффициент заполнения, P_{IN} — интенсивность освещения.

Как видно из таблицы, наибольшая эффективность фотопреобразования в 15.56% наблюдается для СЭ *c*-Si. В данных условиях кпд образцов PSC и DSC оказывается соответственно в 1.5 и 2 раза ниже.

Важную информацию для понимания фотовольтаических свойств СЭ несут спектральные зависимости внешней квантовой эффективности, которые для всех рассматриваемых СЭ представлены на рис. 3. Видно,

Фотоэлектрические параметры для СЭ типа c-Si, DSC и PSC в стандартных условиях освещения 1000 Вт/м² (AM1.5G)

Тип солнечных элементов	J_{SC} , MA/cm ²	Voc, B	FF	η, %
<i>c-</i> Si	38.45	0.60	0.68	15.56
DSC	13.71	0.78	0.70	7.45
PSC	17.08	0.91	0.66	10.20

что основной спектральный диапазон работы DSC приходится на интервал длин волн 400-600 нм, тогда как СЭ типа *c*-Si демонстрирует более высокие значения IPCE и более широкий оптический рабочий спектр в диапазоне 500-900 нм. PSC-фотопреобразователи с рабочим интервалом длин волн от 300 до 800 нм по своим параметрам уступают кремниевым СЭ, однако превосходят DSC-элементы, что выражается в соответствующих значениях эффективности. Представленные сравнительные результаты IPCE хорошо согласуются с литературными данными и с результатами наших измерений, представленными на рис. 2 и в таблице.

Фотовольтаические характеристики для всех типов фотопреобразователей были измерены в условиях изменяемой интенсивности солнечного излучения в диапазоне $10-1000 \text{ BT/m}^2$. На рис. 4 представлены зависимости кпд СЭ типа *c*-Si, DSC и PSC от интенсивности осве-

Рис. 3. Спектральные характеристики внешней квантовой эффективности (IPCE) для СЭ типа *c*-Si, DSC и PSC.

Рис. 4. Экспериментальные зависимости кпд (η) от интенсивности освещения для СЭ типа *c*-Si, DSC и PSC.

Физика и техника полупроводников, 2019, том 53, вып. 4

Рис. 5. Зависимость нормированных значений кпд (η) фотопреобразования от интенсивности освещения для СЭ типа *c*-Si, DSC и PSC.

щения. Видно, что эффективность кремниевого образца при уменьшении интенсивности освещения существенно падает — при освещении 10 Вт/м² она составляет 3.3%, что в ~ 5 раз меньше, чем при освещении 1000 Вт/м² (рис. 5). В тех же условиях кпд для PSC снижается незначительно (на ~ 20%), в то время как кпд для DSC увеличивается в 1.2 раза (рис. 4 и 5).

Представленные на рис. 4 и 5 данные демонстрируют специфическое поведение исследуемых СЭ с наноструктурированными фотоэлектродами на основе TiO_2 в условиях низкой освещенности. Анализ фотовольтаических параметров СЭ показал, что зависимость J_{SC} от интенсивности освещения носит линейный характер независимо от типа СЭ. В то же время характер изменения значений V_{OC} и *FF* для образцов DSC и PSC значительно отличается от поведения соответствующих величин в образце *c*-Si. Как видно из рис. 6, при интенсивности освещения менее 100 Вт/м² наблюдается резкий спад значений V_{OC} для СЭ типа *c*-Si, что не характерно для СЭ на основе TiO₂. Принимая во внимание то, что величина $V_{OC} \sim \ln(J_{SC}\tau)$, где τ — время жизни носителей заряда, на основании полученных зависимостей значений V_{OC} от интенсивности освещения можно предположить, что величина τ в DSC- и PSC-элементах слабо зависит от интенсивности освещения и количества фотогенерированных носителей заряда.

Величина FF для кремниевого образца заметно ухудшается при снижении интенсивности освещения (рис. 6), тогда как в DSC- и PSC-элементах она остается практически неизменной. Последнее может говорить о том, что в условиях низкой солнечной радиации в TiO₂-фотоэлектродах снижается влияние рекомбинационных процессов.

Известно, что в СЭ на основе *c*-Si, состоящем из слоев кристаллического кремния, фотопроцессы эффективно протекают при условии прямого (под углом 90°) падения солнечного излучения на поверхность элемента [19]. В отличие от этого, в СЭ типа DSC и PSC (рис. 1) пористая структура мезоскопического фотоэлектрода обеспечивает эффективное поглощение и фотопреобразование как низкоинтенсивного, так и рассеянного света, падающего под различными углами к поверхности, что подтверждается представленными на рис. 4–6 результатами. Кроме того, как оказалось, толщина фотоэлектрода в СЭ на основе TiO₂ также влияет на характер зависимости кпд от интенсивности освещения. Эффективность образца PSC, в котором толщина слоя TiO₂ составляет 400 нм, хоть и незначительно, но

Рис. 6. Зависимость нормированных значений Voc (a) и FF (b) от интенсивности освещения для СЭ типа c-Si, DSC и PSC.

падает. В то же время кпд СЭ типа DSC, в структуре которого используется фотоэлектрод толщиной 6.1 мкм, улучшается с понижением интенсивности освещения.

Суммируя представленные выше результаты, можно утверждать, что эффективности фотопреобразования в СЭ типа DSC и PSC при понижении интенсивности освещения зависят от ряда факторов, включая вид используемого фоточувствительного материала, толщину электронпроводящих фотоэлектродных слоев, а также особенности морфологии и микроструктуры материала фотоэлектрода. Полученные данные свидетельствуют о том, что при низких уровнях солнечной радиации, а также в условиях рассеянного освещения наиболее эффективны СЭ с наноструктурированными фотоэлектродами на основе диоксида титана. Кроме того, значения кпд фотопреобразования и коэффициент заполнения FF для образцов DSC повышаются при снижении интенсивности освещения.

4. Заключение

Сконструированы сенсибилизированные красителем и перовскитные солнечные элементы с мезоскопическими наноструктурированными фотоэлектродами на основе диоксида титана и исследованы их фотовольтаические характеристики. Сравнительные измерения эффективности элементов DSC, PSC и c-Si в условиях изменяемой интенсивности освещения в диапазоне 10-1000 BT/м² показали преимущества DSC- и PSC-фотопреобразователей для работы в условиях низких значений солнечной радиации. Установлено, что высокие значения эффективности DSC- и PSC-фотопреобразователей в условиях низкой интенсивности освещения обусловлены наноструктурированной морфологией электронпроводящих фотоэлектродов на основе TiO₂ и зависят от вида, структуры и толщины фотоэлектродного слоя. Представленные результаты демонстрируют перспективы использования перовскитных и сенсибилизированных красителем солнечных элементов для работы в реальных погодных условиях низкой и рассеянной солнечной радиации, характерных для средних и северных широт Европы и России.

Исследование выполнено при финансовой поддержке гранта Российского научного фонда (проект № 17-19-01776).

Список литературы

- J. Jean, P.R. Brown, R.L. Jaffe, T. Buonassisi, V. Bulovic. Energy Environ. Sci., 8, 1200 (2015).
- [2] K.G. Reddy, T.G. Deepak, G.S. Anjusree, S. Thomas, S. Vadukumpully, K.R.V. Subramanian, S.V. Nair, A.S. Nair. Phys. Chem. Chem. Phys., 16, 6838 (2014).
- [3] B.E. Hardin, H.J. Snaith, M.D. McGehee. Nature Photonics, 6, 162 (2012).
- [4] A. Nikolskaia, O. Shevaleevskiy. Handbook of Solid State Chemistry, Vol. 6 — Applications: Functional Materials (Wiley-VCH, Weinheim, 2017) p. 61.
- [5] M. Gratzel. Acc. Chem. Res., 50, 487 (2017).

- [6] M.A. Green, Y. Hishikawa, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, A.W.Y. Ho-Baillie. Progr. Photovolt.: Res. Appl., 26, 3 (2018).
- [7] M. Freitag, J. Teuscher, Y. Saygili, X. Zhang, F. Giordano, P. Liska, J. Hua, S.M. Zakeeruddin, J.-E. Moser, M. Grätzel, A. Hagfeldt. Nature Photonics, 11, 372 (2017).
- [8] J.-L. Lan, T.-C. Wei, S.-P. Feng, C.-C. Wan, G. Cao. J. Phys. Chem. C, 116, 25727 (2012).
- [9] I. Raifuku, Y. Ishikawa, S. Ito, Y. Uraoka. J. Phys. Chem. C, 120, 18986 (2016).
- [10] M.I.H. Ansari, A. Qurashi, M.K. Nazeeruddin. J. Photochem. Photobiol. C Photochem. Rev., 35, 1 (2018).
- [11] H.J. Snaith. J. Phys. Chem. Lett., 4, 3623 (2013).
- [12] C. Cornaro, S. Bartocci, D. Musella, C. Strati, A. Lanuti, S. Mastroianni, S. Penna, A. Guidobaldi, F. Giordano, E. Petrolati, T.M. Brown, A. Reale, A. Di Carlo. Progr. Photovolt.: Res. Appl., 23, 215 (2015).
- [13] S. Kozlov, A. Nikolskaia, L. Larina, M. Vildanova, A. Vishnev, O. Shevaleevskiy. Phys. Status Solidi A, 213 (7), 1801 (2016).
- [14] A.B. Nikolskaia, M.F. Vildanova, S.S. Kozlov, O.I. Shevaleevskiy. Semiconductors, 52 (1), 88 (2018).
- [15] M.F. Vildanova, A.B. Nikolskaia, S.S. Kozlov, O.I. Shevaleevskiy, L.L. Larina. Techn. Phys. Lett., 44 (2), 126 (2018).
- [16] O.I. Shevaleevskiy, A.B. Nikolskaia, M.F. Vildanova, S.S. Kozlov, O.V. Alexeeva, A.A. Vishnev, L.L. Larina. Russ. J. Phys. Chem., **12** (4), 663 (2018).
- [17] M. Vildanova, S. Kozlov, A. Nikolskaia, O. Shevaleevskiy, N. Tsvetkov, O. Alexeeva, L. Larina. Nanosystems: Physics, Chemistry, Mathematics, 8 (4), 540 (2017).
- [18] A. Luque, S. Hegedu. Handbook of Photovoltaic Science and Engineering (Chichester, John Wiley & Sons Ltd, 2003) p. 92.
- [19] R. Santbergen, R.J.C. van Zolingen. Sol. Energ. Mater. Solar Cells, 92 (4), 432 (2008).

Редактор Г.А. Оганесян

Power conversion efficiencies of perovskite and dye-sensitized solar cells under various solar radiation intensities

A.B. Nikolskaia, S.S. Kozlov, M.F. Vildanova, O.I. Shevaleevskiy

Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia

Abstract We present the results of a comparative study on behavior of the photovoltaic parameters in perovskite (PSC), dyesensitized (DSC) and crystalline silicon (c-Si) solar cells under various intensities of solar radiation (10–1000 W/m²). It was found that unlike c-Si, the power conversion efficiencies of PSC and DSC under low radiation intensities are comparable with the corresponding values observed under standard light intensity of 1000 W/m² (AM1.5G). We have shown that high performance of the PSC and DSC at low and diffuse lighting conditions can be explained by the properties of the nanostructured TiO₂-based photoelectrodes depending on the structure, morphology and the thickness of the oxide TiO₂ layers.