01,13

Локализованные состояния вблизи тонкого слоя с нелинейными свойствами, разделяющего нелинейные фокусирующие и дефокусирующие среды

© С.Е. Савотченко

Белгородский государственный технологический университет им. В.Г. Шухова, Белгород, Россия

E-mail: savotchenkose@mail.ru

(Поступила в Редакцию 28 мая 2018 г. В окончательной редакции 20 ноября 2018 г. Принята к публикации 14 ноября 2018 г.)

> На основе нелинейного уравнения Шредингера описаны новые типы локализованных состояний вблизи контакта дефокусирующей и самофокусирующей сред с керровской нелинейностью, разделенных тонким дефектным слоем, характеризуемым нелинейностью такого же типа. Показано, что возникают два типа локализованных состояний. Получены дисперсионные соотношения, определяющие связь энергии локализации возбуждений с характеристиками сред и дефектного слоя. В явном аналитическом виде получены уровни энергии локализации в частных случаях.

DOI: 10.21883/FTT.2019.04.47403.147

1. Введение

Локализованные состояния в нелинейных средах с дефектами различной физической природы изучаются теоретически и экспериментально достаточно давно и активно [1,2]. Наиболее разработанными с теоретической точки зрения в данном направлении являются вопросы существования локализованных состояний вблизи границ раздела сред, представляющих собой нелинейные поверхностные волны оптической [3], магнитной [4] и звуковой природы [5]. Локализация электрического и магнитного полей вдоль волноводов, роль которых играют плоские дефекты, границы раздела слоев, описывается нелинейными уравнениями как с керровской нелинейностью [6,7], так и с различными вариантами некерровской нелинейности [8,9].

Для теоретического описания различных нелинейных явлений и эффектов локализации возбуждений широко применяется нелинейное уравнение Шредингера (НУШ) [10,11], в частности, в случае локализации световых пучков перпендикулярно направлению их распространения в средах с керровской нелинейностью. Особое значение имеет изучение волноводных свойств границ раздела сред. Во многих случаях, особенно когда изучаются закономерности локализации оптических полей, в теоретических моделях используются граничные условия, соответствующие непрерывности поля и его тангенциальных компонент [6–11].

Если же влияние границ раздела сред, как плоских дефектов, имеет существенное значение, то возникает необходимость использования в модели характеристик границ, к примеру, интенсивности взаимодействия нелинейного возбуждения с плоскими дефектами, выступающими в роли волноводов [12–14]. Локализация нелинейных возбуждений в двухуровневой системе, связанных на границе раздела линейной и нелинейной сред, рассматривалась в [15], а периодические состояния, возникающие в таких системах, проанализированы в [16]. Локализация нелинейных возбуждений в двухуровневой системе, которые линейным образом взаимодействуют с границей раздела нелинейных сред с противоположными знаками нелинейного отклика, была описана в [17].

Изучение особенностей локализации световых потоков вдоль волноводов часто требует введения дополнительных параметров, характеризующих взаимодействие электромагнитного поля с волноводом [18-23]. При слабой связи между волноводами амплитуда возбуждения в них может существенно превосходить среднюю амплитуду во всем кристалле, поэтому нелинейные слагаемые можно учитывать только внутри самих волноводов [18-20,23]. Важность изучения систем с такими свойствами обусловлена широкими возможностями использования плоскопараллельных волноводов с сильным взаимодействием с возбуждениями в нелинейной оптике. В качестве примера реалистичной физической системы, обладающей подобными оптическими свойствами, можно привести плоские волноводные структуры AlGaAs [24].

В настоящей работе использована модель нелинейного дефекта [18–22], представляющего собой плоский дефект, образованный при контакте дефокусирующей и самофокусирующей сред с керровской нелинейностью. В данной модели считается, что среды разделены тонким дефектным слоем, который внутри характеризуется также керровской нелинейностью.

Целью настоящей работы является определение новых типов локальных состояний и энергии локализации возбуждений вблизи нелинейного тонкого дефектного слоя с волноводными свойствами, возникающими за счет того, что среды по разные стороны от дефекта обладают противоположными знаками керровской нелинейности. Случай, когда нелинейный плоский дефект разделяет среды с одинаковыми знаками керровской нелинейности, был рассмотрен в [21], где показана возможность существования одного типа локальных состояний на границе раздела двух фокусирующих сред и трех типов локальных состояний на границе раздела двух дефокусирующих сред в различных энергетических диапазонах. В [22] показано, что в среде с самофокусировкой возникают новые типы периодических состояний, существование которых обусловлено нелинейностью дефекта и которые в случае линейного дефекта не возникают.

2. Формулировка и уравнения модели

Пусть граница раздела сред находится в плоскости *уz* перпендикулярно оси *x*. Граница раздела как плоский дефект порождает возмущения характеристик среды. Такие возмущения сосредоточены на расстояниях существенно меньше ширины локализации распространяющихся в среде волн.

В [25,26] было показано, что динамика светового поля в слоистой структуре описывается НУШ. Основываясь на данных результатах, рассмотрим систему плоскопараллельных чередующихся немагнитных узких и широких слоев, но теперь будем считать, что узкие слои характеризуются существенным нелинейным откликом.

Пусть ось *x* направлена перпендикулярно плоскости слоев, а плоскость *yz* параллельно им. В плоскополяризованной монохроматической волне, распространяющейся вдоль слоев, вектор напряженности электрического поля **E**, направленного вдоль оси *y*, описывается уравнением Максвелла с показателем преломления, зависящим от координаты *x* в поперечном слоям направлении: $n = n_0 + n_1 + n_2$, где n_0 и n_1 — линейные показатель преломления широких и узких слоев соответственно. Для сред с эффектом Керра нелинейный показатель преломления зависит от квадрата амплитуды поля: $n_2(x) = \{\alpha(x) + \beta(x)\} |\mathbf{E}|^2, \alpha(x)$ и $\beta(x)$ — коэффициенты керровской нелинейности сред в широких и узких слоях соответственно [23].

Монохроматическая волна с волновым вектором $\mathbf{k} = \mathbf{e}_x k_z$ ($\mathbf{e}_x = \{1, 0, 0\}$) и частотой $\omega_0 = c k_z / n_0$ в адиабатическом приближении представима в виде:

$$\mathbf{E} = \mathbf{e}_{y} \{ E_{1}(x, t) \cos(k_{z}z - \omega_{0}t) + E_{2}(x, t) \sin(k_{z}z - \omega_{0}t) \},\$$

где E_2 и E_2 — медленно меняющиеся функции x и t, $\mathbf{e}_y = \{0, 1, 0\}$. Для функции $\psi = E_1 + iE_2$ при условиях $n_1 \ll n_0$, $\alpha |\psi|^2 \ll n_0$ и $\beta |\psi|^2 \ll n_0$ в [25] было получено НУШ

$$i\psi_t + A\psi_{xx}'' + B\psi + \gamma |\psi|^2 \psi = U\psi,$$

где $A = (c/n_0)^2/2\omega_0$, $B = n_1\omega_0/n_0$, $\gamma = \alpha\omega_0/n_0$, U — потенциал, учитывающий различия показателей прелом-

ления в узких и широких слоях. В пределе ультратонких слоев ($h \ll a, h$ — ширина узких слоев, 2a расстояние между ними), разделяющих широкие слои, в [25] этот потенциал аппроксимировался выражением с дельта-функцией Дирака.

Ограничимся случаем, когда один ультратонкий слой разделяет два оптических полупространства, которые занимают керровские среды с противоположными знаками нелинейного отклика. Граница раздела сред считается плоской и много меньше характерного масштаба локализации возмущений параметров среды, ей создаваемой. Теперь предлагается учесть нелинейность и внутри узких слоев. Тогда потенциал U будет определяться коэффициентом керровской нелинейности внутри ультратонкого слоя β .

Учитывая приведенное НУШ, будем рассматривать взаимодействие нелинейных возбуждений, локализованных вблизи плоского дефекта, с нелинейными свойствами на основе одномерного НУШ традиционного вида

$$i\psi'_{t} = -\frac{1}{2m}\psi''_{xx} + \Omega(x)\psi - \gamma(x)|\psi|^{2} + U(x)\psi, \quad (1)$$

где m = -1/2A — "эффективная масса" возбуждения, $\Omega = -B$. Будем считать, что среды по разные стороны от дефекта могут иметь различные линейные показатели преломления. Тогда можно положить

$$\Omega(x) = \begin{cases} \Omega_1, & x < 0; \\ \Omega_2, & x > 0; \end{cases}$$

где величины $\Omega_{1,2}$ считаются всюду постоянными.

В настоящей работе рассматривается случай, когда среды по разные стороны от плоскости дефекта характеризуются ангармонизмом взаимодействия элементарных возбуждений с противоположными знаками: $\gamma(x) = -\gamma_1$, x < 0 для дефокусирующей среды и $\gamma(x) = \gamma_2$, x > 0 для самофокусирующей среды, где константы $\gamma_{1,2} > 0$.

Следуя [19,20], для описания плоского дефекта с нелинейными свойствами будем использовать потенциал в виде

$$U(x) = U_0 \delta(x) |\psi|^2, \qquad (2)$$

где $\delta(x)$ — дельта-функция Дирака, $U_0 \propto \beta/n_0$ — интенсивность нелинейного отклика дефекта такая, что при $U_0 > 0$ возбуждение отталкивается от дефекта, а при $U_0 < 0$ — притягивается.

Задача нахождения стационарных состояния с энергией E сводится подстановкой в (1) волновой функции в виде $\psi(x, t) = \psi(x) \exp(-iEt)$, в результате чего получается стационарное НУШ

$$E\psi = -\frac{1}{2m}\psi_{xx}'' + \Omega(x)\psi - \gamma(x)|\psi|^2\psi + U(x)\psi.$$
(3)

В рассматриваемой физической интерпретации величина *Е* имеет смысл частоты нелинейной поверхностной волны, локализованной в поперечном границе разделу сред направлении.

Нелинейное уравнение со слагаемым вида (2) использовалось при формулировке модели оптической системы, в которой периодическая модуляция линейного показателя преломления сочетается с одиночным нелинейным дефектом [23,27].

Решение НУШ (3) с потенциалом (2) сводится к решению НУШ без потенциала

$$\psi_{xx}^{\prime\prime} + 2m(E - \Omega(x) + \gamma(x)\psi^2)\psi = 0, \qquad (4)$$

с двумя граничными условиями сопряжения в плоскости дефекта при *x* = 0:

$$\psi(-0) = \psi(+0) = \psi(0), \tag{5}$$

$$\psi'(+0) - \psi'(-0) = 2mU_0|\psi(0)|^2.$$
 (6)

Если ввести амплитуду поля на границе раздела сред $\psi_0 = \psi(-0) = \psi(+0)$, то граничное условие (6) примет вид:

$$\psi'(+0) - \psi'(-0) = 2mU_0|\psi_0|^2.$$
 (7)

Следует отметить, что амплитуда нелинейных волн является важной характеристикой, поскольку от нее зависит энергия (частота) нелинейных стационарных состояний [1].

Как известно, типы решений НУШ определяются знаком нелинейности. Связанные на границе раздела их комбинации, соответствующие различным знакам нелинейности сред по разные от нее стороны, определяют типы нелинейных локализованных состояний.

3. Нелинейные локализованные состояния

В диапазоне $\Omega_1 < E < \Omega_2$, что возможно при условии $\Omega_1 < \Omega_2$, уравнение (4) имеет решение, удовлетворяющее граничным условиям (5) и (6), представимое в виде

$$\psi(x) = \begin{cases} A_t \operatorname{th} a_t(x - x_1), & x < 0\\ A_2/\operatorname{ch} q_2(x - x_2), & x > 0 \end{cases}.$$
 (8)

Параметры $x_{1,2}$ характеризуют положения "центров" связанных кинка и солитона по разные стороны от плоскости дефекта.

Подстановка (8) в (4) позволяет получить амплитуды

$$A_t^2 = q_t^2 / (m\gamma_1), \tag{9}$$

$$A_2^2 = q_2^2 / (m\gamma_2) \tag{10}$$

и волновые числа

$$q_t^2 = m(E - \Omega_1), \tag{11}$$

$$q_2^2 = 2m(\Omega_2 - E).$$
 (12)

Из (11) и (12) следует связь между величинами q_t и q_2

$$q_t^2 = m(\Omega_2 - \Omega_1) - q_2^2/2.$$
(13)

Значения энергии локализованного состояния определяются из соотношения, полученного после подстановки решения (8) в граничные условия (5) и (6)

$$q_2 = -\eta q_t \operatorname{th} q_t x_1 \operatorname{ch} q_2 x_2, \qquad (14)$$

$$q_2 \operatorname{th} q_2 x_2 + 2q_t / \operatorname{sh} 2q_t x_t = 2U_0 q_2^2 / \gamma_2 \operatorname{ch}^2 q_2 x_2, \quad (15)$$

где $\eta = (\gamma_2/\gamma_1)^{1/2}$.

Таким образом, из соотношения (15), с учетом (13), получается волновое число, которое позволяет найти энергию как функцию параметров $E = E(m, U_0, \gamma_{1,2}, x_2)$. Из соотношения (14) затем находится x_1 . Поэтому волновая функция (8) является однопараметрическим решением НУШ, характеризуемым одним свободным параметром, в качестве которого выбран x_2 .

Если энергия возбуждения находится в диапазоне $E < \min\{\Omega_1, \Omega_2\}$, то НУШ (4) имеет решение вида

$$\psi(x) = \begin{cases} A_1/\operatorname{sh} q_1(x-x_1), & x < 0\\ A_2/\operatorname{ch} q_2(x-x_2), & x > 0 \end{cases}.$$
 (16)

Для ограниченности решения (16) должно выполняться требование: $x_1 < 0$.

Подстановка (16) в НУШ (4) позволяет получить амплитуду

$$A_1^2 = q_1^2 / (m\gamma_1)$$

и волновое число:

$$q_1^2 = 2m(\Omega_1 - E).$$

Амплитуда A_2 определяется выражением (10), а волновое число q_2 определяется выражением (12).

Подстановка (16) в граничные условия (5) и (6) приводит к дисперсионным соотношениям

$$\eta q_1 \operatorname{ch} q_2 x_2 = -q_2 \operatorname{sh} q_1 x_1, \tag{17}$$

$$q_2 \operatorname{th} q_2 x_2 - q_1 \operatorname{cth} q_1 x_1 = 2U_0 q_2^2 / \gamma_2 \operatorname{ch}^2 q_2 x_2.$$
(18)

Соотношение (18) служит для нахождения волнового числа, позволяющего получить энергию как функцию параметров системы $E = E(m, U_0, \gamma_{1,2}, x_2)$. Затем из соотношения (17) можно определить параметр x_1 . В качестве свободного параметра выбран x_2 .

В некоторых частных случаях имеется возможность получить выражение для энергии локализованного состояния типа (16) в явном аналитическом виде.

4. Условия локализации

Сначала рассмотрим случай, когда $\Omega_1 = \Omega_2 = \Omega$, откуда следует, что $q_1 = q_2 = q$. Если рассмотреть решение специального вида при $x_2 = 0$, то из (18) получается волновое число

$$q = -\frac{\gamma_2 \sqrt{\eta^2 + 1}}{2U_0 \eta},$$
 (19)

которое позволяет определить энергию такого локализованного состояния в явном виде

$$E = \Omega - \gamma_2 (\gamma_1 + \gamma_2) / 8m U_0^2.$$
 (20)

Из (17) тогда с учетом (19) получается выражение для положения "центра" солитона

$$x_1 = \frac{2U_0\eta}{\gamma_2\sqrt{\eta^2 + 1}}\operatorname{Ar}\operatorname{sh}\eta.$$
 (21)

Для существования такого вида локализованного состояния с энергией (20) и "центром" солитона (21) в силу требования ограниченности решения (16) должно выполняться условие $U_0 < 0$. Другими словами, рассматриваемое состояние может локализоваться только вблизи притягивающего дефекта.

Если рассмотреть теперь решение (16) с $\Omega_1 = \Omega_2 = \Omega$ и симметрично расположенными "центрами" солитонов, когда $x_1 = -x_2 = -x_0$, из (18) получаем волновое число

$$q = \frac{\gamma_2}{2U_0\eta} \frac{1+\eta^2}{1-\eta^2},$$
 (22)

которое позволяет определить энергию такого локализованного состояния в явном виде

$$E = \Omega - \frac{\gamma_2^2}{8mU_0^2\eta^2} \left(\frac{1+\eta^2}{1-\eta^2}\right)^2.$$
 (23)

Из (17) тогда с учетом (22) получается выражение для положения "центра" солитона

$$x_0 = \frac{2U_0\eta}{\gamma_2} \frac{1-\eta^2}{1+\eta^2} \operatorname{Ar} \operatorname{th} \eta.$$
 (24)

Для ограниченности решения (16) x_0 должно быть положительным, поэтому такое состояние локализуется вблизи отталкивающего дефекта (то есть когда $U_0 > 0$).

Рассмотрим теперь случай, когда $\Omega_1 \neq \Omega_2$ и $x_2 = 0$. Тогда из (17) и (18) получается энергия такого локализованного состояния в явном виде

$$E = \Omega_2 - \Omega_a \{ 1 \pm (1 - \Omega_b / \Omega_a)^{1.2} \},$$
(25)

где

$$\Omega_a = \gamma_2(\gamma_1 + \gamma_2)/16mU_0^2,$$

 $\Omega_b = 2\gamma_2(\Omega_2 - \Omega_1)/(\gamma_1 + \gamma_2).$

Локализованное состояние рассматриваемого вида с энергией (25) существует при выполнении условия: $\Omega_2 - (\gamma_1 + \gamma_2)^2 / 32mU_0^2 < \Omega_1 < \Omega_2.$

Наконец, рассмотрим случай, когда $\Omega_1 \neq \Omega_2$, $x_1 \neq x_2 \neq 0$, и выполняется требование $q_j x_j \ll 1$. Такое условие можно назвать длинноволновым приближением. Оно описывает состояния, энергия которых близко расположена к краю спектра: $|\Omega_j - E| \ll 1/2mx_j^2$. В рассматриваемом приближении характеристики ло-кализованного состояния выражаются через свободный параметр x_2 . Тогда из (17) получается положение

 $x_1 = -\eta x_2$, а из (18) энергия такого локализованного состояния описывается выражением

$$E = \Omega_2 - \frac{\sqrt{\gamma_1 \gamma_2}}{2mx_2(2U_0 - \gamma_2 x_2)}.$$
 (26)

Такое локализованное состояние с энергией (26) существует, если выполняются требования: 1) $x_2 > 0$ и $U_0 > \gamma_2 x_2/2$ (отталкивающий нелинейный дефект) или 2) $x_2 < 0$ и $U_0 < \gamma_2 x_2/2$ (притягивающий нелинейный дефект).

5. Заключение

Следует отметить, что при $U_0 = 0$, то есть вблизи дефекта без нелинейного отклика, локальные состояния рассмотренных видов не реализуются. Это означает, что их существование обусловлено исключительно нелинейными свойствами дефекта.

Таким образом, в данной работе аналитически описаны особенности локализации возбуждений вблизи тонкого дефектного слоя с нелинейными свойствами, разделяющего среды с различными свойствами, в частности с различными характеристиками ангармонизма кристаллов противоположных знаков. Учет противоположных знаков нелинейности, характеризующих фокусирующие и дефокусирующие среды, позволил описать два новых типа локализованных состояний, дополняющих исследования [19–21].

Полученные результаты изучения нелинейных поверхностных волн, распространяющихся вдоль границ раздела сред с различными физическими характеристиками, имеют существенное значение в связи с их широким применением в оптических системах хранения данных [28,29]. Кроме того, особенности несимметричного распределения поля вдоль границ раздела сред следует учитывать при определении управляющих свойств таких интерфейсов, для которых возможны переключения режимов пропускания и запирания потоков поля [30,31].

Список литературы

- [1] А.М. Косевич, А.С. Ковалев. Введение в нелинейную физическую механику. Наук. думка, Киев (1989). 304 с.
- [2] Д. Михалаке, Р.Г. Назмитдинов, В.К. Федянин. Физика элементарных частиц и атомного ядра (ЭЧАЯ) 20, 198 (1989).
- [3] Y.S. Kivshar, G.P. Agrawal. Optical Solitons: From Fibers to Photonic Crystals. Academic Press, San Diego (2003). 540 p.
- [4] А.Б. Борисов, В.В. Киселев. Нелинейные волны, солитоны и локализованные структуры в магнетиках. Квазиодномерные магнитные солитоны. УрО РАН, Екатеринбург (2009). Т. 1. 512 с.
- [5] В.И. Горенцвейг, Ю.С. Кившарь, А.М. Косевич, Е.С. Сыркин. ФНТ 16, 1472 (1990).
- [6] Y.V. Bludov, D.A. Smirnova, Yu.S. Kivshar, N.M.R. Peres, M.I. Vasilevsky. Phys. Rev. B 89, 035406 (2014).

- [7] I.V. Shadrivov, A.A. Sukhorukov, Yu.S. Kivshar, A.A. Zharov, A.D. Boardman, P. Egan. Phys. Rev. E 69, 016617 (2004)
- [8] Л.Ф. Федоров, К.Д. Ляхомская. Письма в ЖТФ 23, 36 (1997).
- [9] О.В. Коровай, П.И. Хаджи. ФТТ 45, 364 (2003).
- [10] F.Kh. Abdullaev, B.B. Baizakov, B.A. Umarov. Opt. Commun. 156, 341. (1998).
- [11] Н.Н. Ахмедиев, В.И. Корнеев, Ю.В. Кузьменко. ЖЭТФ 88, 107 (1985).
- [12] С.Е. Савотченко. Вестн. Воронежского гос. ун-та. Сер. Физика. Математика **4**, 51 (2016).
- [13] С.Е. Савотченко. Конденсированные среды и межфазные границы **19**, *4*, 567 (2017).
- [14] С.Е. Савотченко. Вестн. Воронежского гос. ун-та. Сер. Физика. Математика 1, 44 (2018).
- [15] С.Е. Савотченко. Конденсированные среды и межфазные границы **19**, *2*, 291 (2017).
- [16] С.Е. Савотченко. ЖТФ 62, 1776 (2017).
- [17] S.E. Savotchenko. Commun. Nonlinear Sci. Numer. Simul. 63, 171 (2018).
- [18] I.V. Gerasimchuk. J. Nano-Electron. Phys. 4, 04024-1 (2012).
- [19] I.V. Gerasimchuk, P.K. Gorbach, P.P. Dovhopolyi. Ukr. J. Phys. 57, 678 (2012).
- [20] И.В. Герасимчук. ЖЭТФ 121, 596 (2015).
- [21] S.E. Savotchenko. Mod. Phys. Lett. B 32, 1850120 (2018).
- [22] С.Е. Савотченко. Письма в ЖЭТФ 107, 481 (2018).
- [23] A.A. Sukhorukov, Y.S. Kivshar. Phys. Rev. Lett. 87, 083901 (2001).
- [24] B. Luther-Davies, G.I. Stegeman. Spatial Optical Solitons. Springer-Verlag, N.Y. (2001).
- [25] И.В. Герасимчук, А.С. Ковалев. ФНТ 26, 799 (2000).
- [26] И.В. Герасимчук, А.С. Ковалев. ФТТ 45, 1088 (2003).
- [27] Y.V. Kartashov, B.A. Malomed, L. Torner. Rev. Mod. Phys. 83, 247 (2011).
- [28] I.S. Panyaev, N.N. Dadoenkova, Yu.S. Dadoenkova, I.A. Rozhleys, M. Krawczyk, I.L. Lyubchanckii, D.G. Sannikov. J. Phys. D 9, 435103 (2016).
- [29] И.С. Паняев, Д.Г. Санников. Компьютерная оптика **41**, 183 (2017).
- [30] M.D. Tocci, M.J. Bloemer, M. Scalora, J.P. Dowling, C.M. Bowden. Appl. Phys. Lett. 66, 2324 (1995).
- [31] S. Lan, H. Ishikawa. J. Appl. Phys. 91, 2573 (2002).

Редактор Ю.Э. Китаев