Half-metallic characteristic in the new full-Heusler SrYO₂ $(Y = Sc, Ti, V and Cr)^*$

© N. Nazemi, F. Ahmadian[¶]

Department of Physics, Shahreza Branch, Islamic Azad University, Shahreza, Iran

[¶] E-mail: farzad.ahmadian@gmail.com; ahmadian@iaush.ac.ir

(Received July 10, 2018)

Half-metallic properties of SrYO₂ (Y = Sc, Ti, V, and Cr) full-Hensler compounds were studied using fullpotential linearized augmented plane wave method based on density functional theory. The negative formation energies of SrYO₂ (Y = Sc, Ti, V, and Cr) alloys confirmed that they can be synthesized experimentally. Total energy calculations showed that AlCu₂Mn-type structure was the ground state structure in all compounds. In both structures, SrYO₂ (Y=Ti, V, and Cr) alloys were half-metallic ferromagnets, while SrScO₂ was a non- magnetic metal. The origin of half-metallicity was verified for SrCrO₂. SrYO₂ (Y = Ti, V, and Cr) alloys in both structures were half-metals in a wide range of lattice constants indicating that they are quite robust against hydrostatic strains. The magnetization of SrYO₂ (Y = Ti, V, and Cr) alloys was mainly originated from the 3d electrons of Y(=Ti, V, and Cr) atoms and followed the Slater-Pauling rule: $M_{tot} = Z_{tot} - 12$. Generally, It is expected that SrYO₂ (Y = Ti, V, and Cr) alloys are promising and interesting candidates in the future spintronic field.

DOI: 10.21883/FTT.2019.01.47383.206

^{*} Полный текст статьи опубликован в журнале "Physics of the Solid State" (Т. 61. Вып. 1).