Исследование влияния радиации на рекомбинационные потери в гетеропереходных солнечных элементах на основе монокристаллического кремния

© И.Е. Панайотти¹, Е.И. Теруков^{2,3}

¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия

² Санкт-Петербургский государственный электротехнический университет "ЛЭТИ", Санкт-Петербург, Россия ³ НТЦ тонкопленочных технологий в энергетике при Физико-техническом институте им. А.Ф. Иоффе РАН,

Санкт-Петербург, Россия E-mail: panaiotti@mail.ioffe.ru

07

Поступило в Редакцию 28 ноября 2018 г. В окончательной редакции 28 ноября 2018 г. Принято к публикации 5 декабря 2018 г.

Разработан метод численной оценки роста рекомбинационных потерь в кремниевых гетеропереходных солнечных элементах вследствие радиационного воздействия. Расчеты основаны на анализе экспериментальных значений токов короткого замыкания. Предложенная модель позволяет оценивать степень деградации полупроводниковых структур путем вычисления уменьшения объемного времени жизни и диффузионной длины носителей заряда. Полученные результаты имеют практическую ценность для изучения возможности эксплуатации данного типа солнечных элементов в космических условиях.

DOI: 10.21883/PJTF.2019.05.47388.17612

Проблема деградации параметров солнечных элементов (СЭ) в результате внешних воздействий находится в фокусе интересов многочисленных научных лабораторий по всему миру. Лучшие образцы гетеропереходных тонкопленочных солнечных элементов HIT-элементов (HIT — heterojunction with intrinsic thinlayer solar cells), изготовленных на основе монокристаллического кремния, в настоящее время имеют КПД более 25% [1,2]. Солнечные батареи на базе НІТэлементов хорошо зарекомендовали себя в качестве альтернативных источников энергии в различных климатических условиях на земной поверхности. С целью изучения возможности эксплуатации HIT-элементов в условиях ближнего космоса в [3] было проведено исследование влияния радиации на их параметры. Облучение полупроводниковых СЭ частицами высоких энергий сопровождается образованием дополнительных дефектов в кристаллической решетке, которые являются эффективными рекомбинационными центрами. В результате время жизни носителей заряда в подложке уменьшается. При высокой дозе облучения значительный рост рекомбинационных потерь может стать причиной критического ухудшения рабочих характеристик фотоэлектрических преобразователей.

Типичная структура НІТ-элемента (рис. 1) имеет кристаллическую кремниевую подложку (*c*-Si) *n*-типа, выращенную методом Чохральского (Cz), с концентрацией доноров $N_d \approx 10^{15}$ сm⁻³ и объемным временем жизни носителей заряда $\tau_0 \approx 1.5$ ms. Теория, развитая в [4], применима для описания процессов фотоэлектрического преобразования только в случае выполнения условия $L_{diff} \gg d$, где L_{diff} — диффузионная длина дырок,

а $d = 90-170\,\mu\text{m}$ — толщина подложки. Поскольку в результате радиационного воздействия время жизни носителей заряда τ может оказаться значительно меньше τ_0 , необходимо использовать модель, справедливую для любого соотношения между L_{diff} и d.

Анализ процессов проводился в рамках традиционного для СЭ подхода [5], но при этом учитывались особенности полупроводниковой структуры НІТ-элементов. Расчеты основывались на решении стационарного уравнения непрерывности для неосновных носителей заряда в базе НІТ-элемента, имеющего структуру p^+nn^+ -диода:

$$\frac{d^2\Delta p}{dx^2} - \frac{\Delta p}{L_{diff}^2} + \frac{G}{D} = 0, \tag{1}$$

где Δp — концентрация избыточных дырок в *n*-базе, *х* — координата сечения, *D* — коэффициент диффузии дырок, $L_{diff} = \sqrt{D\tau}$, G —скорость фотогенерации электронно-дырочных пар. Оценки показывают, что при плотностях токов порядка нескольких десятков mA/cm², характерных для НІТ-элемента, электрическое поле в *п*-базе вне областей пространственных зарядов крайне мало, так что в вычислениях мы ограничились диффузионным приближением. Использование антиотражающих рельефов и покрытий способствует многократному переотражению падающего излучения внутри полупроводниковой структуры. Поэтому в первом приближении можно принять, что в HIT-элементах $G \approx \text{const}(x)$. Поскольку области пространственных зарядов проникают в глубь монокристаллической подложки с обеих ее сторон всего на несколько десятых микрометра, мы полагали в расчетах, что толщины квазинейтальной

Рис. 1. Схематическое изображение полупроводниковой структуры НІТ-элемента.

Рис. 2. Упрощенная зонная диаграмма НІТ-элемента.

базы и подложки совпадают. На фронтальной границе базы концентрация избыточных дырок определяется величиной прямого смещения U на гетеропереходе $(p)\alpha$ -Si : H/ $(i)\alpha$ -Si : H/(n)c-Si [6]:

$$\Delta p(x=0) = \Delta p(U) = -\frac{N_d}{2} + \sqrt{\frac{N_d^2}{4} + n_i^2(T)} \exp\left(\frac{qU}{kT}\right),$$
(2)

где $n_i(T)$ — собственная равновесная концентрация носителей заряда в подложке при заданной температуре T, а k — постоянная Больцмана. Фронтальный гетеропереход формирует высокий потенциальный барьер для электронов (рис. 2), так что в сечении x = 0 коэффициент инжекции дырок равен единице. Отметим, что условие (2) является наиболее общим, т. е. применимо к любому уровню инжекции неосновных носителей заряда. Особенности полупроводниковой структуры HIT-элемента таковы, что гетеропереход $(n)\alpha$ -Si : H/ $(i)\alpha$ -Si : H/(n)c-Si формирует потенциальный барьер для дырок и является причиной их аккумуляции у тыльной границы базы (рис. 2). Поэтому можно считать, что дырочный ток в сечении x = d практически отсутствует, т. е.

$$\frac{d\Delta p}{dx} \approx 0$$
 при $x = d$. (3)

Решением уравнения (1) с учетом граничных условий (2) и (3) является стационарное распределение концентрации избыточных дырок в *n*-базе

$$\Delta p(U,x) = G\tau \left[1 - \frac{\operatorname{ch}\left(\frac{d-x}{L_{diff}}\right)}{\operatorname{ch}\left(\frac{d}{L_{diff}}\right)} \right] + \Delta p(U) \left[\frac{\operatorname{ch}\left(\frac{d-x}{L_{diff}}\right)}{\operatorname{ch}\left(\frac{d}{L_{diff}}\right)} \right].$$
(4)

При $L_{diff} \gg d$ избыточная концентрация дырок оказывается примерно одинаковой во всех сечениях базы $\Delta p = \Delta p(U) \approx \text{const}(x)$, что и было учтено в работах [4,6]. Используя (4), можно найти плотность тока

$$J(U, x) = -qD \frac{d(\Delta p(x))}{dx}$$
$$= -qD \frac{(G\tau - \Delta p(U))}{L_{diff}} \frac{\operatorname{sh}\left(\frac{d-x}{L_{diff}}\right)}{\operatorname{ch}\left(\frac{d}{L_{diff}}\right)}, \qquad (5)$$

где q — заряд электрона. Для сечения x = 0 формула (5) приобретает вид

$$J(U) = -J_{sc} + \frac{qD\Delta p(U)}{L_{diff}} \tanh\left(\frac{d}{L_{diff}}\right), \qquad (6)$$

где

$$J_{sc} = J(U = 0) = qGL_{diff} \tanh\left(\frac{d}{L_{diff}}\right)$$
(7)

представляет собой плотность тока, который регистрируется в электрической цепи при отсутствии смещения на фронтальном гетеропереходе, когда $\Delta p = 0$, т.е. является плотностью тока короткого замыкания. Поскольку плотность тока J одинакова во всех сечениях полупроводниковой структуры (divJ = 0), фактически выражение (6) представляет собой вольт-амперную характеристику (BAX) идеализированного HIT-элемента, у которого отсутствуют токи утечки, падение напряжения на последовательном сопротивлении и токи, обусловленные рекомбинацией на обсих поверхностях подложки. В данных обозначениях ток течет противоположно направлению оси абсцисс (рис. 2), т.е. J(U) < 0.

Предложенный метод описания диффузионного механизма переноса носителей заряда применим к любому уровню инжекции дырок и учитывает условия на границах токового канала с произвольным соотношением между L_{diff} и d в отличие от использованного в [3,7] приближения, справедливого только для низкого уровня инжекции и полубесконечного токового канала, когда $d \gg L_{diff}$.

Рис. 3. Зависимость относительного уменьшения тока короткого замыкания от отношения между толщиной подложки и диффузионной длиной дырок.

В предельном случае $L_{diff} \gg d$ с учетом плотности тока поверхностной рекомбинации $J_{R_s} = S\Delta p(U)$, где S — суммарная скорость поверхностной рекомбинации, выражение (6) приобретает вид

$$J(U) \approx -J_{sc0} + \Delta p(U) \big(d/\tau + S \big), \tag{8}$$

где

$$J_{sc0} = J(U = 0, x = 0) = qGd,$$
(9)

и полностью совпадает с теоретической моделью для ВАХ, использованной в [4,6]. В отсутствие радиации при $L_{diff} \gg d$ плотность тока короткого замыкания J_{sc0} (или фототока J_f) зависит только от величины G и толщины подложки d, а ВАХ НІТ-элемента определяется балансом между фотогенерационными и рекомбинационными процессами в объеме подложки и на ее поверхностях. Поскольку темп фотогенерации электронно-дырочных пар определяется эффективностью проникновения солнечного излучения внутрь СЭ и последующего поглощения фотонов в монокристаллическом кремнии [5], полученный результат не находится в противоречии с общеизвестным выражением

$$J_f = q \int_{0}^{\lambda_m} F(\lambda) (1 - R(\lambda)) SR(\lambda) d\lambda, \qquad (10)$$

где λ — длина волны фотона, λ_m — красная граница поглощения, определяемая шириной запрещенной зоны кремния, $F(\lambda)$ — плотность потока падающих фотонов при заданной λ , $R(\lambda)$ — доля отраженных фотонов, $SR(\lambda)$ — внутренний спектральный отклик.

В виду того что в НІТ-элементах гетеропереходы на обеих сторонах подложки формируются путем плазмохимического напыления, а не с помощью диффузии, в составе экспоненциальных зависимостей (6) и (8), описывающих ВАХ, отсутствует составляющая тока, вызванная повышенным темпом рекомбинации в областях объемного заряда.

После радиационного облучения из-за падения времени жизни диффузионная длина дырок может уменьшиться настолько, что не все фотогенерируемые носители тока будут собираться электрическими полями в областях объемных зарядов гетеропереходов. Часть электронов и дырок рекомбинирует до того, как они достигнут контактов НІТ-элемента. В результате измеряемые значения тока короткого замыкания снизятся, что и было экспериментально подтверждено в работе [3].

С помощью формул (7) и (9) можно вычислить уменьшение диффузионной длины и объемного времени жизни дырок при известной толщине подложки. Сравнение экспериментальных значений токов короткого замыкания до (I_{sc0}) и после (I_{sc}) радиационного воздействия на НІТ-элемент позволяет получить искомую зависимость

$$\frac{I_{sc}}{I_{sc0}} = \frac{J_{sc}}{J_{sc0}} \approx \frac{L_{diff}}{d} \tanh\left(\frac{d}{L_{diff}}\right).$$
(11)

Построенная по формуле (11) кривая (рис. 3) наглядно иллюстрирует взаимосвязь между относительным уменьшением тока короткого замыкания и степенью деградации полупроводниковой структуры НІТ-элемента в результате снижения L_{diff} и τ .

В работе [3] было экспериментально зарегистрировано, что в условиях АМО после облучения НІТэлементов потоками электронов с энергией 3.8 MeV токи короткого замыкания уменьшаются на 6-29%в зависимости от величины флюенса (10^{12} , 10^{13} или 10^{14} cm⁻²). При $d \approx 160\,\mu$ m такой результат, согласно (11), свидетельствует о снижении L_{diff} примерно на 66-89%. Таким образом, по мере увеличения флюенса условие $L_{diff} \gg d$ перестает выполняться, а объемное время жизни носителей заряда падает относительно начальной величины 1.5 ms до значений $18-173\,\mu$ s.

Список литературы

- [1] Yamamoto K., Yoshikawa K., Yoshida W., Irie T., Kawasaki H., Konishi K., Asatani T., Kanematsu M., Mishima R., Nakano K., Uzu H., Adachi D. High efficiency α-Si/c-Si heterojunction solar cells // Program Book. 27th Int. Conf. on amorphous and nanocrystalline semiconductors. Seoul, Korea, 2017. P. 92.
- [2] Миличко В.А., Шалин А.С., Мухин И.С., Ковров А.Э., Красилин А.А., Виноградов А.В., Белов П.А., Симовский К.Р. // УФН. 2016. Т. 186. № 8. С. 801–852.
- [3] Калиновский В.С., Теруков Е.И., Контрош Е.В., Вербицкий В.Н., Титов А.С. // Письма в ЖТФ. 2018. Т. 44. В. 17. С. 95–102.
- [4] Саченко А.В., Шкребтий А.И., Коркишко Р.М., Костылев В.П., Кулиш Н.Р., Соколовский И.О. // ФТП. 2015. Т. 49.
 В. 2. С. 271–277.

- [5] Sze S.M. Physics of semiconductor devices. John Wiley & Sons, 1981. Ch. 14.2. [Зи С. Физика полупроводниковых приборов. Пер. с англ. М.: Мир, 1984. Кн. 2. Гл. 14.2.].
- [6] Саченко А.В., Крюченко Ю.В., Костылев В.П., Соколовский И.О., Абрамов А.С., Бобыль А.В., Панайотти И.Е., Теруков Е.И. // ФТП. 2016. Т. 50. В. 2. С. 259–263.
- [7] Андреев В.М., Евстропов В.В., Калиновский В.С., Лантратов В.М., Хвостиков В.П. // ФТП. 2009. Т. 43. В. 5. С. 671– 678.