06

Фемтосекундное многофотонное возбуждение люминесценции примесных ионов в кристаллах

© В.И. Барышников^{1,2}, О.В. Горева¹, Ю.А. Григорьева¹, О.Л. Никонович¹

¹ Иркутский государственный университет путей сообщения, 664074 Иркутск, Россия ² Иркутский филиал Института лазерной физики Сибирского отделения РАН, 664033 Иркутск Россия e-mail: vibh@rambler.ru

Поступила в редакцию 03.08.2018 г. В окончательной редакции 08.10.2018 г. Принята к публикации 06.11.2018 г.

Исследован механизм возбуждения люминесценции примесного состава в кристаллических материалах под действием интенсивного фемтосекундного лазерного излучения. Установлено, что в ходе фемтосекундной трехфотонной ионизации собственного вещества кристалла образуется высокая концентрации зонных электронов и дырок, которые последовательно захватываются примесными ионами. Эффективность электронно-дырочного возбуждения примесного состава в кристаллах, как и при воздействии электронным пучком, определяется степенью различия электронных систем *s*-, *p*-, *d*-подгрупп внешней оболочки катионов собственного вещества и активатора.

DOI: 10.21883/OS.2019.03.47375.230-18

Введение

Кардинальное увеличение объемной плотности мощности источников фемтосекундного лазерного излучения обеспечивает высокий темп возбуждения кристаллического вещества диэлектриков, при котором происходит эффективная многофотонная ионизация собственных ионов и наводятся электроны зоны проводимости и дырки валентной зоны [1,2]. На основе данных особенностей лазерного возбуждения кристаллов значительное развитие получили исследования фундаментального и прикладного характера. Прежде всего, это определение быстропротекающих механизмов взаимодействия мощного фемтосекундного лазерного излучения с веществом и углубление фундаментальных основ высокоэнергетической физики твердого тела [3,4]. Разработка новых систем и элементов квантовой электронной техники, методов и аппаратуры эффективной диагностики диэлектрических материалов [5-7].

Известно [8–10], что в кристаллах, возбуждаемых сильноточными наносекундными электронными пучками, достигается высокий темп возбуждения вещества, при котором на временном интервале 0.1-10 пѕ происходит передача интенсивного ударного воздействия и лавинно наводится высокая концентрация зонных электронов и дырок $(10^{19}-10^{21} \text{ cm}^{-3})$. При этом установлено, что в ионных кристаллах выход наносекундной катодолюминесценции (КЛ) примесных ионов определяется эффективностью их взаимодействия с наведенными зонными носителями заряда, которое зависит от степени различия электронных систем *s*-, *p*-, *d*-подгрупп внешней оболочки ионов собственного вещества и активатора. То есть при различии валентных электронных структур ионов активатора и собственного вещества, потенциал в окрестности примесных ионов, сформированный *s*-, *p*-, *d*-подгруппами валентных электронных оболочек, нерегулярен. В этом случае принцип Блоха нарушается, и зонные электроны (*e*) и дырки (*h*) в процессе миграции эффективно передают энергию примесным дефектам [8,9]. Так, например, в кристаллах Ce:YAlO₃; Ce:Y₃Al₅O₁₂; Ti:Al₂O₃; Er:BaY₂F₈; Tl:NaI и др. на-блюдается высокий выход примесной КЛ (~ 10%) при незначительной концентрации активатора в веществе (0.1 wt.%).

По данным [1-3], в ходе фемтосекундного многофотонного лазерного и сильноточного наносекундного электронного возбуждения ионных кристаллов достигается значительная по величине, наведенная в ходе ионизации собственного вещества, концентрация зонных носителей заряда. Вместе с тем в течение фемтосекундного лазерного воздействия при длительности импульса, например $5 \cdot 10^{-14}$ s, можно считать, что наведенные зонные электроны и дырки неподвижны. И напротив, в ходе воздействия импульса наносекундного электронного пучка, который по длительности на 3-4 порядка более продолжителен, эффективность возбуждения люминесценции легирующей примеси зависит не только от степени различия электронных систем s-, p-, d-подгрупп внешней оболочки ионов собственного вещества и активатора, но и определяется временем миграции наведенных зонных электронов и дырок [8,9]. Такие особенности в механизмах лазерного фемтосекундного возбуждения легирующей примеси с участием наведенных зонных электронов и дырок при многофотонной ионизации собственного вещества в диэлектрических кристаллах не изучены. Таким образом, целью работы является изуче-

337

ние механизмов мультифотонного фемтосекундного возбуждения фотолюминесценции (ФЛ) примесных ионов в диэлектрических кристаллах на фемтосекундных и наносекундных временных интервалах.

Образцы, методы и техника исследования

В экспериментах исследовались полированные со всех сторон легированные, номинальной и высокой чистоты кристаллы YAlO₃, Y₃Al₅O₁₂, Al₂O₃, Y₂SiO₅, LiLuF₄, BeAl₂O₄, YAlO₃, LaF₃, NaCl и др. (20 × 5 × 5 mm³). Для возбуждения ФЛ примесей в режиме многофотонного возбуждения использовалась вторая гармоника фемтосекундного перестраиваемого Ті: Al₂O₃ лазера TIF-50. Регулировка длительности фемтосекундных импульсов производилась в диапазоне 50-100 fs. Фемтосекундные лазерные импульсы посредством юстировочной системы подавались на торцевую поверхность кристалла. Прецизионная система юстировки широкополосного сферического зеркала и продольного перемещения исследуемого кристалла обеспечивала плавную регулировку интенсивности в кристалле лазерного фемтосекундного пучка, вплоть до области гауссовой перетяжки. Импульсная интенсивность лазерного излучения в области гауссовой перетяжки достигает 2.5 GW/cm². Зеркала изготовлены методом напыления алюминия на соответствующие стеклянные подложки.

Для возбуждения КЛ использован коаксиально сочлененный с вакуумным криостатом миниатюрный наносекундный сильноточный ускоритель электронов с энергией электронов в пучке 250 keV, плотностью тока 0.1–2.0 kA/cm² и длительностью импульса 1 ns. Через кварцевые окна вакуумного малоиндуктивного криостата на образец направлялось излучение фемтосекундного лазера и велось измерение спектрально кинетических параметров КЛ и ФЛ.

Контроль спектральных и временных параметров фемтосекундных лазерных импульсов производился соответственно с помощью спектрометра ASP-100M и автокоррелятора на основе прецизионного интерферометра Майкельсона. Управление работой спектрометра и интерферометра производилось посредством специального программного обеспечения.

Регистрация пространственного распределения спектральной интенсивности фотолюминесценции в кристалле производилась системой, в составе которой спектрограф МДР-4, стробируемый с наносекундным разрешением микроканальный электронно-оптический преобразователь (ЭОП), импульсная ПЗС-матрица с объективом и модулем микропроцессорного управления, контроля и передачей данных. Выбор оптимальной чувствительности импульсной ЭОП-ПЗС системы обеспечивается специальным программным обеспечением. Следует отметить, что импульсный метод регистрации спектрального

Рис. 1. Спектры поглощения (1, 2) номинально чистого (содержание Се и Ті около 10^{-4} wt.%) (1) и легированного $(10^{-1}$ wt.% Ti) (2) кристалла YAlO₃, спектр одноимпульсной ФЛ Ti³⁺ и Ce³⁺ (1') при 300 К. Возбуждение: 2ω : Ti:Sp лазер, $\lambda = 390$ nm. Регистрация: задержка 5 ns, экспозиция $10 \, \mu$ s.

распределения интенсивности ФЛ и КЛ примесей в канале лазерного возбуждения даже при микросекундных экспозициях позволяет устранить внешние оптические шумы.

Импульсный фототок в кристаллах измерялся в специальной коаксиальной малоиндуктивной кювете при помощи осциллографа Tektronix TDS3032B. Титановые электроды размером $2.0 \times 2.0 \text{ mm}^2$ прижимались к кристаллу толщиной 2.0 mm через индий-галлиевую эвтектику и токосьем производился на коаксиальный разъем. Коаксиальный кабель-накопитель импульсно заряжался до напряжения 5 kV и разряжался через образец на нагрузку 50 Ω . Лазерный пучок диаметром 1 mm подавался на кристалл через вышеуказанную юстировочную систему перпендикулярно к линиям напряженности электрического поля. Эта серия экспериментов проводилась на полированных образцах в виде пластин $8 \times 8 \times 1 \text{ mm}^3$. Временное разрешение кювета-осциллограф соответствует 1 ns.

Фемтосекундное лазерное возбуждение в кристаллах примесных ионов и наведенная фотопроводимость

В ходе возбуждения номинально чистых кристаллов YAlO₃ (содержание Се и Ті около 10^{-4} wt.%) перестраиваемым излучением 2ω : Ti: Sp-лазера (390 nm, 80 MHz, 50 fs) обнаружены две полосы люминесценции при 380 и 575 nm (рис. 1), которые идентифицированы по методу [11] и связаны соответственно с излучением примеси Ce³⁺ и Ti³⁺. Установлено, что при фемтосекундном возбуждении на длине волны $\lambda_{\rm B} = 480$ nm ($3h\nu = 7.8 \, {\rm eV} \approx E_g = 7.8 \, {\rm eV}$) указанная ФЛ не наблюдается, а при возбуждении на $\lambda_{\rm B} = 470$ nm ($3h\nu = 7.9 \, {\rm eV} > E_g$) появляется и до $\lambda_{\rm B} = 450$ nm ($3h\nu = 8.3 \, {\rm eV} > E_g$) ее интенсивность существенно возрастает. Кроме того, выход ФЛ Ce³⁺ и Ti³⁺

Рис. 2. Зависимость интенсивности ФЛ (1, 2) примесных ионов Ce³⁺ и импульсного фототока (3) в кристаллах YAIO₃ при 300 K от плотности мощности фемтосекундного лазерного возбуждения, $\lambda = 390$ nm: 1 — эксперимент, 2 — компьютерное моделирование. На вставке: квантовая система и электронные переходы при трехфотонном возбуждении ФЛ ионов Ce³⁺.

имеет нелинейную зависимость от интенсивности фемтосекундного лазерного воздействия (рис. 2) и практически не зависит от температуры в интервале 78–300 К. Полученные результаты указывают на трехфотонный механизм возбуждения ионов Ce³⁺ и Ti³⁺ в кристаллах YAlO₃ и позволяют считать, что процесс возбуждения ФЛ Ce³⁺ и Ti³⁺ происходит путем последовательного захвата зонных дырок и электронов по реакции (1), которые наводятся по механизму трехфотонной ионизации собственного вещества кристаллов:

$$3h\nu \to R(\mathrm{O}^{2-}) \to e+h,$$

$$\left\langle \operatorname{Ti}^{3+} + h \to \operatorname{Ti}^{4+} + e \to (\operatorname{Ti}^{3+})^* \to \operatorname{Ti}^{3+} + h\nu_{\operatorname{Ti}^{3+}} \right\rangle.$$

$$\left\langle \operatorname{Ce}^{3+} + h \to \operatorname{Ce}^{4+} + e \to (\operatorname{Ce}^{3+})^* \to \operatorname{Ce}^{3+} + h\nu_{\operatorname{Ce}^{3+}} \right\rangle.$$
(1)

Для проверки данного утверждения была измерена зависимость импульсной фотопроводимости кристалла YAIO₃ от интенсивности фемтосекундного лазерного возбуждения на длине волны 390 nm. При этом использовались кристаллы номинальной частоты (примесей 10^{-4} wt.%).

Кристалл в соответствии со схемой эксперимента устанавливался так, что лазерный пучок полностью перерывал торцевую площадь кристалла. Величина импульсного тока фотопроводимости имеет кубическую зависимость от интенсивности фемтосекундного лазерного возбуждения YAIO₃ кристалла (рис. 2). Зависимость импульсного тока фотопроводимости от интенсивности фемтосекундного лазерного возбуждения на длине 360 nm имеет близкую кубическую закономерность для кристаллов Y₃Al₅O₁₂, Al₂O₃, LaF₃, NaCl. Таким образом, в указанных кристаллах, как и в YAlO₃, примесные дефекты могут возбуждаться путем последовательного взаимодействия с наведенными зонными электронами и дырками в результате трехфотонной ионизации собственного вещества кристалла.

Анализ зависимости величины импульсного фототока и интенсивности люминесценции примесных центров от плотности мощности фемтосекундных лазерных импульсов показывает их принципиальное различие (рис. 2). Так, в соответствии с механизмом трехфотонной ионизации собственного вещества кристалла величина импульсного тока фотопроводимости имеет кубическую зависимость от интенсивности фемтосекундного лазерного возбуждения, а выход примесной ФЛ — квадратичную (рис. 2). Данное различие зависимостей тока проводимости и выхода люминесценции примесей от объемной плотности фемтосекундного лазерного возбуждения кристаллов обусловлено тем, что концентрация наведенных электронов в зоне проводимости

$$n_e = \frac{\gamma I^3}{3h\nu} = \frac{jn}{ce},\tag{2}$$

где I — интенсивность фемтосекундных лазерных импульсов, $\gamma = \text{cm}^3 \cdot \text{s} \cdot \text{W}^{-2}$ — коэффициент трехфотонного поглощения, $h\nu$ — энергия фотона, j — плотность тока фотопроводимости, e — заряд электрона, n — показатель преломления кристалла, c — скорость света.

Известно, что процесс возбуждения примесных ионов, наведенными зонными электронами и дырками, состоит из этапов миграции и захвата, когда электрон достигает сферу действия примеси и передает энергию в соответствии с сечением взаимодействия [8,12]. Отсюда время возбуждения примеси составляет $t_r + t_c$, где t_r — время миграции, t_c — время захвата ионом электрона или дырки примесью. Поскольку $t_r \gg t_c$, то время возбуждения примеси практически определяется временем t_r. В течение времени $t_r = 10^{-11}$ s и электрон, и дырка в процессе миграции могут попасть в поле действия примесного иона, пройдя дистанцию более 100 регулярных узлов кристаллической решетки [8,12]. Зонные носители заряда, не попавшие в поле действия примесного иона, в ходе миграционного процесса теряют кинетическую энергию и спустя время tr достигают соответственно дна зоны проводимости и потолка валентной зоны (рис. 2), переходя в малоподвижное (термализованное) состояние с временем жизни $t_t = 10^{-9}$ s [10]. Эффективность процесса захвата примесными ионами термализованных носителей заряда на временном интервале от 10^{-11} s до 10^{-9} s на два порядка ниже, чем в ходе их миграционного процесса [8,12]. Тогда при условии $t_r = 10^{-11} \text{ s} \gg t_{\text{exc}} = 5 \cdot 10^{-14} \text{ s}$ концентрация возбужденных примесных ионов после первого фемтосекундного лазерного импульса определяется по формуле

$$N_a^* = \frac{\gamma I^3}{3h\nu} \,\sigma_a N_a t_r,\tag{3}$$

где N_a — концентрация примеси в кристалле, σ_a — сечение взаимодействия зонных носителей заряда с примесными ионами. На последующих импульсах фемтосекундного лазерного возбуждения с периодом следования $T_{\rm exc} = 1.2 \cdot 10^{-8}$ s при времени жизни в возбужденном состоянии примесных ионов τ от $2.5 \cdot 10^{-8}$ до $11 \cdot 10^{-6}$ s справедливо выражение

$$N_{a_{m+1}}^* = \frac{\gamma I^3}{3h\nu} \,\sigma_a N_a t_r - \alpha N_{a_m}^* I t_{\text{exc}},\tag{4}$$

где α — коэффициент поглощения из возбужденного состояния примесного иона (рис. 2), texc — длительность фемтосекундного импульса. Близкие к квадратичной зависимости выход ФЛ примесей от интенсивности фемтосекундного лазерного возбуждения, полученный в эксперименте и путем компьютерного моделирования формулы (4) по параметрам эксперимента для Се³⁺ в кристаллах YAlO₃, практически совпадают (рис. 2). Данный результат указывает на мультифотонный механизм возбуждения ФЛ, в основе которого фемтосекундная трехфотонная ионизация собственного вещества кристалла с последующим захватом примесными ионами зонных дырок и электронов. При этом с возбужденного состояния происходит конкурирующий переход электрона при поглощении четвертого фотона возбуждающего лазерного импульса (вставка рис. 2).

Эффективность возбуждения примесных ионов фемтосекундными лазерными импульсами и наносекундными электронными пучками

В кристаллах, возбуждаемых сильноточными наносекундными электронными пучками при плотности тока 0.05-2.0 kA/cm², лавинно наводится высокая концентрация зонных электронов и дырок $(10^{19}-10^{21} \text{ cm}^{-3})$. При этом последовательные взаимодействия одной пары зонных е и h охватывает не менее 100 собственных узлов регулярной решетки [8,12]. В таком случае при возбуждении плотными наносекундными электронными пучками (1 kA/cm², 250 keV, 1 ns) кристаллов, наведенные зонные *е* и *h* с объемной плотностью 10^{21} cm⁻³, последовательно взаимодействуя практически со всеми собственными и примесными ионами решетки кристалла, обеспечивают 100% возбуждение примесных ионов. Именно этим объясняется аномальное короткоживущее просветление примесных полос поглощения в кристаллах, подвергнутых электронной бомбардировке [8,9].

Кроме того, при плотности тока электронного пучка 0.05 kA/cm² наблюдается аномально высокий выход $(\eta \sim 10\%)$ КЛ ионов Ce³ и Ti³⁺ при их концентрации 0.1 wt.% в кристаллах Ce: YAlO₃; Ce: Y₃Al₅O₁₂; Ce:Y₂SiO₅; Ce:LiLuF₄; Ti:Al₂O₃; Ti:BeAl₂O₄; Ti:YAlO₃ и др. Данные результаты прямо указывают на то, что сечение взаимодействия зонных дырок и электронов с ионами примесного (σ_a) и собственного (σ) вещества отличается более чем на два порядка: $\sigma_a \gg \sigma$ [8,9]. Это связано с тем, что в окрестности примесных дефектов потенциал, сформированный главным образом s-, р-, d-подгруппами валентных электронных оболочек примесных ионов, нерегулярен, принцип Блоха нарушается [8,9,13]. В этом случае электроны и дырки эффективно передают энергию примесным дефектам, что соответствует неравенству $\sigma_a \gg \sigma$ [8,9].

В ходе фемтосекундного лазерного возбуждения YAlO₃ кристаллов по механизму трехфотонной ионизации кристаллического вещества (n = 1.94) в соответствии с данными импульсной фотопроводимости (рис. 2) и правой части формулы (2), при интенсивности 60 MW/cm², длительности 50 fs и диаметре пучка 1 mm в дисковом филаменте протяженностью 5 μ m, где объемная интенсивность соответствует 1.2 GW/cm⁻³, наводится концентрация зонных электронов 10¹⁶ cm⁻³. Вблизи гауссовой перетяжки объемная интенсивность соответствует ~ 10 TW/cm⁻³, концентрация зонных электронов и дырок в филаменте диаметром 10 μ m достигает 10²¹ cm⁻³ и соответствует объемной плотности зонных носителей заряда, наводимых сильноточным наносекундным пучком электронов (1 kA/cm², 250 keV, 1 ns).

На основе представленного анализа проведено единовременное исследование ФЛ и КЛ в кристаллах $Y_3Al_5O_{12}$ номинальной чистоты (примесей < 10^{-5} wt.%) при синхронном фемтосекундном лазерном и электронном возбуждении. При этом сфокусированный фемтосекундный лазерный луч диаметром $50\,\mu$ m проходил по кристаллу выше $200\,\mu$ m-слоя, возбуждаемого наносекундным электронным пучком с плотностью тока 0.25 kA/cm^2 . Электронный пучок был диафрагмирован так, что система регистрации наблюдала примерно одинаковый объем свечения КЛ и ФЛ каналов. В этой серии экспериментов система регистрации запускалась по фронту наносекундного импульса пучка электронов.

Результаты, представленные на рис. 3, хорошо согласуются с приведенным выше анализом на основе данных фотопроводимости (рис. 2) и показывают высокую эффективность электронно-дырочного механизма при трехфотонном лазерном и электронном возбуждении люминесценции примеси Ce³⁺ с полосой при 525 nm и временем затухания $\tau = 60$ ns и Pr³⁺ при 380 nm и $\tau = 28$ ns в кристаллах Y₃Al₅O₁₂ (рис. 3). Таким образом, при интенсивном фемтосекундном лазерном облучении указанных кристаллов механизм возбуждения

Рис. 3. Одноимпульсный спектр люминесценции Ce³⁺ (полоса с максимумом 525 nm) и Pr³⁺ (полоса с максимумом 380 nm) в кристаллах Y₃Al₅O₁₂ при единовременном возбуждении плотным наносекундным электронным пучком (*I*) и фемтосекундными лазерными импульсами, $\lambda = 450$ nm (*2*). Регистрация: задержка 5 ns, экспозиция 125 ns. Сверху спектрограмма. Температура 300 K.

Рис. 4. Одноимпульсный единовременный спектр ФЛ Ce³⁺ в кристаллах Ce:LaF₃ (*a*) и Ce:YAlO₃ (*b*) при 300 K. Возбуждение: 2ω :Ti:Sp лазера, $\lambda = 360$ nm. Сверху спектрограмма. Регистрация: задержка 5 ns, экспозиция 100 ns.

примеси Ce³⁺ и Pr³⁺ соответствует реакции

$$3h\nu \to R(O^{2-}) \to e+h,$$

$$\left\langle \begin{array}{c} \Pr^{3+} + h \to \Pr^{4+} + e \to (\Pr^{3+})^* \to \Pr^{3+} + h\nu_{\Pr^{3+}} \\ \operatorname{Ce}^{3+} + h \to \operatorname{Ce}^{4+} + e \to (\operatorname{Ce}^{3+})^* \to \operatorname{Ce}^{3+} + h\nu_{\operatorname{Ce}^{3+}} \\ \end{array} \right\rangle.$$
(5)

Единовременное наблюдение ФЛ и КЛ примесей в номинально чистых кристаллах $Y_3Al_5O_{12}$, $YAlO_3$, Y_2SiO_5 , YLiF₄, NaCl, CsI (примесей < 10^{-4} wt.%) и высокой частоты кристаллах Al_2O_3 (примесей < 10^{-6} wt.%) при синхронном фемтосекундном лазерном ($\lambda_{exc} = 360$ nm, диаметр пучка $10\,\mu$ m) и электронном наносекундном (0.25 kA/cm²) возбуждениях зарегистрирован близкий по величине выход ФЛ и КЛ. Таким образом, при фемтосекундной многофотонной ионизации собственного вещества кристаллов возбуждение примесного состава происходит по механизму последовательного захвата примесными ионами зонных дырок и электронов. Выше отмечено, что при электронном облучении кристаллов эффективность возбуждения примесей будет низкой при незначительном различии *s*-, *p*-, *d*-подгрупп внешней электронной оболочки активатора и собственных катионов решетки кристалла. Такими кристаллами являются Ce:LaF₃ (La³⁺-5*p*⁶, Ce³⁺-5*p*⁶). Действительно выход КЛ Ce³⁺ (5*d*-4*f*: 285 nm, 20 ns, 300 K) в кристаллах Ce:LaF₃, соотносится с их концентрацией (Ce³⁺ 0.1 wt.%) и на два порядка ниже эффективности КЛ Ce³⁺ — (5*d*-4*f*: 360 nm, 35 ns, 300 K) в Ce:YAlO₃ (Ce³⁺-5*p*⁶, Y³⁺-4*p*⁶) с такой же концентрацией Ce³⁺ 0.1 wt.% [9].

В соответствии с данной закономерностью исследована единовременная одноимпульсная ФЛ Ce³⁺ при фемтосекундном лазерном возбуждении сборки из двух кристаллов Ce:LaF₃ и Ce:YAlO₃. В кристалле Ce:LaF₃ концентрация Ce³⁺ соответствовала 0.1 wt.%, а в Ce:ÝAlO₃ концентрация Ce³⁺ на два порядка меньше 0.001 wt.%. При этом лазерный пучок был разделен на два одинаковых по интенсивности (50 MW/cm²) возбуждающих луча.

Результаты, представленные на рис. 4, показывают незначительное различие интенсивности ФЛ Ce³⁺ в кристаллах Ce:LaF₃ и Ce:YAlO₃ и свидетельствуют о том, что эффективность возбуждения ФЛ Ce³⁺ в Ce:YAlO₃ на два порядка выше, чем в Ce:LaF₃. Поэтому с учетом результатов, представленных в [8,9], можно утверждать, что при фемтосекундной лазерной мультифотонной ионизации кристаллического вещества эффективность электронно-дырочного возбуждения примесного состава в кристаллах, как и при воздействии электронным пучком, определяется степенью различия электронных систем *s*-, *p*-, *d*-подгрупп внешней оболочки катионов собственного вещества и активатора и выход примесной ФЛ соответствует выражению

$$\eta = \frac{N_a}{N - N_a} \frac{\sigma_a}{\sigma} \approx \frac{N_a}{N} \frac{\sigma_a}{\sigma},\tag{6}$$

где *N* — концентрация узлов кристаллической решетки.

Таким образом, в ходе интенсивного фемтосекундного лазерного возбуждения кристаллов в результате трехфотонной ионизации кристаллического вещества в электронно-дырочном филаменте концентрация зонных носителей заряда достигает 10^{21} сm⁻³ и соответствует объемной плотности зонных дырок и электронов, наводимых сильноточным наносекундным пучком электронов. При этом в результате трехфотонной ионизации кристаллического вещества эффективность электроннодырочного возбуждения примесного состава в кристаллах, как и при воздействии электронным пучком, определяется степенью различия электронных систем *s*-, *p*-, *d*-подгрупп внешней оболочки катионов собственного вещества и активатора.

Список литературы

- Барышников В.И., Колесникова Т.А. // Опт. и спектр. 2003.
 Т. 95. № 4. С. 638; Baryshnikov V.I., Kolesnikova Т.А. // Opt. Spectrosc. 2003. V. 95. N 4. P. 638.
- [2] Перлин Е.Ю., Елисеев К.А., Идрисов Э.Г., Халилов Я.Т. // Опт. и спектр. 2012. Т. 112. № 6. С. 920; Perlin E.Y., Eliseev K.A. Idrisov E.G., Xalilov Y.T. // Opt. Spectrosc. 2012. V. 112. N 6. P. 920.
- [3] Барышников В.И., Колесникова Т.А. // ФТТ. 2005. Т. 47. № 10. С. 1776.
- [4] Иванов А.В., Перлин Е.Ю. // Опт. и спектр. 2009. Т. 106.
 № 5. С. 764; Ivanov A.V., Perlin E.Y. // Opt. Spectrosc. 2009.
 V. 106. N 5. Р. 764.
- [5] Knox W.H. // IEEE J. Quant. Electron. 1986. V. 24. P. 388.
- [6] Чекалин С.В. // УФН. 2006. Т. 176. Р. 657.
- [7] Барышников В.И., Горева О.В. Патент РФ № 2650093, 2018.
- [8] Барышников В.И., Колесникова Т.А. // ФТТ. 1998. Т. 40. № 6. С. 1030.
- [9] Барышников В.И., Колесникова Т.А., Квапил И. // ФТТ. 1994. Т. 36. № 9. С. 2788.
- [10] Вайсбурд Д.И., Семин Б.И., Таванов Э.Г., Матлис С.В., Балычев И.Н., Геринг Г.И. Высокоэнергетическая электроника твердого тела. Новосибирск: Наука, 1982. 225 с.
- [11] Барышников В.И., Щепина Л.И., Колесникова Т.А. Патент РФ № 1795738, 1993.
- [12] Алукер Э.Д., Лусис Д.Ю., Чернов С.А. Электронные возбуждения и радиолюминесценция щелочно-галоидных кристаллов. Рига: Зинатне, 1979. 252 с.
- [13] Ильинский Ю.А., Келдыш Л.В. Взаимодействие электромагнитного излучения с веществом. М.: МГУ, 1989. 300 с.